第三章突变的应用_微生物遗传育种
- 格式:ppt
- 大小:1.77 MB
- 文档页数:5
第二章基因突变及其机制1.突变(Mutation):遗传物质核酸(DNA或病毒中的RNA)中的核苷酸序列突然发生了稳定的可遗传的变化。
2.突变型:由于突变体中DNA碱基序列的改变,所产生的新的等位基因及新的表现型称为突变型。
3.染色体畸变:染色体结构的改变,多数是染色体或染色单体遭到巨大损伤产生断裂,而断裂的数目、位置、断裂端连接方式等造成不同的突变。
包括染色体缺失、重复、倒位和易位等。
涉及到DNA分子上较大范围的变化,往往会涉及到多个基因。
4.基因突变;是指一个基因内部遗传结构或DNA序列的任何改变,包括一对或少数几对核苷酸的缺失、插入或置换,分为碱基置换(转换和颠换)和移码突变。
转换transition:DNA链中一个嘌呤(嘧啶)被另一个嘌呤(嘧啶)所置换。
颠换transversion:DNA链中一个嘌呤(嘧啶)被一个嘧啶(嘌呤)所置换。
5.错义突变missense mutation:由于突变后的密码子代表另一种氨基酸,从而造成个别碱基的改变导致多肽链上某个氨基酸为另一种氨基酸所取代。
6.同义突变:由于遗传密码的简并性,突变后的密码子编码的仍是同一种氨基酸。
碱基序列发生改变而氨基酸序列未发生改变的隐蔽突变。
7.无义突变:突变后的密码子变成终止密码子,是一类是引起遗传性状改变的突变。
8.移码突变frameshift mutation:在DNA序列中由于一对或少数几对核苷酸的插入或缺失,而使其后全部遗传密码的阅读框架发生移动,进而引起转录和转译错误的突变叫移码突变。
一般只引起一个基因的表达出现错误。
9.条件致死突变型:在某一条件下具有致死效应,而在另一条件下没有致死效应的突变型。
如:温度敏感突变型。
10.回复突变:突变基因通过再次突变回复到野生型基因的表型性状。
11.沉默突变:表型不发生改变的基因突变,包括同义突变和氨基酸序列发生改变而不影响蛋白质功能的错义突变。
12.突变率(mutation rate):每个细胞每一世代中发生突变的概率。
基因突变1、名词解释碱基置换突变(bas substitution):一个碱基被另外一个碱基取代而造成的突变,分为转换和颠换两种类型。
转换(transition):是指由嘌呤置换嘌呤或嘧啶置换嘧啶。
颠换(transversion) 是指嘌呤置换嘧啶或嘧啶置换嘌呤。
如碱基置换发生于编码多肽的区,则因可影响密码子而使转录、翻译遗传信息发生变化,因此可以出现一种氨基酸取代原有的某一种氨基酸。
也可能出现了终止密码而使多肽链合成中断,不能形成原有的蛋白质而完全失去某种生物学活性。
移码突变(frameshift mutation):在正常的碱基序列中插入或减少一个或多个碱基,造成突变位点下游密码子的错读,此种突变产生氨基酸顺序完全改变了的蛋白质,一般无活性。
异义突变(missense mutation):即错义突变,因碱基改变使相应氨基酸变化,进而使多肽失活或活性下降。
同义突变(samesense mutation):突变后的密码子编码相同的氨基酸。
无义突变(nonsense mutation):碱基改变使编码某一氨基酸的密码子变为终止密码子,使蛋白质合成中断,产生无活性的多肽。
抑制基因突变(suppressor mutation):在DNA的不同位置上发生的第二次突变抑制了原来突变基因的表达,恢复野生型表型。
诱发突变(induced mutation):人为施加物理化学诱变因子而导致的突变。
自发突变(spontaneous mutation):指那些未经人工诱变处理原因不明的突变。
辐射的直接作用假说:又称为靶学说,认为细胞吸收辐射能量后,发生诸如激发、电离、弹性碰撞等多种原发性物理过程,辐射的量子击中染色体,整个过程就好像子弹击中靶子一样,导致发生直接的不同程度的原始损伤,细胞的修复系统对各类损伤进行修复,产生重排,最终导致基因突变或者染色体畸变。
辐射的间接作用假说:认为生物细胞中的分子经辐射作用先产生各种自由基,特别是细胞中存在的大量水分子在辐射作用下产生大量的过氧化氢,这些自由基团进一步与细胞内遗传物质反应,通过一系列生物化学反应造成染色体损伤。
第一章绪论一、微生物遗传育种对野生型菌株或低产菌株进行遗传操作和分离筛选,从大量突变体中筛选出性状优良的菌株,并对其发酵条件加以优化,得到适合发酵工业生产的优良菌种(产量、质量、新产物)。
二、微生物遗传育种的具体目标:1、提高产量生产效率和生产效益总是排在一切商业发酵首位的目标2、提高产物的纯度,减少副产物如色素;提高有效组分3、改变菌种形状,改善发酵过程,如改变和扩大菌种的原料结构;改善菌种生长速率;提高斜面孢子化程度;降低需氧量和能耗;耐不良环境;耐目的产物;改变细胞透性,提高产物分泌4、遗传性状特别是生产性状稳定5、改变生物合成途径,获得新产物三、优良发酵菌株应具备哪些特性1、遗传稳定2、易于培养:营养谱广、培养条件易达到3、易于保存(如孢子丰富或产生休眠体)4、种子生长旺盛5、发酵周期短,产量高,产物单一6、产物易于分离纯化第二章微生物遗传学基础一、名词解释:基因:遗传信息的基本单位。
一般指位于染色体上编码一个特定功能产物(如蛋白质或RNA分子等)的一段核苷酸序列。
转化:受体细胞直接吸收了来自供外源DNA片断,并把它整合到自己的基因组中,细胞部分遗传性状发生变化的现象叫转化。
转导:外源遗传物质通过噬菌体的携带进入受体细胞,并与受体染色体发生基因重组接合:供体菌通过性菌毛传递不同长度的单链DNA给受体菌,在后者细胞中发生交换、整合,从而使后者获得新的遗传性状的现象。
菌种衰退:菌种在培养或保藏过程中,由于自发突变的存在,出现某些原有优良生产性状的劣化、遗传标记的丢失等现象,称为菌种的衰退。
二、突变型的种类形态突变型、生化突变型、条件致死突变型、致死突变型、抗性突变型。
三、试质粒的性质及其在基因工程中的应用性质:自我复制、拷贝数高、不相容性、转移性。
应用:基因工程中作为载体将目的基因带入宿主细胞;其所带抗性基因可作为标记基因;降解复杂有机化合物;合成限制性内切酶或修饰酶。
第三章遗传与变异一、基因组对于原核生物来说,就是它的整个染色体;对于二倍体的真核生物来说,是能够维持配子或配子体正常功能的最低数目的一套染色体。