XX煤业预防煤层自燃发火预测预报及安全技术措施
- 格式:doc
- 大小:127.50 KB
- 文档页数:21
煤层自燃发火预测预报及预防措施在煤矿生产中,煤层自燃是导致煤矿火灾的主要原因之一。
预测和预报煤层自燃的发生,采取相应的预防措施,对于保障煤矿生产安全具有重要意义。
本文将介绍煤层自燃的原因和途径、自燃发火的预测预报方法以及预防措施。
煤层自燃的原因和途径煤层自燃是指在煤矿采掘过程中,由于各种因素的影响,导致煤层内的发热物质自发氧化并生成大量热量,使煤层温度升高,进而引发火灾。
煤层自燃的原因有多种,主要包括以下因素:1.煤质因素:不同类型、不同质量的煤,其自燃性也不同。
其中在含硫量高、焦渣量、松散程度和露天氧化面积大的煤层中,自然裂隙多、通风条件差,容易自燃。
2.地质因素:含水炭层、潮湿炭层的自燃危险较小,而低透气性沉积物层与煤层接触的地层,容易吸附水分和吸氧条件差,自燃危险较大。
3.煤矿经营管理因素:采掘技术水平、通风与抽放系统、煤炭运输及存储方式等都会对煤层自燃产生影响。
自燃发火的预测预报方法对于煤层自燃的预测和预报,应结合采掘过程中各个环节的特点,不断收集有关数据,及时研究和判断,采取有效措施,预防和消除煤层自燃。
下面介绍常用的自燃发火预测预报方法:1.温差法:通过温度差别观察来进行预测。
利用感应电缆,探测传送到地面的煤层内部温度,与大气温度相比较,若温差在低于20℃以内,则预示煤层自燃的危险性较小;若温差在20℃-30℃之间,则预示煤层自燃的危险性较高;若温差超过30℃,则预示已开始发生自燃现象,须及时采取措施。
2.气体法:利用测点周围的瓦斯、氧气含量等指标,进行预测。
当瓦斯浓度超过0.5%时,将增大煤层自燃的危险程度;当氧气含量下降到16%时,也可能引发煤层自燃的爆发。
3.氧化性煤体含量法:通过测定煤体表面的可燃分含量、氧化性煤含量及煤体抗氧化指数等来进行预测。
4.煤层压力法:通过观测煤层压力变化、矸石压强、粉尘颗粒运动等指标来判断煤层的稳定性,并进行自燃预测。
5.煤质综合识别法:通过煤体成分分析、煤体物理力学参数测试等手段,综合判断煤层的自燃危险性。
煤矿自然发火预测预报制度范文煤矿自然发火是煤矿安全生产中的一大隐患,及时预测和预报自然发火风险是预防和控制煤矿自然发火事故的关键环节。
因此,建立煤矿自然发火预测预报制度至关重要。
本文将从制度的组成、预测预报模型的建立以及实施措施等方面进行论述。
一、制度的组成(一)基础数据采集预测预报制度的第一步是建立基础数据采集系统,对煤矿的地质、气象、构造等情况进行详细调查和采集。
包括但不限于以下内容:1. 根据煤矿地质特点,进行采掘工作面的划分和标示;2. 对煤层、岩层、构造等进行详细调查,了解煤层赋存情况、切割裂隙等地质条件;3. 进行气象要素的采集,包括温度、湿度、风速等,以便分析气象因素对自然发火的影响;4. 煤矿巷道的通风系统、水文地质情况等的调查和采集;5. 煤矿作业工艺过程中的数据采集,包括煤矿开采量、运输量等。
(二)数据分析和建模基于采集到的基础数据,进行数据分析和建模,建立自然发火预测预报模型。
常用的模型包括神经网络模型、逻辑回归模型、支持向量机模型等。
1. 神经网络模型:通过模拟人脑的神经网络,对输入的数据进行处理和学习,从而预测自然发火的概率;2. 逻辑回归模型:通过线性回归的方法,将数据进行分类,分为自然发火和非自然发火,从而得到自然发火的概率;3. 支持向量机模型:通过定义一个超平面,将不同类别的数据分开,并找出数据之间的最大间隔,从而预测自然发火的概率。
(三)预测预报系统建设基于建立的预测预报模型,搭建相应的预测预报系统。
该系统应具备以下功能:1. 实时监测和采集煤矿数据,包括气象数据、工艺参数等;2. 运用预测预报模型对采集到的数据进行分析和处理,实现自然发火风险的预测和预报;3. 根据预测和预报结果,制定相应的安全措施和应急预案;4. 实时监测和报告自然发火风险情况,及时进行预警和紧急处理。
二、预测预报模型的建立(一)基于神经网络的自然发火风险预测模型神经网络模型是一种模拟人脑神经元运算的数学模型,能够通过学习和调整权重,从而实现对输入数据的分类和预测。
煤矿自然发火预测预报制度范文煤矿自然发火是煤矿生产中常见的安全隐患,给矿工的生命财产安全带来巨大威胁。
为了预防和控制煤矿自然发火事故的发生,建立一套科学有效的自然发火预测预报制度至关重要。
本文将介绍一份煤矿自然发火预测预报制度范本,以供参考。
1.背景和目的煤矿自然发火预测预报制度是为了提前发现煤矿自然发火的迹象,采取相应措施进行预防和控制,以确保矿工的生命财产安全。
制度的目标是提高煤矿安全生产水平,减少自然发火事故的发生。
2.预测指标(1)煤层温度:通过监测煤层温度的变化,判断是否有自然发火的可能性。
当煤层温度超过一定阈值时,需要提高警惕,并采取措施进行防范。
(2)瓦斯浓度:瓦斯是煤矿自然发火的主要原因之一。
对矿井中的瓦斯浓度进行监测,可以提前发现瓦斯积聚的情况,并采取相应措施预防自然发火事故的发生。
(3)氧气浓度:氧气是煤矿自然发火的必备元素,对矿井中的氧气浓度进行监测,可以判断是否存在煤与氧气相互作用的可能性,从而预测自然发火的风险。
3.预测方法(1)数据收集:收集煤层温度、瓦斯浓度和氧气浓度等相关数据,并建立数据记录数据库。
(2)数据分析:对收集到的数据进行分析,建立数学模型,寻找可能的预测指标之间的关联规律。
(3)预测模型建立:根据数据分析的结果,建立自然发火的预测模型,并进行验证和调整。
(4)预测预警:根据预测模型,对未来一段时间内是否可能发生自然发火事故进行预测,及时发出预警信号。
(5)措施采取:根据预测结果,采取相应的预防措施,如加强通风、降低煤层温度等,防止自然发火事故的发生。
4.人员责任(1)技术人员:负责煤层温度、瓦斯浓度和氧气浓度等数据的监测和分析,建立预测模型,并提出预测预报意见。
(2)管理人员:根据预测预报意见,制定相应的安全生产措施,并监督执行情况。
(3)矿工:遵守安全生产规章制度,配合技术人员和管理人员的工作,并积极参与自然发火预测预报制度的培训和演习。
5.制度执行(1)数据收集:每日对煤层温度、瓦斯浓度和氧气浓度等数据进行监测,并及时录入数据库。
防治煤层自燃发火的安全技术措施煤层自燃发火是煤矿安全生产中常见的一种灾害事故,对矿井和人员的安全造成严重威胁。
为了防止和控制煤层自燃发火事故的发生,采取一系列的安全技术措施是必要的。
以下是一些常用的防治煤层自燃发火的安全技术措施:1.预防控制措施(a)定期加强煤层自燃发火的监测,包括地下和地表的气体、温度、湿度等数据的收集和记录。
(b)对煤层近距离探测仪器进行随时安装和调试,加强对煤层自燃发火预警系统的建设和维护。
(c)建立完善的通风系统,通过送风和排风控制,降低煤层自燃发火的概率。
(d)实施合理的瓦斯抽放和瓦斯抽放管线的管控,减少瓦斯对煤层自燃发火的影响。
(e)加强对井下巷道的管理,定期巡检和清理煤矿巷道。
2.监测与检测技术(a)建立煤层自燃发火的监控系统,包括温度、气体、烟雾和火焰的监测。
(b)采用红外线热像仪、红外线测温仪等设备进行矿井自燃的实时监测和测量。
(c)利用煤层自燃发火的可燃气体特性和产物的分析,通过氧、二氧化碳、甲烷等气体浓度变化的检测,进行自燃发火的预警和判断。
3.消防技术措施(a)建立完善的矿井消防系统,包括消防器材、矿井防火门、矿井防火墙等的设置。
(b)加强消防培训,提高矿工的消防意识和自救逃生能力。
(c)建立矿井应急救援队伍,加强事故应急救援能力。
(d)加强仓库储煤的灭火设备和管理,减少自燃发火的可能性。
4.防止火源接触(a)严禁在易自燃的煤矿区域内使用明火和电火源,限制设备和工作人员进入自燃区域。
(b)对高温设备和工具进行防护和限制使用,减少高温对煤层的刺激。
(c)加强对煤矸石、废渣堆放区的管理,定期清理煤矸石和废渣,避免自燃发火。
5.技术创新与科技支持(a)加强煤层自燃发火的技术研究,开发新型的煤层自燃预警技术和防治措施。
(b)引进新技术和设备,利用无人机、遥感技术等进行煤层自燃的实时监测和预警。
(c)加强与科研机构和高校的合作,开展研究项目,提升煤层自燃发火的防治技术水平。
防治煤层自燃发火措施煤矿是一种常见的矿产资源,然而,由于煤的固有特性,使其具有易燃、易自燃的特点。
一旦煤层发生自燃,将很容易导致火灾事故的发生,严重威胁煤矿安全生产。
为了有效防治煤层自燃发火,需要采取一系列的措施。
首先,需要开展煤层自燃的监测和预警工作。
通过建立煤层自燃监测系统,对煤层进行实时监测,及时发现异常情况,并进行预警和预测。
常用的监测手段包括温度监测、氧气浓度监测、甲烷含量监测等。
通过分析监测数据,可以判断煤层自燃的危险性,及时采取措施进行干预。
其次,需要采取适当的通风措施。
通风是防止煤层自燃发火的关键措施之一、通过合理调整通风系统,保持合适的通风流量和风速,可以降低煤层的温度,减少氧气供应,从而有效防止煤层自燃的发生。
此外,还可以采用冷风吹灭、封闭风脉等措施,消除煤层的自燃点火源。
此外,需要加强煤层润湿措施。
湿法治理可以有效地降低煤层的温度和氧气浓度,阻止自燃的发生。
常用的润湿措施包括喷水、喷雾降温、喷水降尘等。
这些措施可以降低煤层的温度,减少氧气供应,从而有效地防止煤层自燃的发生。
另外,还需要加强粉尘治理和安全生产管理。
煤矿中存在大量的煤尘,煤尘是煤矿火灾的重要原因之一、因此,需要采取一系列的措施,包括湿法喷淋、覆盖、喷雾等,将煤尘控制在可接受的范围内。
同时,也需要加强安全生产管理,建立完善的安全责任制度,加强员工培训,提高安全意识,确保安全生产。
除了以上措施外,还可以采取其他的技术手段来防治煤层自燃发火。
例如,使用阻尼材料进行覆盖,减少煤层的氧气供应,阻止煤层自燃的发生。
另外,可以利用火险源自动报警系统,如红外线检测、气体检测等,及时发现自燃火险源。
综上所述,防治煤层自燃发火是煤矿安全生产的重要环节。
通过加强煤层自燃的监测和预警工作、合理调整通风系统、加强煤层润湿措施、加强粉尘治理和安全生产管理等一系列措施的采取,可以有效防止煤层自燃的发生,确保煤矿的安全生产。
预防煤炭自燃发火的技术措施
制定部门:某某单位
时间:202X年X月X日封面页
—1—
预防煤炭自燃发火的技术措施
预防煤炭自燃发火的技术措施
安全事关每个家庭的幸福,熟悉安全操作规程,掌握安全技术措施,制定安全计划方案,做好单位安全培训,加强安全知识学习及考试更是预防和杜绝安全事故的重要方式和手段。
您浏览的《预防煤炭自燃发火的技术措施》正文如下:
1、√选择矿井的开拓方式,合理布置采、准区。
2、√选择煤层的开采顺序。
3、加强顶板管理,提高回采率,加快回采速度,尽量减小遗失在采空区的煤炭。
4、不得任意采掘规定的必须保留的煤柱。
5、选择合理的通风方式,√设置控制风流的设施。
6、掌握自燃发火预兆,及时进行发火预测预报。
把自燃发火消灭在l萌芽l阶段。
7、对采掘生产过程中遗留下的各种发火隐患要及时处理,减少自燃发火的发生。
8、加强l三道l维修,加强对废旧巷道的处理,及时充填煤巷碹,及时处理高温点等。
//市**煤矿有限责任公司预防煤层自燃发火安全技术措施二O一九预防煤层自燃发火安全技术措施煤矿井下的火灾有两种:一种是内因火灾,即由于煤炭自燃着火引起的火灾;另一种是外因火灾,即由于外部火灾,如电气明火、油脂着火、机械摩擦、电焊、放炮、吸烟等各种明火及瓦斯煤层爆炸引起井下支架、背板、皮带、电缆、煤炭等可燃物着火引起的火灾。
我矿矿区内有可采煤层3#、7#、8#共三层,目前开采3#煤层,属于低瓦斯矿井。
为了预防煤层自燃发火,特编制本安全技术措施。
第一章:防治矿井外因火灾安全技术措施1、矿井的所有地面建筑、煤堆、矸石堆、木料场等处要指定防火措施和制度,并必须符合国家有关防火的规定。
木料场、矸石堆、炉灰场距离进风井不得小于80m,木料场距离矸石堆不得小于50m。
不得将矸石堆或炉灰场设在进风井的主导风向上风侧,也不得设在表土10m以内有煤层的地面上和设在有漏风的采空区上方的塌陷范围内。
矿井的永久井架和井口房、以井口为中心的联合建筑,必须用不燃性材料建筑。
2、矿井均必须按《煤矿安全规程》的要求设计和建立地面消防水池和井下消防管路,并在矿井、水平和采区投产同时投入使用,并保证供到用水点,管中的水压不低于4kg/m2,水量不小于0.6m3/min 。
地面消防水池必须经常保持不少于200m3的水量。
3、消防管路的下列地点必须设置三通和阀门:(1)所有斜井和平峒井口;(2)井底车场附近主要硐室内;(3)井底车场、主要进回风大巷、采区上、下山、工作面顺槽等每隔100m处;(4)带式输送机每隔50m处,皮带机头、机尾附近15m以内;(5)其他易发生火灾的地点。
三通和阀门的位置应便于使用和检修,必须有明显易辨的标志,其出口禁止射向电气设备。
4、矿井进风井井口应装设防火铁门,防火铁门必须严密并易于关闭,打开时不妨碍提升、运输和人员通行,并应定期维修;如果不设防火铁门,必须有防止烟火进入矿井的安全措施。
5、井口房和通风机房附近20m内,不得有烟火或用火炉取暖。
XX煤业预防煤层自燃发火预测预报及安全技术措施目录一、煤的自燃倾向性类别、煤的自燃发火期 (2)二、煤层自燃预测及防治措施 (2)(一)、煤的自燃的预测 (2)(二)、巷道布置与开采顺序方面措施 (8)(三)、采煤工艺的措施 (8)(四)、通风方面的措施 (9)三、防灭火系统 (10)(一)、灌浆 (11)(二)、氮气 (15)XX煤业预防煤层自燃发火预测预报及安全技术措施一、煤的自燃倾向性类别、煤的自燃发火期1、煤的自燃倾向性及自燃发火期根据本矿井4号煤层自燃倾向等级鉴定报告,4号煤层属自燃煤层(自燃倾向分类为Ⅱ级),其他煤层未作鉴定,矿井揭煤后立即采样送有资质的单位补作鉴定。
在未作鉴定前,按容易自燃煤层进行管理。
煤炭自燃倾向等级鉴定结果表二、煤层自燃预测及防治措施(一)、煤的自燃的预测一)、建立观测系统为及时掌握自燃发火动向,必须做好观测站(点)的建设,气样的采集、分析、记录和火灾的判断,矿井应建立预防自燃发火观测系统,观测站(点)的布置如下图所示。
在采煤工作面设置共设7个观测点,其中:固定观测点2个,设在进回风侧;移动观测点2个,设在靠采煤工作面侧,移动观测点3个,设在采煤工作面靠采空区侧。
固定观测站移动观测点临时观测点一氧化碳增量法预测工作面火灾示意图观测站(点)的布置与观测应符合下列求:1、在矿井的自燃危险区建立自燃发火观测站(点),进行系统的、定期的观测。
观测站(点)应设在矿压较小的地点,至少长10m 的一段巷道支护规整、断面不变,巷内无一切风阻物,以便完成气样采集、气体成分、风速测定和风温测定。
井下观测站(点)分为固定观测点、移动观测点和临时观测点三种。
2、采区、工作面固定观测站(点):在采区、工作面的进回风流都必须各建立一个观测站(点),并符合井下测风站的要求。
其观测站(点)的位置应使进风观测点能控制全部进风流,回风观测点能控制全部回风流,即两个观测站(点)间不允许有其它的进风流和回风流。
3、移动观测点:在工作面的进回风巷内距工作面10~20m处设置,并随工作面的推进而移动的观测点。
4、临时观测点:发生有异常现象,为缩小火区范围以便准确查找火源点而增设的观测点。
5、各观测站每星期至少采取2次气进行分析。
6、一般防火监测探头的观测气样为:一氧化碳、二氧化碳、瓦斯、氧气、风量、风温及氮气等。
7、在KJ95N矿井安全监控系统中须配备温度传感器、CO传感器,随时监测采掘工作面风流中的温度和CO浓度,一旦超限,及时采取相应的措施,防止煤层自燃。
二)、放顶煤工作面的火灾监测系统1、煤层自燃火灾监测与早期预报是矿井火灾预防与处理的基础,是矿井防灭火的关键。
只要能够准确、及时地对煤层自燃火灾进行早期预报,就能有的放矢地采取预防煤层自燃火灾的措施,从而避免自燃事故的发生。
对于煤层火灾的预测预报而言,采样监测技术是至关重要的。
目前,煤层火灾的监测主要有矿井火灾束管采样监测系统、煤矿安全监控系统和人工检测三种手段。
地面固定式矿井火灾束管监测系统是借助束管将矿井井下各测点的气体经抽气泵负压抽取、汇总到指定地点,在借助气相色谱检测装置对束管采集的井下气样进行分析,实现对CO、CO2、CH4、C2H2、C2H4、C2H6、O2、N2等气体含量的在线监测,其监测结果在以实时监测报告、分析日报等方式提供数据的同时,亦可自动存入数据库中,以便今后对某种气体含量的变化趋势分析,从而实现对矿井自燃火灾的早期预报。
安全监控系统可以连续监测CO、CO2、O2等环境参数,根据这些环境参数的变化进行煤层火灾的预报。
人工检测一直作为煤层火灾的主要监测手段,人工气体监测主要采用O2、CO、CH4等便携式气体分析仪,由人工直接在各测点进行气体检测,并定期采用气袋取气样,送地面进行气相色谱分析,给出气体的成分和浓度,以此判断煤层发火程度。
该法适用性强、投入设备少,简单易行,但人工取样工作量大,间隔时间长,不能连续实时进行检测。
本矿采用JSG9型地面固定式束管监测系统。
系统的束管监测装置、数据处理单元放置于地面办公楼内的监测监控系统中心站内,抽气设备安放在办公楼内监测中心。
束管主管由办公楼引出经主斜井敷设至井下,再经4-1号煤轨道大巷和回风大巷送至回采工作面回风顺槽中,再分接单管,与采区各监测地点相连接。
测点处气体由地面设置的真空泵经束管抽至地面束管监测装置,然后将气体分析结果输送至计算机系统,连续监测井下巷道、采空区、密闭中的CO、O2、CO2、CH4等气体组分浓度,根据CO变化趋势和格雷哈系数,早期预报煤炭自燃预兆。
当气体(CO、CO2、CH4、O2)浓度超过规程规定时,往采空区进行灌浆。
生产中,若自燃发火程度严重时,可实行连续灌浆。
设计利用与该采样系统配套的GC-950N型煤矿专用火灾气体色谱分析系统,该系统采用高科技术,具有仪器稳定、重复性好,灵敏度高、能检测所有火灾气体、分析时间短等优点。
本矿采用JSG-9型束管监测系统,该系统主要安装在采区,可作为与分站与矿井环境监测系统联网运行,也可单独运行,监测采区或工作面气体成分和预报自燃发火;可用于矿井高产高效工作面采空区气体监测或中小型矿井自燃发火预报。
该系统由采样分析柜、电源控制箱、12路采样管组成;主要安装于采区进风巷硐室,6路采样管经顺槽敷设到工作面采空区,采集回风巷及气样进行分析。
该系统可联机运行,亦可单独运行。
单片机存贮15天分析数据。
束管监测系统示意图1—取样点;2—粉尘过滤器;3—水份过滤器;4—抽气泵;5—束管三)、其它1、人的感官可以察觉的自然征兆①巷道中出现雾汽或巷壁“挂汗;②风流中出现火灾气味,如煤油味、松香味、臭味等;③从煤炭自燃点流出的水和空气较正常的温度高;④当空气中有毒有害气体浓度增加时,人们有不舒服的感觉,如头痛、头晕、精神疲乏等。
2.仪表检测有下列情况之一者,定为自燃发火:①煤炭自燃出现明火、火灾烟雾、煤油味等;②煤炭自燃使环境空气、煤层围岩及其它介质温度升高并超过70℃;③采空区或风流中出现一氧化碳(CO),其浓度已超过矿井实际统计的临界指标,并有上升趋势。
有下列情况之一者,定为自燃发火隐患:①采空区或井巷风流中出现一氧化碳,其发生量呈上升趋势,但尚未达到矿井实际统计的临界指标。
②风流中出现二氧化碳(CO),其发生量呈上升趋势,但尚未达到矿井实际统计的临界指标。
③煤炭、围岩及空气和水的温度升高,并超过正常温度,但尚未达到70℃;④风流中氧(O2)浓度降低,其消耗量呈上升趋势。
(二)巷道布置与开采顺序方面措施1、主要巷道布置在岩石中XX煤矿采用斜井开拓,主斜井、副斜井、回风斜井布置在煤层的顶板岩石中,后期开采连接采区的运输大巷、回风大巷、行人大巷及采区轨道、行人、回风巷布置在煤层的底板,沿煤层走向布置采煤工作面形成系统后回采。
(具体详见采区巷道布置平剖面及机械配备图)。
布置在有自燃、容易自燃煤层中的回采巷道,采用锚网支护。
2、开采顺序根据划定的井田范围,本矿共划分为四个采区(一采区、二采区、三采区、四采区)。
采区开采顺序为一采区→三采区→四采区→二采区。
(三)采煤工艺的措施1、采煤方法采煤工作面采用走向长壁式布置,采煤工作面采用综采放顶煤,运输顺槽胶带运输。
全部陷落法管理顶板。
采煤工作面采用后退式的采煤方法。
2、采煤工作面采用走向长壁后退式采煤法,在回采过程中应尽量加快推进度。
不丢失浮煤和顶煤,采煤工作面采到停采线时,必须密闭采空区,且尽量采取措施使顶板冒落严实。
回采过程中不得任意留设设计外的煤柱。
3、在地质构造复杂、断层带、残留煤柱等区域开采时,应根据矿山地质和开采技术条件,在作业规程中另行确定采区开采方式和开采期限。
4、在煤巷掘进中出现冒顶区必须及时进行防火处理,并定期检查。
5、在采区开采设计中,必须预先选定构筑防火门的位置。
当采煤工作面投产和通风系统形成后,必须按设计选定的防火门位置构筑好防火门墙,并储备足够数量的封闭防火门的材料。
采煤工作面回采结束后,必须及时进行永久性封闭。
6、在采区开采设计中,必须明确选定自然发火观测站或观测点的位置并建立监测系统、确定煤层自然发火的标志气体和建立自然发火预测预报制度。
所有检测分析结果必须记录在专用的防火记录簿内,并定期检查、分析整理,发现自然发火指标超过或达到临界值等异常变化时,立即发出自然发火预报,采取措施进行处理。
(四).通风方面的措施1、采掘工作面均采用独立通风矿井采煤工作面采用独立通风,采煤工作面采用“U”通风方式,采煤工作面回风巷与回风大巷相连,为独立全负压通风;必须随采煤工作面的推进逐个封闭通至采空区的连通巷道。
采区开采结束后45天内,必须在所有与已采区相连通的巷道中设置防火墙,全部封闭采区。
掘进工作面采用压入式通风,其掘进工作面回风流与回风大巷相连,为独立通风。
2、控制风流的风门、风桥、风墙、风窗等设施必须可靠。
3、通风设施应设置在围岩坚固、地压稳定地点。
还应避免引起采空区或附近煤柱裂隙漏风量的增大。
4、加强对封闭墙的检修与维护。
5、矿井在开采过程中要注意观察,加强煤层自燃征兆的早期识别工作。
三、防灭火系统本矿所采4号煤层按自燃煤层进行管理,其它未鉴定煤层按有容易煤层进行管理。
设计采用灌浆、注氮、注凝胶的防灭火系统和预测预报系统,并在采煤工作面回风巷和掘进工作面回风流中安设一氧化碳和温度传感器,防止煤层自燃的发生。
(一)灌浆1.防火灌浆设计依据及基础资料(3)采区巷道布置根据矿井开拓系统系统巷置,全井田划分为一个水平,四个采区开采。
(4)、煤柱留设尺寸矿井边界、断层、钻孔、采区边界煤柱宽度为:30m、区段间留隔离煤柱宽度为20m。
(5)灌浆材料的质量、数量灌浆材料为粘土黄泥,颗粒小于2mm,而且细小颗粒要占大部分。
(6)灌浆站工作制度地面灌浆站工作制度原则与矿井工作制度一致,,回采工作面结束后采用三班灌浆,每天灌浆时间为15小时。
(7)矿井开拓方式、矿井生产能力、日产量本矿采用斜井开拓,矿井生产能力120万吨/年,日产量3550吨。
2.灭火原理将水、浆材按适当比例制成一定浓度的泥浆,通过管路灌进采空区。
泥浆可包住碎煤,使之与空气隔绝,防止氧化;泥浆可堵塞采空区中的空隙,减少漏风;泥浆水可使密闭区内冷却、降温,从而达到阻止自燃发火的目的。
3.系统组成(1)灌浆系统从地面黄泥灌浆站向采空区注浆。
灌浆防灭火系统由以下设备组成。
见图5—2—2。
黄泥灌浆设备一览表表5-2-2(2)疏水系统采煤工作面采用走向长壁式布置,灌浆管路布置在在采煤工作面的回风巷,灌浆产生水经采空区自流至采工作面运输巷经运巷自流至井底水仓排出地面,为了防止灌浆后溃浆、透水,应采取灌浆前疏水、灌浆后防溃浆、透水的措施。
1)、要使用渗(透)水性强的材料(如荆条帘子或聚氯乙烯塑料帘子等)做围堰壁;如果采用木板围堰壁时,必须预留泄水孔(泄水孔的分布、直径或面积的大小及数量的多少等,应根据实际需要确定);2)、围堰的四周要同巷道帮壁接实打牢;3)、围堰筑好后,背好套棚,打齐打牢中心顶子;4)、充填流量要均匀适度,切忌流量忽大忽小;接近充满时要适当减少流量;5)、充填灌浆时要设压力表并设专人观察,当现管路压力较大(如管路跳动或管路接头跑漏水、砂浆等现象)时,要及时打开安全阀,释放压力,停止充填注浆。