图像分割中最佳阈值集的选择与评测
- 格式:pdf
- 大小:310.52 KB
- 文档页数:3
图像处理技术中的图像分割阈值选择方法探讨图像分割是图像处理的重要步骤之一,它将一幅图像划分成多个区域或对象,使得每个区域或对象具有一定的相似性或特征。
而图像分割的关键在于选择合适的阈值,以实现准确的分割结果。
本文将探讨图像处理技术中的图像分割阈值选择方法。
图像分割的目的是将图像中的前景和背景分开,使得每个区域或对象能够得到独立的处理。
在许多应用中,分割准确性对于后续处理步骤的成功非常关键。
因此,选择适当的阈值方法至关重要。
在图像处理中,有许多常用的图像分割阈值选择方法,比如全局阈值法、自适应阈值法、Otsu阈值法等。
下面将对这些方法进行详细的介绍和比较。
首先是全局阈值法,它是最简单和最常见的分割方法之一。
该方法假设图像中的前景和背景的灰度值具有明显的差异,并且像素的灰度值可以根据一个固定的阈值进行分类。
通常情况下,阈值可以通过试错法或者统计分析的方法来选择。
全局阈值法的优点是简单易用,计算速度快,适用于许多场景。
然而,该方法对于图像中存在灰度值分布不均匀或者背景复杂的情况表现不佳。
接下来是自适应阈值法,该方法能够根据图像中局部区域的特征动态地选择阈值。
它假设图像中的前景和背景的灰度值在局部区域内具有一定的相似性,并且像素的灰度值可以根据其局部区域的平均或中值来分类。
自适应阈值法的优点是能够适应图像中的灰度值变化和背景复杂的情况,但是计算复杂度会相应增加。
最后是Otsu阈值法,它是一种基于图像灰度直方图特性的自动分割方法。
Otsu 阈值法通过最大类间方差的方法选择阈值,即使得前景和背景之间的差异最大。
它能够自动选择合适的阈值,适用于各种图像。
Otsu阈值法的优点是能够自动化选择阈值,但是对于某些特殊图像,可能无法得到理想的分割结果。
除了以上介绍的常用方法外,还有一些其他的图像分割阈值选择方法,如基于聚类分析的方法、基于直方图的方法等。
这些方法在特定的应用场景中可能会有更好的效果,但是也有一定的局限性。
数字图像处理实验报告题目:图像的阈值分割及边缘检测技术班级:姓名:学号:图像的阈值分割及边缘检测技术一、实验目的1、了解图像的分割技术,掌握图像的全局阈值分割技术并通过MATLAB实现;2、了解图像的边缘检测,掌握梯度算子图像边缘检测方法。
二、实验内容1、基于直方图的全局阈值图像分割方法;2、Edge命令(roberts,perwitt,sobel,log,canny),实现边缘检测。
三、实验原理1、全局阈值是最简单的图像分割方法。
其中,直方图法的原理如下:想做出图像的直方图,若其直方图呈双峰且有明显的谷底,则可以讲谷底点所对应的灰度值作为阈值T,然后根据该阈值进行分割,九可以讲目标从图像中分割出来。
这种方法是用于目标和背景的灰度差较大且直方图有明显谷底的情况。
2、用于边缘检测的梯度算子主要有Roberts算子、Prewitt算子、Sobel算子。
这三种检测算子中,Roberts算子定位精度较高,但也易丢失部分边缘,抗噪声能力差,适用于低噪声、陡峭边缘的场合。
Prewitt算子、Sobel算子首先对图像做平滑处理,因此具有一定的抑制噪声的能力,但不能排除检测结果中的虚假边缘,易出现多像素宽度。
四、实验步骤1、全局阈值分割:①读取一张图像;②生成该图像的直方图;③根据直方图双峰产生的低谷估计阈值T;④依次读取图像各个点的像素,若大于阈值,则将像素改为255,若小于阈值,则将该像素改为0;实验代码如下:I=imread('cameraman.tif'); %读取一张图像subplot(221);imshow(I); %显示该图像subplot(222);imhist(I); %生成该图像的直方图T=60; %根据直方图估计阈值T为60[m,n]=size(I); %取图像的大小为【m,n】for i=1:m %依次读取图像各个点的像素,若大于阈值,则将像素改为255,若小于阈值,则将该像素改为0for j=1:nif I(i,j)>=T I(i,j)=255;else I(i,j)=0;endendendsubplot(223);imshow(I); %显示全局阈值分割后的图像2、图像的边缘检测①读取一张图像;②分别使用roberts算子检测、Prewitt算子检测、sobel算子检测、log算子检测、canny算子检测对图像进行处理③输出实验结果图像实验代码如下:I=imread('cameraman.tif'); %读取一张图像subplot(231);imshow(I);title('原图像');BW1=edge(I,'roberts'); %进行Roberts算子边缘检测,门限值采用MATLAB默认值BW2=edge(I,'prewitt'); %进行prewitt算子边缘检测,门限值采用MATLAB默认值BW3=edge(I,'sobel'); %进行sobel算子边缘检测,门限值采用MATLAB默认值BW4=edge(I,'log'); %进行log算子边缘检测,门限值采用MATLAB默认值BW5=edge(I,'canny'); %进行canny算子边缘检测,门限值采用MATLAB默认值subplot(232);imshow(BW1,[]);title('进行Roberts算子边缘检测');subplot(233);imshow(BW2,[]);title('进行prewitt算子边缘检测');subplot(234);imshow(BW3,[]);title('进行spnel算子边缘检测’);subplot(235);imshow(BW4,[]);title('进行log算子边缘检测');subplot(236);imshow(BW5,[]);title('进行canny算子边缘检测');五、实验结果1、图像全局阈值分割源图像直方图全局阈值分割后的图像2、图像的边缘检测六、实验心得1、通过本次实验,我学习到利用MATLAB进行图像的全局阈值分割,其方法是通过图像的直方图估计出阈值再进行分割。
图像分割中的阈值选择方法与技巧图像分割是一种将图像划分为不同区域或对象的图像处理技术。
它在计算机视觉、电子图像处理、医学图像分析等领域具有广泛的应用。
图像分割的一个关键步骤是阈值选择,它决定了图像中不同区域的分割边界。
本文将介绍图像分割中的阈值选择方法与技巧。
阈值选择是图像分割中最常用的方法之一。
它基于像素的灰度值,通过设定一个阈值来将像素划分为两个类别:一个类别代表目标物体,另一个类别代表背景或其他物体。
阈值选择方法通常根据图像的特征和应用需求来选择最合适的阈值。
最简单的阈值选择方法是全局阈值法。
它假设整个图像中只存在两个灰度级别:目标和背景。
这种方法适用于图像中目标与背景之间有明显的灰度差异的情况。
全局阈值法的步骤是通过比较图像中所有像素的灰度值与设定的阈值,将灰度值小于阈值的像素标记为目标,大于阈值的像素标记为背景。
然而,全局阈值法并不适用于具有复杂物体和背景的图像。
为了克服这个问题,文献中提出了许多自适应阈值选择方法。
其中一个常用的方法是基于大津法的自适应方法。
大津法通过最小化目标和背景之间的类内方差,最大化类间方差来选择最佳的阈值。
这种自适应方法能够处理图像中存在多个灰度级别的情况,更适用于复杂的图像场景。
除了自适应阈值选择方法,还有其他一些技巧可以改善图像分割的效果。
一种常用的技巧是使用图像增强方法来提高图像的对比度。
图像增强方法可以通过直方图均衡化、滤波等技术来增强图像的特征,使得阈值选择更加准确。
考虑到图像中可能存在噪声的情况,可以使用平滑滤波器对图像进行去噪处理,以减少噪声对阈值选择的影响。
对于多通道图像,可以采用颜色或纹理信息来辅助阈值选择。
例如,当分割彩色图像时,可以使用颜色直方图或颜色特征来指导阈值选择。
而对于纹理图像,可以使用纹理特征来选择合适的阈值。
在图像分割的实际应用中,阈值选择往往需要考虑到图像的特性和应用需求。
因此,选择合适的阈值选择方法和技巧对于实现准确的图像分割至关重要。
肺部CT影像图像分割的算法与评估方法肺部CT影像图像分割是医学图像处理领域的重要研究方向之一。
它的目标是将CT图像中的肺部区域从其他组织和结构中准确地分割出来,为医生提供更好的诊断和治疗支持。
本文将介绍与肺部CT影像图像分割相关的算法和评估方法。
一、肺部CT影像图像分割算法1. 阈值分割算法阈值分割算法是最简单的图像分割方法之一。
它通过设定一个或多个固定的阈值来将图像分成不同的区域。
在肺部CT影像分割中,可以使用基于灰度的阈值分割方法,将图像中的肺组织与其他组织进行区分。
然而,阈值分割方法在处理具有复杂结构和低对比度的CT图像时,往往效果不佳。
2. 区域增长算法区域增长算法是一种基于相似性的图像分割方法。
它从一个种子点开始,根据像素之间的相似性,逐渐扩展区域直到达到停止条件。
在肺部CT影像分割中,可以通过选择一个正常肺组织的像素作为种子点,并根据像素灰度值的相似性来扩展肺部区域。
3. 基于边缘的分割算法基于边缘的分割算法利用图像中的边缘信息来进行分割。
它首先检测图像中的边缘,并将其连接成闭合的边界。
在肺部CT影像分割中,可以使用Canny算子等边缘检测算法来提取肺部边界,并利用边界的连通性和形状信息来分割出肺部区域。
4. 基于深度学习的分割算法近年来,基于深度学习的分割算法在医学图像处理中取得了显著的进展。
这种算法结合了深度卷积神经网络(CNN)和大量标注好的训练数据,能够学习到更准确的图像特征,并实现高精度的分割结果。
在肺部CT影像分割中,可以使用U-Net、FCN等深度学习模型来实现肺部区域的准确分割。
二、肺部CT影像图像分割评估方法1. 视觉评估方法视觉评估方法是最简单直观的分割评估方法之一。
该方法通过比较分割结果与专家手动标注的分割结果之间的差异来评估算法的性能。
可以使用Dice系数、Jaccard系数等常用的分割相似性指标来量化分割结果的准确性和一致性。
2. 数值评估方法数值评估方法通过将分割算法得到的分割结果与真实的分割结果进行比较,计算出一系列指标来评估算法的性能。
肿瘤医学图像分析中图像分割算法的使用方法与准确度评估引言肿瘤医学图像分析在癌症的早期诊断、治疗方案制定以及治疗效果评估等方面起着至关重要的作用。
其中,图像分割是肿瘤医学图像分析的关键任务之一,它能够将图像中的肿瘤区域与正常组织进行准确的分离。
为了提高肿瘤分割的准确度和效率,研究人员提出了各种不同的图像分割算法。
本文将介绍肿瘤医学图像分割中常用的算法,并对其使用方法和准确度评估进行详细讨论。
一、肿瘤医学图像分割算法的基本原理1. 阈值分割算法阈值分割算法是最简单、常用且易于实现的图像分割算法之一。
该算法的基本原理是通过设定一个或多个合适的阈值,将图像中的像素分为不同的区域。
对于肿瘤图像分割,可以通过在图像中选择适当的灰度阈值来将肿瘤区域与正常组织区域分离。
2. 区域增长算法区域增长算法是一种基于种子点的图像分割方法。
该算法从一个或多个种子点开始,通过判断像素的相似度来逐步增长区域。
对于肿瘤图像分割,可以通过选择肿瘤区域中的一个或多个种子点,通过设置适当的相似度阈值来实现分割。
3. 基于边缘的分割算法基于边缘的分割算法是一种通过提取图像边缘特征来实现分割的方法。
该算法利用图像中的边缘信息来区分不同的区域。
对于肿瘤图像分割,可以通过使用边缘检测算法(如Canny算子) 来提取肿瘤的边缘,然后将边缘连接成闭合的轮廓线,从而实现分割。
4. 基于聚类的分割算法基于聚类的分割算法是一种通过将相似像素聚集在一起来实现分割的方法。
该算法利用像素之间的相似度来将它们分为不同的类别。
对于肿瘤图像分割,可以使用聚类算法 (如k-means) 来将图像中的像素聚集成肿瘤和正常组织两个类别。
二、肿瘤医学图像分割算法的使用方法1. 数据准备在使用肿瘤医学图像分割算法之前,需要准备好相关的图像数据。
这包括肿瘤图像的原始数据以及对应的标注数据,标注数据可以是手工进行标注或者由医生提供。
确保数据的质量和准确性对于后续的分割工作非常重要。
医学图像分割中的自适应阈值选择算法研究一、引言近年来,医学影像成为了医生诊断的一种重要手段。
医学影像中的图像分割技术,可以将医生所需的区域从影像中分离出来,以便医生更好地识别和分析医学影像中的信息。
因此,医学图像分割成为了医学影像处理领域的核心技术之一。
阈值分割是最简单和最常见的一种分割方法,其特点是计算简单、速度快、稳定性好。
此外,阈值分割不需要像素之间的连通性和形态学的信息。
但阈值的选择问题一直是阈值分割方法的瓶颈之一。
在这个问题上,自适应阈值分割方法被广泛应用,因为自适应阈值分割方法可以根据图像信息自动选择合适的阈值,可以显著提高医学图像分割结果的准确性。
因此,本文将介绍医学图像分割中的自适应阈值选择算法研究。
二、自适应阈值分割算法自适应阈值分割是根据图像信息动态确定阈值,分为全局自适应阈值分割和局部自适应阈值分割两种方法。
1.全局自适应阈值分割全局自适应阈值分割方法是将整幅图像分成几个小区域,在每个小区域内计算灰度值的统计特征(如平均值、标准差等),将这些统计特征利用一定的数学模型来计算出一个合适的全局阈值,然后将全图像分割为前景和背景两部分。
常用的全局自适应阈值分割方法有基于均值的方法、基于最大类间方差的方法、基于双峰分布的方法等。
2.局部自适应阈值分割局部自适应阈值分割方法在分割时,将整幅图像分割成许多个小连通区域(如正方形、圆形等),对于每个小连通域进行阈值分割,即根据小区域内像素灰度值的方差、方差等信息,计算小连通域的局部阈值,最后将整幅图像分割为前景和背景两部分。
常用的局部自适应阈值分割方法有基于均值和标准差的方法、基于最大熵的方法、基于非参数统计方法的方法等。
三、自适应阈值选择算法在自适应阈值分割方法中,选择适当的阈值至关重要。
自适应阈值选择算法是指根据图像本身的特点和要求,通过建立适当的数学模型,计算出合适的自适应阈值,然后将整幅图像分割。
常用的自适应阈值算法有以下几种。
1.基于均值的自适应阈值选择算法基于均值的自适应阈值选择算法是一种简单有效的自适应阈值选择方法,该方法在每个小区域内计算平均灰度值,并以该值作为局部阈值。
图像处理中的图像分割算法使用方法图像分割是图像处理中的重要任务之一,它的目的是将图像划分为多个具有独立语义信息的区域。
图像分割在许多应用领域中都有广泛的应用,例如医学图像分析、计算机视觉、图像识别等。
本文将介绍几种常见的图像分割算法及其使用方法。
一、阈值分割算法阈值分割算法是图像分割中最简单且常用的方法之一。
它基于图像中像素的灰度值,将图像分成多个区域。
该算法的基本思想是,选择一个合适的阈值将图像中低于该阈值的像素设为一个区域,高于该阈值的像素设为另一个区域。
常用的阈值选择方法包括固定阈值选择、动态阈值选择等。
使用方法:1. 预处理:对图像进行灰度化处理,将彩色图像转化为灰度图像。
2. 阈值选择:选择一个合适的阈值将图像分割为两个区域。
可根据图像的直方图进行阈值选择,或者使用试探法确定一个适合的阈值。
3. 区域标记:将低于阈值的像素标记为一个区域,高于阈值的像素标记为另一个区域。
4. 后处理:对分割结果进行后处理,如去除噪声、填补空洞等。
二、基于边缘的分割算法基于边缘的分割算法利用图像中边缘的信息来进行图像分割。
该算法的基本思想是,根据图像中的边缘信息将图像分成多个区域。
常用的基于边缘的分割方法有Canny边缘检测、Sobel边缘检测等。
使用方法:1. 预处理:对图像进行灰度化处理。
2. 边缘检测:利用Canny或Sobel等边缘检测算法提取图像中的边缘信息。
3. 边缘连接:根据提取到的边缘信息进行边缘连接,形成连续的边缘线。
4. 区域生成:根据边缘线来生成图像分割的区域。
5. 后处理:对分割结果进行后处理,如去除噪声、填补空洞等。
三、基于区域的分割算法基于区域的分割算法是将图像划分为多个具有独立语义信息的区域,其基本思想是通过分析像素之间的相似性将相邻像素组合成一个区域。
常用的基于区域的分割方法有均值迭代、区域增长等。
使用方法:1. 预处理:对图像进行灰度化处理。
2. 区域初始化:将图像划分为不同的区域,可按照固定大小进行划分,或根据图像的特征进行划分。
图像分割是图像处理这门学科中的基础难题,基于阈值的分割则又是图像分割的最基本的难题之一,其难点在于阈值的选取。
事实证明,阈值的选择的恰当与否对分割的效果起着决定性的作用。
由于阈值选取对图像分割的基础性,本文主要在【1】、【2】、【3】、【4】等的基础上,对一些当前流行的阈值选取算法做了探讨、实现和比较。
多阈值分割虽然能进一步提高图像分割的质量,但由于它只是分割技巧的处理问题,而与单阈值分割并无本质的区别。
因此本文并不对多阈值分割进行讨论,而只考虑单阈值分割的情形。
1.双峰法双峰法的原理及其简单:它认为图像由前景和背景组成,在灰度直方图上,前后二景都形成高峰,在双峰之间的最低谷处就是图像的阈值所在。
根据这一原理,我们给出了它的实现,部分代码如下(Pascal语言描述,以下同)://intPeak、intPeak2、intValley:峰值和直方图值//intIndx::相应的灰度值intPeak,intIndx,intPeak2,intIndx2,intValley,intValleyIndx:integer;//初始双峰值intPeak:=0;intPeak2:=0;//取得第一峰值for intLoop:=0 to 255 doif intPeak<=intGrayLevel[intLoop] thenbeginintPeak:=intGrayLevel[intLoop];intIndx:=intLoop;end;//取得第二峰值for intLoop:=0 to 255 doBeginif (intPeak2<=intGrayLevel[intLoop]) and (intLoop<>intIndx) thenbeginintPeak2:=intGrayLevel[intLoop];intIndx2:=intLoop;endend;//取得双峰之间的谷值intValley:=intSize;if intIndx2<intIndx thenfor intLoop:=intIndx2 to intIndx doif intValley>intGrayLevel[intLoop] thenbeginintV alley:=intGrayLevel[intLoop];intV alleyIndx:=intLoop;end;从分割的效果来看,当前后景的对比较为强烈时,分割效果较好;否则基本无效。
医学图像处理中的分割算法与性能评价指标比较分析医学图像处理在临床医学中起着重要的作用,可以辅助医生进行疾病诊断、治疗方案制定和手术导航等工作。
其中,图像分割是一项关键任务,旨在将医学图像中的特定结构或区域从背景中提取出来,以提供更准确的信息。
近年来,众多的图像分割算法被提出,但如何评价这些算法的性能仍然是一个挑战。
本文将对医学图像处理中的分割算法进行比较分析,并探讨常用的性能评价指标。
首先,我们将介绍几种常见的医学图像分割算法。
其中,阈值分割是最基础的方法之一,它根据图像中像素的灰度值与预设的阈值进行比较,将像素分类为目标和背景。
区域生长算法基于像素之间的相似性,将相似的像素组合成连通区域。
边缘检测算法通过检测图像中灰度值变化较大的区域来进行分割。
基于图割的分割算法则基于图论中的最小割原理,将图像分割成多个子图。
此外,还有基于聚类、基于图像的统计特征等算法。
针对这些算法,我们需要选择适当的性能评价指标来评估其优劣。
常见的性能评价指标包括准确率、召回率、F1值、Dice系数等。
准确率是评价分类模型预测准确性的指标,指分类正确的样本占总样本数的比例。
召回率是指分类正确的正样本占所有正样本的比例。
F1值是准确率和召回率的调和平均值,它更能综合评估分类模型的性能。
Dice系数则是一种衡量两个集合重叠程度的指标,它可以用于评估图像分割结果与真实标签的相似程度。
此外,我们还可以考虑其他一些比较全面的性能评价指标,如互信息、归一化互信息、兰德系数、调整兰德系数等。
互信息是一种衡量两个随机变量间相互依赖程度的指标,用于度量分割结果与真实标签之间的相关性。
归一化互信息是互信息的标准化形式,可以消除因维度不同而导致的偏差影响。
兰德系数和调整兰德系数是一种度量两个分割结果间一致性的指标,适用于无监督的分割算法评价。
在比较不同分割算法的性能时,我们需要考虑数据集的选择和评估方法的合理性。
合适的数据集应包含各种医学图像并具有真实的分割标签,这样可以更客观地评估算法的性能。
图像分割中的阈值算法随着计算机技术的不断发展和普及,图像处理技术已经成为现代科学研究和生产活动中必不可少的一项重要内容。
而图像分割是图像处理中的一个重要领域,它是指将一幅图像分成若干个离散的区域,每个区域内具有相似的属性。
而阈值算法是实现图像分割的一种基本方法,下面我们就来仔细探究一下阈值算法在图像分割中的应用。
一、阈值算法的原理在进行阈值分割时,需要确定一个阈值t,把图像分成两个部分:小于t的部分和大于等于t的部分。
在分割后的图像中,小于t的部分被归为一类,大于等于t的部分被归为另一类。
阈值算法根据图像的灰度值来确定阈值t,主要通过区分图像的背景和前景,将原始图像进行简单的二元操作。
而对于彩色图像,需要将其转化成灰度图像,再进行阈值处理。
二、阈值算法的实现过程阈值算法通常可以分为两类:全局阈值方法和局部阈值方法。
全局阈值方法指在整幅图像上进行统一的阈值处理,而局部阈值方法则是根据图像中相邻像素之间的关系设置不同的阈值。
(一)全局阈值方法在全局阈值方法中,首先需要确定阈值t,常见的方法有以下两种:1. 直方图法:通过统计像素点灰度值的分布情况来确定阈值t。
一般情况下,图像中的背景和前景值具有比较大的差异,因此,阈值t一般是两者之间的一个最小值。
2. Otsu法:是一种非常流行的用于确定全局阈值的方法。
Otsu法从整幅图像的直方图中查找分布最大的极值点,通过寻找这个极值点,将图像分成前景和背景两个部分。
确定了阈值t之后,可以进行如下的二元操作:1. 当像素的值小于阈值t时,该像素被划分为背景,用0表示。
2. 当像素的值大于等于阈值t时,该像素被划分为前景,用1表示。
(二)局部阈值方法局部阈值方法通过考虑图像中相邻像素之间的关系,来确定像素的阈值。
主要有以下两种方法:1. 局部固定阈值法:在该方法中,将一定大小的像素块作为整体,针对每个像素块进行阈值处理。
这种方法的优点是能够适应光线不均匀以及图像噪声的情况。
图像分割的阈值法综述(武汉理工大学信息工程学院)摘要:图像分割是由图像处理到图像分析的关键步骤,也是一种基本的计算机视觉技术。
这是因为图像的分割、目标的分离、特征的提取和参数的测量将原始图像转化为更抽象更紧凑的形式,使得更高层的分析和理解成为可能。
阈值分割法是图像处理最基本的分割方法,它具有计算量小、实现简单等优点,在图像分析和识别中起着重要作用。
图像阈值化就是按照灰度级,将图像空间划分成与现实景物相对应的一些有意义的区域,各个区域内部灰度级是均匀的,而相邻区域灰度级是不同的,其间存在边界。
它的划分可以通过从灰度级出发,选取一个或多个阈值来实现。
关键词:图像分割;阈值Abstract:Image segmentation by image processing to image analysis of the key steps, is also a basic computer vision technology. This is because the image segmentation,object separation, feature extraction and the parameters in the original image into a more abstract and more compact form, making more high-level analysis and understanding possible. Threshold segmentation method is the most basic image processing segmentation method, which has computation, and simple to achieve, in image analysis and recognition play an important role. Image threshoiding is in accordance with the gray level, the image space is divided into scenes with reality that corresponds to some meaningful regions, each region within the gray level is uniform,while the adjacent regi on of gray scale is different, there remain boundary. It’s divided by starting from the gray level, select one or more threshold values to achieve.Keywords: Image Segmentation; Threshold Values1 研究背景在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣,这些部分称为目标或前景(其他部分称为背景),它们一般对应图像中特定的、具有独特性质的区域。
图像分割阈值选取技术综述摘要图像分割是图像处理与计算机视觉领域低层次视觉中最为基础和重要的领域之一,它是对图像进行视觉分析和模式识别的基本前提.阈值法是一种传统的图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术.已被应用于很多的领域。
本文是在阅读大量国内外相关文献的基础上,对阈值分割技术稍做总结,分三个大类综述阈值选取方法,然后对阈值化算法的评估做简要介绍。
关键词图像分割阈值选取全局阈值局部阈值直方图二值化1.引言所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内,表现出一致性或相似性,而在不同区域间表现出明显的不同[37].简单的讲,就是在一幅图像中,把目标从背景中分离出来,以便于进一步处理。
图像分割是图像处理与计算机视觉领域低层次视觉中最为基础和重要的领域之一,它是对图像进行视觉分析和模式识别的基本前提.同时它也是一个经典难题,到目前为止既不存在一种通用的图像分割方法,也不存在一种判断是否分割成功的客观标准。
阈值法是一种传统的图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术.已被应用于很多的领域,例如,在红外技术应用中,红外无损检测中红外热图像的分割,红外成像跟踪系统中目标的分割;在遥感应用中,合成孔径雷达图像中目标的分割等;在医学应用中,血液细胞图像的分割,磁共振图像的分割;在农业工程应用中,水果品质无损检测过程中水果图像与背景的分割。
在工业生产中,机器视觉运用于产品质量检测等等。
在这些应用中,分割是对图像进一步分析、识别的前提,分割的准确性将直接影响后续任务的有效性,其中阈值的选取是图像阈值分割方法中的关键技术。
2.阈值分割的基本概念图像阈值化分割是一种最常用,同时也是最简单的图像分割方法,它特别适用于目标和背景占据不同灰度级范围的图像[1]。
分割模型训练最佳阈值分割模型训练的最佳阈值是指在模型预测中,将预测结果转化为二值化图像时所使用的阈值。
在分割任务中,我们通常将图像分为前景和背景两部分,阈值的选择对于分割结果的准确性和稳定性非常重要。
在介绍最佳阈值之前,我们先了解一下分割模型的训练过程。
分割模型的训练通常包括两个阶段:网络训练和阈值选择。
在网络训练阶段,我们使用带有标注的图像数据集来训练分割模型,使其能够准确地预测图像中的前景和背景。
在阈值选择阶段,我们使用验证集或测试集上的图像来选择最佳的阈值,以将模型的预测结果转化为二值化图像。
选择最佳阈值的方法有很多种,下面介绍几种常用的方法:1. 基于F1 Score的最佳阈值选择:F1 Score是评估二分类模型性能的一种指标,它综合了模型的精确率和召回率。
在阈值选择阶段,我们可以计算不同阈值下的F1 Score,并选择使F1 Score最大化的阈值作为最佳阈值。
2. 基于IoU的最佳阈值选择:IoU(Intersection over Union)是评估分割模型性能的一种指标,它衡量了模型预测的前景和真实前景之间的重叠程度。
在阈值选择阶段,我们可以计算不同阈值下的IoU,并选择使IoU最大化的阈值作为最佳阈值。
3. 基于像素分布的最佳阈值选择:在一些情况下,我们可以通过观察图像中前景和背景像素的分布情况来选择最佳阈值。
例如,如果前景像素的灰度值普遍较高,而背景像素的灰度值普遍较低,我们可以选择一个适当的灰度值作为阈值,将灰度值高于阈值的像素划分为前景,灰度值低于阈值的像素划分为背景。
4. 基于经验的最佳阈值选择:在一些特定的应用场景中,我们可能已经积累了一些经验,知道哪个阈值能够得到较好的分割结果。
这时,我们可以直接使用这个经验值作为最佳阈值。
需要注意的是,选择最佳阈值并不是一个一劳永逸的过程,它可能会因为不同的数据集、不同的模型和不同的任务而有所变化。
因此,在实际应用中,我们通常会使用交叉验证等方法来选择最佳阈值,并对模型进行调优。
图像二值化阈值选取常用方法最近在公司搞车牌识别的项目,车牌定位后,发现对车牌区域二值化的好坏直接影响后面字符切分的过程,所以就想把常用阈值选取方法做一个总结。
图像二值化阈值选取常用方法:1.双峰法。
2.P 参数法。
3.最大类间方差法(Otsu 、大津法)。
4.最大熵阈值法。
5.迭代法(最佳阈值法)。
1.双峰法在一些简单的图像中,物体的灰度分布比较有规律,背景与目标在图像的直方图各自形成一个波峰,即区域与波峰一一对应,每两个波峰之间形成一个波谷。
那么,选择双峰之间的波谷所代表的灰度值T 作为阈值,即可实现两个区域的分割。
如图1所示。
2.P 参数法当目标与背景的直方图分布有一定重叠时,两个波峰之间的波谷很不明显。
若采用双峰法,效果很差。
如果预先知道目标占整个图像的比例P ,可以采用P 参数法。
P 参数法具体步骤如下:假设预先知道目标占整个图像的比例为P ,且目标偏暗,背景偏亮。
1)、计算图像的直方图分布P(t),t=0,1,.....255。
2)、计算阈值T ,使其满足0()*Tt p t Pm n =-∑最小。
P 参数法一般用于固定分辨率下,目标所占整个图像比例已知的情况。
3.最大类间方差法(Otsu)最大类间方差法是由Otsu 于1979年提出的,是基于整幅图像的统计特性实现阈值的自动选取的,是全局二值化最杰出的代表。
Otsu 算法的基本思想是用某一假定的灰度值t 将图像的灰度分成两组,当两组的类间方差最大时,此灰度值t 就是图像二值化的最佳阈值。
设图像有L 个灰度值,取值范围在0~L-1,在此范围内选取灰度值T ,将图像分成两组G0和G1,G0包含的像素的灰度值在0~T ,G1的灰度值在T+1~L-1,用N 表示图像像素总数,i n 表示灰度值为i 的像素的个数。
已知:每一个灰度值i 出现的概率为/i i p n N =;假设G0和G1两组像素的个数在整体图像中所占百分比为01ϖϖ、,两组平均灰度值为01μμ、,可得概率:00=T ii p ϖ=∑11011L i i T p ωω-=+==-∑平均灰度值:00T i i ipμ==∑111L ii T i p μ-=+=∑图像总的平均灰度值:0011μϖμϖμ=+类间方差:()()()22200110101()g t ωμμωμμωωμμ=-+-=-最佳阈值为:T=argmax(g(t))使得间类方差最大时所对应的t 值。
最佳阈值选取方法引言最佳阈值选取方法是在统计学和机器学习领域中常用的一个技术。
在一些分类问题中,需要将样本划分为两个或多个类别。
而为了能够准确地判断样本属于哪个类别,需要设定一个阈值。
本文将探讨最佳阈值选取方法的原理、常见的应用以及如何选择最佳阈值。
二级标题1:最佳阈值的定义和原理三级标题1:分类问题和阈值分类问题是机器学习中常见的任务,它的目标是将输入样本划分为两个或多个类别。
在二分类问题中,样本可以被划分为”正例”和”反例”两类。
而在多分类问题中,样本可以被划分为多个类别。
在分类算法中,通常会使用一个阈值来对样本进行分类。
对于二分类问题,如果样本的预测值大于阈值,则被划分为正例,否则被划分为反例。
而对于多分类问题,阈值的选择稍微复杂一些。
三级标题2:最佳阈值的定义在最佳阈值选取方法中,最佳阈值是指能够使得分类器在某个评价指标下取得最佳表现的阈值。
这个评价指标可以是精确率、召回率、F1值等,具体选择根据分类问题的特点和需求而定。
三级标题3:最佳阈值选取方法的原理最佳阈值选取方法的原理基于 ROC 曲线(Receiver Operating Characteristic Curve)。
ROC 曲线是一种描述分类器性能的图形,横坐标是假正例率(False Positive Rate),纵坐标是真正例率(True Positive Rate)。
在二分类问题中,ROC 曲线可以通过改变阈值的值来获得。
当阈值从最小值逐渐增大时,分类器的预测结果会从全部被划分为正例转变为全部被划分为反例。
ROC 曲线下的面积(Area Under the Curve,AUC)被用来评估分类器的性能,AUC 越大表示分类器性能越好。
最佳阈值可以通过选择使得 AUC 最大的阈值来确定。
二级标题2:最佳阈值选取方法的应用三级标题4:医疗诊断中的最佳阈值选取医疗诊断中最佳阈值的选取具有重要的意义。
例如,在诊断乳腺癌的问题中,选择合适的阈值可以帮助医生更准确地判断患者是否患有疾病。
图像处理中的阈值处理方法分析图像处理中的阈值处理方法是一种常见的技术,它旨在将图像的灰度级别划分为两个或多个部分。
通过设定一个阈值,图像中的像素被分为高于或低于该阈值的两个部分,从而实现对图像的分割、增强或去噪等目的。
在本文中,我们将对几种常见的阈值处理方法进行分析和讨论。
1. 全局阈值处理方法:全局阈值处理方法是最简单和最直接的方法之一。
该方法基于整个图像的统计信息,通过计算像素的灰度级别的平均值或直方图的峰值来确定一个全局阈值。
将图像中的像素与该阈值进行比较,将高于阈值的像素设置为白色,低于阈值的像素设置为黑色。
该方法可以快速实现,但对于具有不同光照条件和背景的复杂图像效果可能不理想。
2. 自适应阈值处理方法:自适应阈值处理方法是一种根据图像的局部特性来确定阈值的方法。
与全局阈值处理方法不同,该方法使用图像的小区域来计算阈值,在每个区域内分别应用阈值处理。
这种方法尤其适用于具有不均匀光照条件的图像。
它可以根据图像的局部亮度和对比度变化自动调整阈值,从而更好地分割目标图像。
3. 多阈值处理方法:多阈值处理方法是将图像的灰度级别划分为多个等级的方法。
通过设定多个阈值,可以将图像分为多个不同的部分,以实现更多的图像信息提取和分割。
该方法常用于图像分割和目标检测等应用领域。
然而,多阈值处理方法需要更多的计算和分割参数的选择,因此在实际应用中需要根据具体情况进行调整。
4. 非线性阈值处理方法:非线性阈值处理方法是一种根据像素的灰度级别和空间信息来确定阈值的方法。
该方法通过考虑图像的局部对比度和纹理信息,可以更准确地分割具有复杂纹理和边缘的图像。
这种方法常用于医学图像处理和目标跟踪等领域。
5. 自适应聚类阈值处理方法:自适应聚类阈值处理方法是一种基于像素的相似性来确定阈值的方法。
通过将像素聚类为不同的群组,可以根据像素的亮度和颜色信息自适应地选择阈值。
这种方法通常用于图像分割和特征提取等应用领域。
综上所述,图像处理中的阈值处理方法是一种有效的技术,可以实现图像的分割、增强和去噪等目的。
第22卷 第4期 西 安 工 业 学 院 学 报 V ol122 N o14 2002年12月 JOURNA L OF XIπAN I NSTIT UTE OF TECH NO LOGY Dec.2002图像分割中的阈值选取方法Ξ吴薇,刘军,李旭霞(西安武警工程学院通信工程系,陕西西安710086)摘 要: 分析了几种基于不同准则选取阈值的方法,着重讨论了模糊阈值法的特点和不足,提出了改进算法.最后,通过实验结果验证了算法的有效性.关键词: 图像分割;阈值选取;直方图;差距;模糊测度中图号: TP391 文献标识码: A 文章编号: 100025714(2002)0420309205R esearch on threshold selection for image segmentationWU Wei,LIU Jun,LI Xu2xia(Dept of C ommun Engr,The Engr C ol of Armed P olice F orce,X i’an710086,China)Abstract: The threshold selection is a important technique in image segmentation.The principle and drawbacks of s ome methods of threshold selection based on different principles are analyzed,and s ome new improved alg orithms are proposed.K ey Words: image segmentation;threshold selection;histogram;difference;fuzzy measurement在对图像的研究和应用中,人们往往仅对图像中某些特定的、具有独特性质的区域感兴趣,这些部分被定义为目标(其它部分称为背景).为了识别和分析目标,需要将这些区域从图像中分离并提取出来.图像分割技术就是把图像分成各具特性的区域并提取出感兴趣目标的技术和过程,它是由图像处理跃入图像分析的关键步骤,因此一直是数字图像处理领域的一项重要研究内容.长期以来,人们已提出了上千种类型的分割算法,但还没有一种图像分割方法能够适用于所有的图像.灰度门限技术(简称阈值法)是最为常用的一种图像分割方法,具有简捷实用、计算量少的特点.其基本思想是利用图像的灰度特征来选择一个(或多个)最佳灰度阈值,并将图像中每个像素的灰度值与阈值相比较,最后将对应的像素根据比较结果分到合适的类别中.若把M×N的二维图像X在像素(i,j)处的灰度值记为,设t为该图像的一个灰度阈值,则用阈值t分割目标与背景的分割原则为目标部分:O={f(i,j)≤t|(i,j)∈X};Ξ收稿日期:2002206217作者简介:吴薇(1967-),女(汉族),西安武警工程学院讲师,研究方向为信号与信息处理.背景部分:B ={f (i ,j )>t |(i ,j )∈X }.阈值法既可以基于图像的全局信息(如整个图像的直方图),也可以使用图像的局部信息(如灰度共现矩阵)选取阈值.阈值又分为全局阈值(整个图像使用一个门限值)和局部阈值(图像中的不同区域使用不同的门限值).按分割方法又可分为单阈值分割(将图像用一个门限分为两个区域)和多阈值分割(将图像用多个门限分为两类以上区域).寻找计算简单、自适应能力强的图像阈值自动选取方法一直是阈值法研究的一个重要课题.1 常用阈值选取方法的分析1.1 基于图像灰度直方图的阈值选取方法基于图像灰度直方图分析的阈值分割方法[1]是最直观、应用最普遍的图像分割方法.该方法是基于以下假设进行的:图像中像素的灰度在较少几个灰度值附近出现的概率较大.一般认为灰度直方图的每个峰值代表一个目标区域,而谷值则是从一个目标区域到另一个目标区域的过渡点.直方图阈值分割就是尽量对这些峰所代表的目标区域进行分割.如果图像由不同的灰度区域组成,特别是区域较为明显时,其灰度直方图一般会表现出数个峰值,并具有一系列深谷.此时,最佳灰度阈值的选取较为容易(只要检测出深谷的灰度值即可),并能获得很好的图像分割效果.但实际图像由于噪声干扰等因素的影响,直方图通常会出现单峰或具有宽且平的峰谷的情况.这时,最佳阈值往往可能出现在图像直方图的“肩部”,因此很难直接根据直方图的峰谷来选择阈值.针对上述情况,许多学者引入了二维直方图的概念.二维直方图由图像像素的灰度信息和各像素点与其邻域间的平均灰度值分布共同构成.它不仅利用了图像的一阶灰度统计特性,同时也包含了各像素点与其邻域间的空间相关信息.图像的最佳阈值可以通过两个直方图峰谷交叠所对应的灰度范围确定.另外,基于图像直方图的阈值选取方法也可以作为其它阈值法的辅助手段,用于确定最佳阈值的搜索范围(最佳阈值通常位于平滑后的直方图的峰峰之间).1.2 基于图像差异的阈值选取方法较好的分割方法能使分割出的目标与背景之间的差距很大,即目标与背景之间具有很高的对比度.基于这种思想,产生了许多根据图像的差距度量选取阈值的方法.Ostu 方法[1]是其中较为成功的一种.Ostu 方法又称为最大类别方差法.该方法首先假设阈值t 将具有L 级灰度的图像X 划分为两类:C 0∈[0,t ],C 1∈[t +1,L -1],并对图像直方图进行归一化,由此可得p i =n i N p i ≥0∑L -1i =0p i =1(1)其中,N 为图像总像素数,n i 为灰度为i 的像素数.则C 0,C 1类出现的概率及均值分别为w 0=p r (C 0)=∑t i =0p i =w (t ) w 1=p r (C 1)=∑L -1i =t +1p i =1-w (t )(2)u 0=∑t i =0ip i w 0=u (t )w (t ) u 1=∑L -1i =t +1ip i w 1=u T -u (t )1-w (t )(3)其中,u T =∑L -1i =0ip i 为图像X 的均值.13 西 安 工 业 学 院 学 报 第22卷C 0和C 1类的类间方差为σ2B =w 0(u 0-u T )2+w 1(u 1+u T )2=w 0w 1(u 1-u 0)2(4)最佳阈值t 3应使类间方差最大,即t 3=arg max 0≤t ≤L -1σ2B (5)显然,Ostu 法是基于分割出的目标与背景之间的差距应最大的思想来确定阈值的.受该方法启发,我们还可以依据以下原则来构造新的阈值选取标准:即分割出的目标与原图像之间的差距以及背景与原图像之间的差距均应较大[2].设分割出的目标与原图像之间的差距为d OA (t ),背景与原图像之间的差距为d BA (t ),则使二者之和最大的阈值t 3为最佳阈值,即满足表达式t 3=arg max 0≤t ≤L -1[d OA (t )+d BA (t )](6)使二者之积最大的阈值t 3为最佳阈值,即满足表达式t 3=arg max 0≤t ≤L -1[d OA (t )・d BA (t )](7) 由于图像间的差距可以有多种衡量标准,因此我们还可以通过定义不同的差距度量方法来构造新的目标函数以测度分割效果.最佳阈值对应于求取目标函数的极值.如采用模式识别中常用的点到点的距离度量、点到多点的距离度量或多点到多点的距离度量来衡量目标与背景、目标与原图像以及背景与原图像之间的差距.实验表明,这些方法同样可以得到较为理想的分割结果,且计算量较少.1.3 基于图像模糊测度的阈值选取方法及其改进算法模糊阈值法[3]是一种基于图像的模糊数学描述,通过计算图像的某种模糊测度来选取分割阈值的方法.由于灰度图像本身所具有的模糊性,以及基于模糊逻辑的推理方式更接近人类的真实思维和决策.因此,采用图像的模糊测度作为图像分割的依据,在某些方面,特别是医学图像处理中更为合理.依照模糊集合理论,一个M ×N ,具有L 级灰度的二维图像X 可表示为X =∪M i =1∪N j =1P ij X ij (8)其中,P ij /X ij (0≤P ij ≤1)表示图像像素(i ,j )具有性质P 的程度.性质P 可依问题的不同有不同的定义,其实质是将图像从空间域转换到模糊性质域的一个映射函数(即模糊隶属函数).模糊阈值法[4]通常采用标准S 函数作为映射函数,其定义为P ij =G x ij =0,2[(x ij -t +Δt )/2Δt )]2,1-2[(x ij -t -Δt )/2Δt ]2,1, 0≤x ij <t -Δt t -Δt ≤x ij <t t ≤x ij <t +Δt t +Δt ≤x ij ≤L -1(9)在确定了映射函数、并完成待处理图像到模糊矩阵的映射后,第二步是在模糊空间通过计算模糊率或模糊熵来反映图像X 的模糊性度量.模糊率和模糊熵是模糊集合理论中“模糊性指数”与“模糊熵”概念在二维图像中推广,其定义分别为113第4期 吴薇等:图像分割中的阈值选取方法 模糊率γ(x )=2MN ∑M i =1∑N j =1min {p ij ,1-p ij }(10) 模糊熵E (x )=1MN ln2∑M i =1∑N j =1S n (p ij )(11)其中,Shannon 函数S n (p ij )=-p ij ln p ij -(1-p ij )ln (1-p ij ).(12)由模糊率和模糊熵的性质可知,图像的目标和背景分割良好时,应具有较小的模糊率或模糊熵(本文采用计算模糊率γ(x )来选取阈值).由于映射函数的取值由窗宽c =2Δt 及参数t 决定.所以,一旦选定窗宽c ,模糊率γ(x )的大小就只与参数t 有关.当参数t 变化时,γ(x )也随之变化.使γ(x )取极小值的t 0就是待分割图像的最佳阈值.即t 0=arg min 0≤t ≤L -1γt (X )(13)研究表明,该算法的分割效果受隶属度函数的窗宽影响很大.通常,隶属度函数窗宽的选取是通过观察图像灰度直方图人为选定的.当图像改变导致直方图分布随之改变时,预设的窗宽就可能失效,造成误分割.但如何根据待分割图像的特性自适应地选取合理窗宽,一直是模糊阈值法尚未很好解决的问题之一.因此,可以通过构造新的隶属度函数来避开这一问题,从而实现对算法的改进.在一幅图像中,目标与背景之间的边界点属于目标或背景的模糊性是最大的(其灰度值等于分割阈值t ,P ij =0.5);而图像中其它像素点属于目标或背景的模糊性则反比于其灰度值与分割阈值t 间的距离(其P ij 大于或小于0.5).按照这种思想,本文定义了一种简单的线性函数作为隶属度函数:P ij =G (x ij )=121+x ij -t L -1(14)同时,对转换到模糊性质域的图像引入模糊增强算子[5]进行预处理,即通过对图像不同区域采用不同的增强处理,使各区域之间的层次更加清晰,从而进一步降低图像的模糊性.最后对增强后的图像计算其模糊率或模糊熵,并由此选取最佳阈值.改进后的算法克服了原有模糊阈值法分割效果受隶属度函数窗宽影响的缺陷;同时,模糊增强算子的引入,也有效改善了图像的分割质量,图1是两种算法的效果.另外,算法中虽图1 模糊阈值法与本文方法的分割效果图然增加了模糊增强运算,但由于采用简单的线性函数作为隶属度函数来完成待处理图像到模糊空间的映射.因此,整个算法的计算量基本没有增加.213 西 安 工 业 学 院 学 报 第22卷2 结束语现有的各种阈值法虽然是从不同的准则出发选取最佳阈值,但大多需要在全灰度范围内进行搜索;因此存在着搜索空间大、耗时多的缺陷.尤其当这些方法推广至对含有多个目标的复杂图像进行多阈值分割时,往往需要在全灰度范围内搜索出若干个阈值来构成一个最佳阈值组合,这一缺陷就变得更为明显.遗传算法是一种通过模拟自然进化过程搜索最优解的方法,其隐含的并行性和对全局信息的有效利用能力,使该方法只需检测少量结构就能反映搜索空间较大的区域,并获得稳定的最优解.将该技术应用于多阈值分割问题时,必然会明显提高算法的速度.因此,遗传算法在图像阈值分割中的应用将会有很好的发展前景.此外,由于现有的多阈值分割技术主要是基于二类问题,即不断重复二类分割过程,直至图像不能再分割为止.所以,往往不能自动确定分割类数,而需人为事先确定,从而限制了多阈值技术的自动化程度.如何在实现多级分割的过程中,根据待分割图像自身的特性动态判断其可分离性(由图像区域的均匀性、一致性决定),并由此自动确定图像的分割类数始终是研究者关心的内容之一.随着现代新技术、新理论的成熟和发展,这一问题必然会得到很好的解决.参考文献:[1] 王润生.图像理解[M].长沙:国防科技大学出版社,1995[2] 付忠良.基于图像差距度量的阈值选取方法[J ].计算机研究与发展,2001,38(5):563[3] PA L S K,KI NG R A ,H ASHI M A A.Automatic graylevel thresholding through index of fuzziness and entropy[J ].Pattern Recogntion Letter ,1983(1):141[4] 金立左,夏良正,杨世周.图像分割中的自适应模糊阈值法[J ].中国图像图形学报,2000,5(5):390[5] 郭桂蓉,庄钊文.信息处理中的模糊技术[M].长沙:国防科技大学出版社,1993313第4期 吴薇等:图像分割中的阈值选取方法 。
医学图像分割算法的使用技巧与分析结果评估研究医学图像分割是医学影像处理中重要的一环,它可以将医学图像中感兴趣的区域准确地分离出来,帮助医生进行疾病诊断和治疗决策。
近年来,随着计算机视觉和深度学习的发展,医学图像分割算法的研究和应用得到了广泛关注。
本文将介绍一些常见的医学图像分割算法的使用技巧,并结合实验结果评估其性能。
一、常见的医学图像分割算法1. 基于阈值的分割算法:基于阈值的分割算法是最简单且最常用的方法之一。
它通过设定合适的阈值将医学图像中的像素分为目标和背景两类。
常见的阈值选择方法有固定阈值法、自适应阈值法等。
然而,基于阈值的分割算法对图像的光照条件和噪声等因素较为敏感,容易出现分割结果不准确的情况。
2. 区域生长算法:区域生长算法是一种基于像素相似性原理的分割方法。
它从图像中的种子点开始,逐步生长将相邻像素合并成区域,直到满足设定的停止准则。
区域生长算法具有一定的适应性和鲁棒性,但对种子点的选择和停止准则的设定较为关键。
3. 基于边缘的分割算法:基于边缘的分割算法通过检测图像中的边缘信息进行分割。
常用的边缘检测算法有Canny算子、Sobel算子等。
这些算子可以提取出图像中的边缘轮廓,然后利用边缘轮廓进行分割。
然而,基于边缘的分割算法容易受到图像噪声的干扰,同时对边缘的连续性和闭合性要求较高。
4. 基于深度学习的分割算法:基于深度学习的分割算法近年来取得了显著的进展。
它利用深度神经网络对医学图像进行端到端的训练和分割。
常见的深度学习架构包括U-Net、FCN、Mask R-CNN等。
这些算法可以自动学习图像的特征和上下文信息,具有较好的鲁棒性和泛化能力。
但是,基于深度学习的分割算法需要大量的标注样本和计算资源。
二、医学图像分割算法的使用技巧1. 数据预处理:在使用医学图像分割算法之前,首先需要对原始图像进行预处理。
常见的预处理方法包括灰度归一化、平滑滤波、直方图均衡化等。
这些预处理操作可以提高图像的质量和对比度,有助于分割算法的稳定性和准确性。
开发与应用 计算机与信息技术 ·17·图像分割中最佳阈值集的选择与评测罗三定 谭晓东(中南大学信息工程学院,湖南长沙,410083)摘 要 提出了图象最佳多值分割的概念,通过构造Lebesgue测度的模板匹配公式,提出了最佳多阈值分割与图像直方图的映射关系,进而设计了与模板匹配等价的基于直方图的分割算法,该方法的计算时间不受图像大小影响,实验结果表明,该方法有很好分割效果。
关键词 最佳阈值;最佳多阈值分割;测度;模板匹配0 引言图像分割就是将图像分成各具特性的区域, 并提取感兴趣目标的技术和过程,是图像分析的关键步骤。
它在图像增强、模式识别、目标跟踪等领域中有广泛的应用。
至今已提出了多种图像分割方法,可粗略地分为基于直方图的分割方法(阈值化分割,如OTSU、最大熵等)[1][2][3]、 基于边缘的分割方法[4][5]、基于区域的分割方法[6][7]三类。
基于一维直方图的方法速度比较快,对直方图分布成双峰或者分布比较均匀时效果比较好,但对直方图分布比较窄或分布不呈双峰特的图像,分割效果往往不理想。
基于二维直方图的方法,即以像素的灰度值和邻域内部的灰度均值的二维分布所构成的直方图来进行分割,虽然可以有效提高分割效果,一定程度上可以消除噪声的影响,但计算量相当大,难以应用到实时系统。
基于边缘的方法基本思想是先检测图像中边缘点,再按一定策略连接成轮廓,从而构成分割区域。
其难点在于边缘检测时抗噪性和检测精度的矛盾,若提高检测精度,则噪声产生的伪边缘会导致不合理的轮廓,若提高抗噪性,则会产生轮廓漏检和位置偏差。
基于区域的方法关键是要找到合适的种子和选择合适的生长准则,缺点是计算量比较大,并容易造成过度分割,即将图象分割成过多的区域。
本文提出了一种基于模板比配的阈值化分割算法,该方法取分割图像与原图像相似度最大时的阈值作为最佳阈值,并提出了基于直方图的算法。
实验结果表明,该方法有较好的适应性,分割效果是比较理想的。
1 最佳多阈值分割方法基本思想1.1 多值图像及多阈值分割的定义定义1:设图像为),(y x f ,简记为f 。
存在变换T 对),(y x f 进行分割,变量集合}{i λ1,12,1−>−=i i n i λλ",作为分割阈值,分割后的图像为),(y x g ,简记为g 。
常数集合1,,2,1},{−>=j j j c c n j c "作为g 的灰度值。
变换T定义如下:),,,,(),(121−=n f T y x g λλλ"⎪⎪⎩⎪⎪⎨⎧≤≤<≥=−−−−111211λλλλf c c f c n n n n n当当当""" (1)255}min{,0}max{255}min{,0}max{2552≤≥≤≥≤≤i i j j c c n λλ称分割后的图像为n值图像,进行变换T 的过程叫做n阈值分割或者多阈值分割。
1.2 最佳阈值定义及搜索方法定义2 :若存在阈值集合}{0i λ对图像进行n值分割,使得分割后的图像与原图像的相似度最大,即使模扳匹配公式值最大∫∫∫∫∫∫−−−−dxdyg g dxdy f f dxdyg g f f 22)()())(( (2)把阈值集合}{0i λ称为最佳阈值,用最佳阈值对图像分割的过程称为最佳分割。
其中f 为原图像的平均值,g 为分割后图像的平均值。
找出最佳分割阈值简单的方法是穷匹配法,首先选定阈值对原图像进行分割,然后进行模板匹配,使阈值遍历所有灰度,以相似度最大的作为最佳分值。
但这样时间开销很大,因为首先要对原图像进行多值分割,每选定阈值后要进行二维匹配,且匹配复杂度与图像大小有关。
实时性是很不理想的。
·18· 计算机与信息技术 开发与应用1.3 模板匹配公式的Lebesgue 测度表示因为2L f ∈,根据Riemann积分和Lebesgue积分的关系,从分割图像灰度值域着手。
作M m n <<<<<−121λλλ" (3)其中M m ,是f的上界与下界,}{i λ为分割阈值,并作点集}),(:,{1i i i y x f y x E λλ<≤=− (4))(E m 记作集合E 的测度。
相似度计算公式可以表示为:∑∑∫∑∫===−−−−ni i i ni E ni E i E m g c dxdyf f dxdyf fg c ii12121)()()()()( (5)由∑∫=−ni E idxdy f f 12)(不变,可知相似度的变化只与剩余部分有关。
令∑∑∫==−−−=ni i ini E i E m g cdxdyf fg cP i 121)()()()( (6)1.4 基于直方图的最佳阈值算法为使问题进一步简化,令图像的总测度为1。
直方图反映了图像各灰度比例,令灰度级k 的像素点所占比例为k h ,则∑−==ii k ki h E m λλ1)(,令k f k =−∑∑∑−−===−n ii i ni k k i E m g c h k g c P ii )()(])()[(211λλ (7))()()(2211n n E m c E m c E m c g +++=" (8)由上式可知,P 的值与原图像直方图相关,当n 比较小时,搜索最大值,相当于几次一维运算,复杂度只与分割阈值个数和灰度范围有关,避免了二维模板匹配过程,较大程度上降低了计算复杂度。
下面提出基于模板匹配图像分割的两个结论。
定理1说明只有二值分割时,最佳阈值与分割后图像的灰度值无关。
定理2给出了直方图比较均衡时有效的快速分割方法。
定理1:最佳二值分割时,最佳阈值的选取与分割后图像所取灰度值无关。
证明:二值分割图像时只取一个阈值,令其为λ,21,c c 为分割后图像所取灰度值。
则∑∑+==+=255121λλk kk k h c h c g (9)P 可以化为:∑∑∑∑=+=+==−+−−+−=255120212551201)()()()()()()()(k kk kk kk k h k g c hk g c h k g c h k g c P λλλλ∑∑∑∑∑∑∑∑=+=+===+=+==+−=λλλλλλλλ0225512551200255125510)()(k kk kk kk k k kk k k kk k h h h h h k h h k h (10)由上式可知:对于最佳二值分割,最佳阈值与分割后所取图像灰度值21,c c 无关,把这个性质叫做分割无关性。
容易证明对于2>n 的最佳分割,不具有分割无关性。
定理2: 图像的直方图均衡时,当分割后图像灰度取值为21−+=i i i c λλ (与分割阈值相关的值),n 值分割的最佳阈值恰好为把源图像灰度范围n 等份点。
证明:此时直方图看作连续函数a x h =)(,设原图像不为零的最大灰度值为max f ,最小灰度值为min f 。
有∫−=i i dx x h E m i λλ1)()(,由于2>n 时不具有分割无关性,我们使令12i i i c λλ−+=。
∫∑∫∑−−==−−=ii ii dxx h g c dxx xh g c P n j j ni i λλλλ11)()()()(121 (11)令P 对i λ的偏导数为零,解方程得:min minmax f i nf f i −−=λ (12)2 实验结果实验采用两幅256色灰度图像,并将本文方法与经典的基于直方图的阈值化方法(OTSU、最大熵方法)进行比较。
实验硬件环境为AMD1100 CPU ,256 M 内存。
开发与应用 计算机与信息技术 ·19·源图像 (a) 二值分割(b) 三值分割 (c) 四值分割 图 1.peppers 图象基于模板匹配方法分割结果 图1.是本文方法的分割效果,以最大相似度为分割标准,能够最大地保留源图像和分割图像的线性相关性,实验表明该方法获得了较好的分割结果。
源图像 (a) Otsu方法(b) 最大熵方法 (c) 基于模板匹配方法图 2.对Lena 图像的几种分割算法比较图2.将本文方法和其他两种经典方法进行比较,255,128,0321===c c c ,实验表明三种方法对Lena图象分割都能获得较好的效果,基于模扳匹配的方法保留了更多的细节特征。
3 结论提出了以模板匹配公式为评价函数的阈值选取方法,并提出了与模板匹配等价的基于直方图的分割算法。
实验取得了很好的效果,但是由于算法的复杂度随着分割阈值的增加而迅速增加,对于分割阈值比较多的情况计算时间比较长,可以通过遗传算法等优化搜索方法进行改进。
参考文献[1] Sahoo P K, Soltani S , Wong A K C1 A survey of thresholding techniques[J ].Computer Vision , Graphics , and Image Processing Archive , 1998 , 41 (2) : 233~260[2] Brink, AD: Thresholding of digital images usingtwo-dimensional entropies. Pattern Rec-. ognition 25 (8) (1992) 803-808.[3] 刘健庄,栗文青.灰度图像的二维Otsu 自动阈值分割法[J].自动化学报,1993,19(1):101~10[4] Pohle R , Toennies K D. Segmentation of medical images using adaptive region growing [A]. In : Proceedings of SPIE ,Boston , Massachusetts , 2001 , 4322 : 1337~1346[5]Pohle R , Toennies K D. A new approach for model-based adaptive region growing in medical image analysis [A].In : Proceedings of the 9th International Conference on Computer Analysis and Patterns , Warsaw , 2001. 238~246[6] 应义斌.水果图像的背景分割和边缘检测技术研究.浙江大学学报(农业与生命科学版) 2000,26 (1) : 35~ 38[7] 范炯毅,翁默颖.一种基于多熵阈值图像分割的边缘检测新方法.华东师范大学学报(自然科学版), 1999, 3(1):40-46收稿日期:4月20日 修改日期:4月26日作者简介:罗三定(1955-),男,湖南长沙人,中南大学教授,博士,主要研究领域为机器视觉和智能信息处理;谭晓东(1982-),男,湖南湘潭人,硕士研究生,主要研究领域为机器视觉和智能信息处理。