高中数学选修2-1第三章课后习题解答
- 格式:pdf
- 大小:390.09 KB
- 文档页数:14
1.2 椭圆的简单性质课后训练案巩固提升A组1.设椭圆=1(a>b>0)的离心率为e=,右焦点为F(c,0),方程ax2+bx-c=0的两个实根分别为x1和x2,则点P(x1,x2)()A.必在圆x2+y2=2内B.必在圆x2+y2=2上C.必在圆x2+y2=2外D.以上三种情形都有解析:∵e=,∴.∵a2=b2+c2,∴b2=a2.∵x1+x2=-,x1·x2=-,∴=(x1+x2)2-2x1x2=+1=<2.∴P点在圆x2+y2=2内.答案:A2.已知对k∈R,直线y-kx-1=0与椭圆=1恒有公共点,则实数m的取值范围是()A.(0,1)B.(5,+∞)C.[1,5)∪(5,+∞)D.[1,5)解析:直线y-kx-1=0恒过点(0,1),仅当点(0,1)在椭圆上或椭圆内时,此直线才恒与椭圆有公共点,∴≤1,且m>0,得m≥1.又m≠5,故选C.答案:C3.已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若△ABF2是等腰直角三角形,则这个椭圆的离心率是()A.B.C. -1 D.解析:由题意得|AF1|=,|AF2|=|BF2|.∵△ABF2是等腰直角三角形,∴|AF1|=|F1F2|,即=2c.∴b2=a2-c2=2ac.整理得e2+2e-1=0,∴e=-1.答案:C4.焦点在x轴上,右焦点到短轴端点的距离为2,到左顶点的距离为3的椭圆的标准方程是()A. =1B. +y2=1C. =1D.x2+=1解析:依题意,得a=2,a+c=3,故c=1,b=,故所求椭圆的标准方程是=1.答案:A5.若点O和点F分别为椭圆=1的中心和左焦点,点P为椭圆上的任意一点,则的最大值为()A.2B.3C.6D.8解析:由椭圆方程得F(-1,0),设P(x0,y0),则=(x0,y0)·(x0+1,y0)= +x0+.∵P为椭圆上一点,∴=1.∴+x0+3+x0+3= (x0+2)2+2.∵-2≤x0≤2,∴的最大值在x0=2时取得,且最大值等于6.答案:C6.已知椭圆中心在原点,一个焦点为F(-2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是.解析:由已知,得a=2b,c=2,又a2-b2=c2,故b2=4,a2=16,又焦点在x轴上,故椭圆方程为=1.答案: =17.导学号90074059已知椭圆=1(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0),若椭圆上存在点P使,则该椭圆的离心率的取值范围为.解析:如图所示,e=-1.∵|PF2|<a+c,∴e=-1>-1,即e>-1,∴e2+2e-1>0.又∵0<e<1,∴-1<e<1.答案:( -1,1)8.已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,且G上一点到G的两个焦点的距离之和为12,则椭圆G的方程为.解析:由题设,知2a=12, ,∴a=6,c=3.∴b=3.答案: =19.求适合下列条件的椭圆的标准方程:(1)长轴长是短轴长的2倍,且过点(2,-6);(2)在x轴上的一个焦点与短轴两端点的连线互相垂直,且焦距为6.解(1)设椭圆的标准方程为=1或=1(a>b>0).由已知a=2b, ①且椭圆过点(2,-6),从而有=1或=1.②由①②,得a2=148,b2=37,或a2=52,b2=13.故所求椭圆的方程为=1或=1.(2)如图所示,△A1FA2为一等腰直角三角形,OF为斜边A1A2的中线(高),且OF=c,A1A2=2b,∴c=b=3.∴a2=b2+c2=18.故所求椭圆的方程为=1.10.已知椭圆=1(a>b>0)的左焦点F1(-c,0),A(-a,0),B(0,b)是椭圆的两个顶点.若焦点F1到直线AB的距离为,求椭圆的离心率.解(方法一)由题意,直线AB的方程为=1,即bx-ay+ab=0.∵焦点F1到直线AB的距离d=,∴.两边平方、整理,得8c2-14ac+5a2=0,两边同时除以a2,得8e2-14e+5=0,解得e=或e= (舍去).(方法二)在△AF1B中,由面积公式可得=(a-c)·b,将b2=a2-c2代入上式,整理得8c2-14ac+5a2=0.(以下解法同解法一)B组1.已知椭圆的长轴长为20,短轴长为16,则椭圆上的点到椭圆中心距离的取值范围是()A.[6,10]B.[6,8]C.[8,10]D.[16,20]解析:不妨设焦点在x轴上,由题意知a=10,b=8,设椭圆上的点M(x0,y0),由椭圆的范围知,|x0|≤a=10,|y0|≤b=8,点M到椭圆中心的距离d=.又因为=1,所以=64=64-,则d=.因为0≤≤100,所以64≤+64≤100,所以8≤d≤10.故选C.答案:C2.已知c是椭圆=1(a>b>0)的半焦距,则的取值范围是()A.(1,+∞)B.(,+∞)C.(1,)D.(1,]解析:如图,在△AFO中,令∠AFO=θ,其中θ为锐角,则=sin θ+cos θ=sin∈(1,].答案:D3.如图,把椭圆=1的长轴AB分成8等份,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,P3,P4,P5,P6,P7七个点,F是椭圆的一个焦点,则|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=.解析:设F1是椭圆的另一个焦点,则根据椭圆的对称性,知|P1F|+|P7F|=|P1F|+|P1F1|=2a,同理,|P2F|+|P6F|=|P3F|+|P5F|=2a.又|P4F|=a,∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=7a=35.答案:354.已知定点C(-1,0)及椭圆x2+3y2=5,过点C的直线与椭圆相交于A,B两点.若线段AB中点的横坐标是-,求直线AB的方程.解依题意,直线AB的斜率存在,设直线AB的方程为y=k(x+1)(k≠0),将y=k(x+1)代入x2+3y2=5,消去y整理,得(3k2+1)x2+6k2x+3k2-5=0.设A(x1,y1),B(x2,y2),则由线段AB中点的横坐标是-,得=-=-,解得k=±,适合①.所以直线AB的方程为x-y+1=0或x+y+1=0.5.已知椭圆长轴|A1A2|=6,焦距|F1F2|=4,过椭圆的左焦点F1作直线交椭圆于M,N两点,设∠MF1F2=α(0≤α≤180°),问α取何值时,|MN|等于椭圆短轴长?解(方法一)如图,建立平面直角坐标系,则a=3,c=2,b=1,∴椭圆方程为+y2=1.当直线MN斜率不存在时,得|MN|=,不合题意.故可设过F1的直线方程为y=k(x+2).∴①代入②,整理可得(1+9k2)x2+36k2x+72k2-9=0,∴x1+x2=,x1·x2=.代入|MN|=,可得|MN|=.∵=2,∴k=±,即tan α=±,∴α=或α=π.(方法二)如图所示建立平面直角坐标系,由已知可得a=3,c=2,b=1.令|F1M|=x,则|F2M|=6-x,|F1F2|=4,在△MF1F2中利用余弦定理得x=,若令|F1N|=y,则|F2N|=6-y,|F1F2|=4,在△NF1F2中利用余弦定理得y=,∴|MN|=x+y=,∴=2,cos α=±,∴α=或α=π.6.导学号90074060有一椭圆形溜冰场,长轴长100 m,短轴长60 m,现要在这个溜冰场上规定一个各顶点都在溜冰边界上的矩形区域,且使这个区域的面积最大,应把这个矩形的顶点定位在何处?这时矩形的周长是多少?解分别以椭圆的长轴、短轴各自所在的直线为x轴和y轴,以长轴的中点为坐标原点O,建立如图所示的平面直角坐标系xOy,设矩形ABCD的各顶点都在椭圆上.易知矩形ABCD关于原点O及x轴、y轴都是对称的.已知椭圆的长轴长2a=100 m,短轴长2b=60 m,则椭圆的方程为=1.设顶点A的坐标为(x0,y0),x0>0,y0>0,则=1,得 (502-)= (502-).根据矩形ABCD的对称性,可知它的面积S=4x0y0.由于 (502-)=.∴当时,取得最大值,此时S也取得最大值.此时x0=25,y0=15,矩形ABCD的周长为4(x0+y0)=4(25+15)=160 (m).因此,在椭圆形溜冰场的两侧分别画一条与短轴平行且与短轴相距25 m的直线,这两条直线与椭圆的交点就是所划定的矩形区域的顶点;这个矩形区域的周长为160 m.。
第三章 3.2 第1课时A 级 基础巩固一、选择题1.若直线l 的方向向量为a =(1,0,2),平面α的法向量为u =(-2,0,-4),则导学号 21324937( B )A .l ∥αB .l ⊥αC .l ⊂αD .l 与α斜交[解析] ∵u =-2a ,∴u ∥a ,∴l ⊥α.2.在如图所示的坐标系中,ABCD -A 1B 1C 1D 1为正方体,给出下列结论:①直线DD 1的一个方向向量为(0,0,1);②直线BC 1的一个方向向量为(0,1,1);③平面ABB 1A 1的一个法向量为(0,1,0);④平面B 1CD 的一个法向量为(1,1,1). 其中正确的个数为导学号 21324938( C )A .1个B .2个C .3个D .4个[解析] DD 1∥AA 1,AA 1→=(0,0,1);BC 1∥AD 1,AD 1→=(0,1,1),直线AD ⊥平面ABB 1A 1,AD →=(0,1,0);C 1点坐标为(1,1,1),AC 1→与平面B 1CD 不垂直,∴④错.3.(2017·菏泽高二检测)已知A (1,-3,5),B (-1,-1,4)是直线l 上两点,则下列可作为直线l 的方向向量的是导学号 21324939( B )A .(1,1,0)B .(4,-4,2)C .(-3,-3,0)D .(4,4,2)4.(2017·福州高二检测)已知向量n =(2,3,-1)是平面α的一个法向量,则下列向量中能作为平面α的法向量的是导学号 21324940( D )A .(0,3,-1)B .(2,0,-1)C .(-2,3,-1)D .(-2,-3,1)5.已知向量a =(2,4,5)、b =(5,x ,y )分别是直线l 1、l 2的方向向量,若l 1∥l 2,则导学号 21324941( D )A .x =6,y =15B .x =3,y =152C .x =10,y =15D .x =10,y =252[解析] ∵l 1∥l 2,∴a ∥b ,∴52=x 4=y 5,∴⎩⎪⎨⎪⎧ x =10y =252.6.设平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k ),若α∥β,则k =导学号 21324942( C )A .2B .-4C .4D .-2[解析] ∵α∥β,∴1-2=2-4=-2k,∴k =4,故选C . 二、填空题7.已知A 、B 、C 三点的坐标分别为A (1,2,3)、B (2,-1,1)、C (3,λ,λ),若AB →⊥AC →,则λ等于 145.导学号 21324943 [解析] AB →=(1,-3,-2)、AC →=(2,λ-2,λ-3),∵AB →⊥AC →,∴AB →·AC →=0,∴2-3(λ-2)-2(λ-3)=0,解得λ=145. 8.已知直线l 的方向向量为u =(2,0,-1),平面α的一个法向量为v =(-2,1,-4),则l 与α的位置关系为_l ∥α或l ⊂α__.导学号 21324944[解析] u ·v =2×(-2)+0×1+(-1)×(-4)=0,∴l ∥α或l ⊂α.三、解答题9.如图,已知P 是正方形ABCD 所在平面外一点,M 、N 分别是P A 、BD 上的点,且PM ︰MA =BN ︰ND =5︰8.求证:直线MN ∥平面PBC .导学号 21324945[证明] MN →=MP →+PB →+BN →=-PM →+PB →+BN →=-513P A →+PB →+513BD → =-513(BA →-BP →)+PB →+513(BA →+BC →) =513BP →-BP →+513BC →=513BC →-813BP →, ∴MN →与BC →、BP →共面,∴MN →∥平面BCP ,∵MN ⊄平面BCP ,∴MN ∥平面BCP .10.(2017·枣庄高二检测)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为1的菱形,∠ABC =π4,P A ⊥底面ABCD ,P A =2,点M 为P A 的中点,点N 为BC 的中点.AF ⊥CD 于F ,如图建立空间直角坐标系.求出平面PCD 的一个法向量并证明MN ∥平面PCD .导学号 21324946[解析] 由题设知:在Rt △AFD 中,AF =FD =22, A (0,0,0),B (1,0,0),F (0,22,0),D (-22,22,0), P (0,0,2),M (0,0,1),N (1-24,24,0). MN →=(1-24,24,-1),PF →=(0,22,-2). PD →=(-22,22,-2) 设平面PCD 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·PF →=0,n ·PD →=0⇒⎩⎨⎧ 22y -2z =0,-22x +22y -2z =0,令z =2,得n =(0,4,2).因为MN →·n =(1-24,24,-1)·(0,4,2)=0, 又MN ⊄平面PCD ,所以MN ∥平面PCD .B 级 素养提升一、选择题1.下面各组向量为直线l 1与l 2方向向量,则l 1与l 2一定不平行的是导学号 21324947( D )A .a =(1,2,-2)、b =(-2,-4,4)B .a =(1,0,0)、b =(-3,0,0)C .a =(2,3,0)、b =(4,6,0)D .a =(-2,3,5)、b =(-4,6,8)[解析] l 1与l 2不平行则其方向向量一定不共线.A 中:b =-2a ,B 中:b =-3a ,C 中:b =2a .故选D .2.(2017·甘肃天水一中高二期末测试)两个不重合平面的法向量分别为v 1=(1,0,-1)、v 2=(-2,0,2),则这两个平面的位置关系是导学号 21324948( A )A .平行B .相交不垂直C .垂直D .以上都不对[解析] ∵v 1=(1,0,-1),v 2=(-2,0,2),∴v 2=-2v 1,∴v 1∥v 2,∴两个平面平行.3.已知点A (4,1,3)、B (2,-5,1),C 为线段AB 上一点且|AC →||AB →|=13,则点C 的坐标为导学号 21324949( C )A .(72,-12,52)B .(38,-3,2)C .(103,-1,73)D .(52,-72,32) [解析] ∵C 在线段AB 上,∴AC →∥AB →,∴设C (x ,y ,z ),则由|AC →||AB →|=13得,(x -4,y -1,z -3)=13(2-4,-5-1,1-3), 即⎩⎨⎧x -4=-23y -1=-2z -3=-23,解得⎩⎨⎧ x =103y =-1z =73. 故选C . 4.对于任意空间向量a =(a 1,a 2,a 3)、b =(b 1,b 2,b 3),给出下列三个命题: ①a ∥b ⇔a 1b 1=a 2b 2=a 3b 3; ②若a 1=a 2=a 3=1,则a 为单位向量; ③a ⊥b ⇔a 1b 1+a 2b 2+a 3b 3=0. 其中真命题的个数为导学号 21324950( B ) A .0 B .1 C .2 D .3[解析] 由a 1b 1=a 2b 2=a 3b 3⇒a ∥b ,反之不一定成立,故①不正确;②显然错误;③是正确的,故选B .二、填空题5.过点A (1,0,0)、B (0,1,0)、C (0,0,1)的平面的一个法向量为_(1,1,1)__.导学号 21324951[解析] 设法向量n =(x ,y,1),由⎩⎪⎨⎪⎧ n ·AB →=0n ·AC →=0,得⎩⎪⎨⎪⎧ -x +y =0-x +1=0,∴⎩⎪⎨⎪⎧x =1y =1.∴n =(1,1,1). 6.在空间直角坐标系O -xyz 中,已知A (1,-2,3)、B (2,1,-1),若直线AB 交平面xOz 于点C ,则点C 的坐标为___(53,0,13)___.导学号 21324952 [解析] 设点C 的坐标为(x,0,z ),则AC →=(x -1,2,z -3),AB →=(1,3,-4),因为AC →与AB→共线,所以x -11=23=z -3-4,解得⎩⎨⎧ x =53z =13,所以点C 的坐标为(53,0,13). 三、解答题 7.设a 、b 分别是不重合的直线l 1、l 2的方向向量,根据下列条件判断l 1,l 2的位置关系:导学号 21324953(1)a =(4,6,-2)、b =(-2,-3,1);(2)a =(5,0,2)、b =(0,1,0);(3)a =(-2,-1,-1)、b =(4,-2,-8).[解析] (1)∵a =(4,6,-2)、b =(-2,-3,1),∴a =-2b ,∴a ∥b ,∴l 1∥l 2.(2)∵a =(5,0,2)、b =(0,1,0),∴a ·b =0,a ⊥b ,∴l 1⊥l 2.(3)∵a =(-2,-1,-1),b =(4,-2,-8),∴a 与b 不共线也不垂直.∴l 1与l 2相交或异面.8.已知三棱锥P -ABC ,D 、E 、F 分别为棱P A 、PB 、PC 的中点,求证:平面DEF ∥平面ABC .导学号 21324954[证明] 证法一:如图.设PD →=a ,PE →=b ,PF →=c ,则由条件知,P A →=2a ,PB →=2b ,PC →=2c ,设平面DEF 的法向量为n ,则n ·DE →=0,n ·DF →=0,∴n ·(b -a )=0,n ·(c -a )=0,∴n ·AB →=n ·(PB →-P A →)=n ·(2b -2a )=0,n ·AC →=n ·(PC →-P A →)=n ·(2c -2a )=0,∴n ⊥AB →,n ⊥AC →,∴n 是平面ABC 的法向量,∴平面DEF ∥平面ABC .证法二:设PD →=a ,PE →=b ,PF →=c ,则P A →=2a ,PB →=2b ,PC →=2c ,∴DE →=b -a ,DF →=c -a ,AB →=2b -2a ,AC →=2c -2a ,对于平面ABC 内任一直线l ,设其方向向量为e ,由平面向量基本定理知,存在唯一实数对(x ,y ),使e =xAB →+yAC →=x (2b -2a )+y (2c -2a )=2x (b -a )+2y (c -a )=2xDE →+2yDF →,∴e 与DE →、DF →共面,即e ∥平面DEF ,∴l ⊄平面DEF ,∴l ∥平面DEF .由l 的任意性知,平面ABC ∥平面DEF .C 级 能力拔高在正四棱锥P -ABCD 中,底面正方形边长为32,棱锥的侧棱长为5,E 、F 、G 分别为BC 、CD 、PC 的中点,用向量方法证明下列问题.导学号 21324955(1)EF ⊥P A ;(2)EF ∥平面PBD ;(3)直线P A 与平面EFG 不平行.[解析] 设AC 与BD 的交点为O ,∵P -ABCD 为正四棱锥,∴PO ⊥平面ABCD ,且AC ⊥BD ,以O 为原点,OB ,OC 、OP 分别为x 轴、y 轴、z 轴建立空间直角坐标系,∵正方形ABCD 边长为32,∴OB =OC =3,又PC =5,∴OP =4,∴A (0,-3,0)、B (3,0,0)、C (0,3,0)、D (-3,0,0)、P (0,0,4).(1)∵E 、F 分别为BC 、CD 的中点,∴E (32,32,0)、F (-32,32,0),∴EF →=(-3,0,0)、P A →=(0,-3,-4),EF →·P A →=0,∴EF ⊥P A .(2)显然OC →=(0,3,0)为平面PBD 的一个法向量,∵EF →·OC →=0,∴EF ∥平面PBD .(3)∵G 为PC 中点,∴G (0,32,2),设平面EFG 的法向量为n =(x ,y ,z ),则n ·EF →=0,n ·EG →=0,∴⎩⎪⎨⎪⎧ -3x =0-32x +2z =0,∴⎩⎪⎨⎪⎧ x =0z =0. 取n =(0,1,0),∵n ·P A →=-3≠0,∴P A 与平面EFG 不平行.。
新课程标准数学选修2—1第三章课后习题解答第三章 空间向量与立体几何 3.1空间向量及其运算 练习(P86)1、略.2、略.3、A C AB AD AA ''=+- ,BD AB AD AA ''=-+ ,DB AA AB AD ''=--.练习(P89)1、(1)AD; (2)A G ; (3)MG .2、(1)1x =; (2)12x y ==; (3)12x y ==.3练习(P92) 1、B .2、解:因为AC AB AD AA ''=++,所以22()AC AB AD AA ''=++2222222()4352(0107.5)85ABADAA AB AD AB AA AD AA '''=+++⋅+⋅+⋅=+++⨯++=所以AC '=3、解:因为A C α⊥所以A C B D ⊥,AC AB ⊥,又知BD AB ⊥.所以0AC BD ⋅= ,0AC AB ⋅= ,又知0BD AB ⋅=.2C D C DC D =⋅222222()()C A A B B D C A A B B D C A A B B D a b c=++⋅++=++=++所以CD =.练习(P94)1、向量c 与a b + ,a b - 一定构成空间的一个基底. 否则c 与a b + ,a b -共面,于是c 与a ,b共面,这与已知矛盾. 2、共面2、(1)解:OB OB BB OA AB BB OA OC OO a b c ''''=+=++=++=++;BA BA BB OC OO c b '''=+=-+=-CA CA AA OA OC OO a b c '''=+=-+=-+(2)1111()2222O G O C C G O C C B b a c a b c '=+=+=++=++.练习(P97)1、(1)(2,7,4)-; (2)(10,1,16)-; (3)(18,12,30)-; (4)2.2、略.3、解:分别以1,,D A D C D D 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系.则(0,0,0)D ,1(1,1,1)B ,1(1,,0)2M ,(0,1,0)C所以,1(1,1,1)DB = ,1(1,,0)2C M =- .所以,111110cos ,15D B C M D B C M D B C M-+⋅<>===⋅ . 习题3.1 A 组(P97)1、解:如图,(1)AB BC AC +=;(2)AB AD AA AC AA AC CC AC ''''++=+=+= ;(3)设点M 是线段C C '的中点,则12A B A D C C A C C M A M '++=+=; (4)设点G 是线段A C '的三等分点,则11()33A B A D A A A C A G ''++==.向量,,,A C A C A M A G '如图所示. 2、A .3、解:22()AC AB AD AA ''=++2222222()15372(53573722298ABADAA AB AD AB AA AD AA '''=+++⋅+⋅+⋅=+++⨯⨯+⨯⨯+⨯⨯=+所以,13.3AC '≈.4、(1)21cos 602A B A C A B A C a ⋅=⋅︒= ;(第1题)(2)21cos1202A D DB A D D B a ⋅=⋅︒=- ;(3)21cos1802G F A C G F A C a ⋅=⋅︒=- 11()22G F A C a == ;(4)21cos 604E F B C E F B C a ⋅=⋅︒= 11()22E F B D a == ;(5)21cos1204F G B A F G B A a ⋅=⋅︒=- 11()22F G A C a == ;(6)11()22G E G F G C C B B A C A ⋅=++⋅2111()222111424111cos120cos 60cos 6042414D C C B BA C A D C C A C B C A BA C A D C C A C B C A BA C A a=++⋅=⋅+⋅+⋅=⋅︒+⋅︒+⋅︒=5、(1)60︒; (2)略.6、向量a 的横坐标不为0,其余均为0;向量b 的纵坐标不为0,其余均为0;向量c的竖坐标不为0,其余均为0.7、(1)9; (2)(14,3,3)-.8、解:因为a b ⊥ ,所以0a b ⋅= ,即8230x --+=,解得103x =.9、解:(5,1,10)A B =-- ,(5,1,10)BA =-设A B 的中点为M ,119()(,,2)222O M O A O B =+=-, 所以,点M 的坐标为19(,,2)22-,A B ==10、解:以1,,D A D C D D 分别作为x 轴、y 轴、z 轴建立空间直角坐标系O xyz -.则1,,,C M D N 的坐标分别为:(0,1,0)C ,1(1,0,)2M ,1(0,0,1)D ,1(1,1,)2N .1(1,1,)2C M =- ,11(1,1,)2D N =-所以32C M ==,132D N ==111114cos ,994C MD N --<>==-由于异面直线C M 和1D N 所成的角的范围是[0,]2π因此,C M 和1D N 所成的角的余弦值为19.11、31(,,3)22-习题3.1 B 组(P99)1、证明:由已知可知,OA BC ⊥ ,OB AC ⊥∴ 0OA BC ⋅= ,0OB AC ⋅= ,所以()0O A O C O B ⋅-= ,()0O B O C O A ⋅-=. ∴ OA OC OA OB ⋅=⋅ ,OB OC OB OA ⋅=⋅ .∴ 0OA OC OB OC ⋅-⋅= ,()0O A O B O C -⋅=,0BA OC ⋅= .∴ O C AB ⊥.2、证明:∵ 点,,,E F G H 分别是,,,OA OB BC CA 的中点.∴ 12E F A B = ,12H G A B =,所以EF HG =∴四边形E F G H 是平行四边形.1122EF EH AB O C ⋅=⋅ 11()()44O B O A O C O B O C O A O C =-⋅=⋅-⋅∵ O A O B =,C A C B =(已知),O C O C =.∴ B O C ∆≌A O C ∆(SSS ) ∴ B O C A O C ∠=∠∴ OB OC OA OC ⋅=⋅ ∴ 0EF EH ⋅=∴ EF EH ⊥∴ 平行四边形□E F G H 是矩形.3、已知:如图,直线O A ⊥平面α,直线B D ⊥平面α,,O B 为垂足. 求证:O A ∥B D证明:以点O 为原点,以射线O A 方向为z 轴正方向,建立空间直角坐标系O xyz -,,,i j k分别为沿x 轴、y 轴、z 轴的坐标向量,且设(,,)BD x y z =.∵ B D α⊥.∴ BD i ⊥ ,BD j ⊥.∴ (,,)(1,0,0)0B D i x y z x ⋅=⋅== ,(,,)(0,1,0)0BD j x y z y ⋅=⋅==.(第3题)∴ (0,0,)BD z =.∴ BD z k = .∴ BD∥k ,又知,O B 为两个不同的点.∴ B D ∥O A .3.2立体几何中的向量方法 练习(P104)1、(1)3b a = ,1l ∥2l ; (2)0a b ⋅= ,1l ⊥2l ; (3)3b a =-,1l ∥2l . 2、(1)0u v ⋅= ,αβ⊥; (2)2v u =- ,α∥β;(3)u v u v⋅=-α与β相交,交角的余弦等于.练习(P107)1、证明:设正方形的棱长为1.11D F DF DD =- ,AE BE BA =-.因为11()000D F AD DF DD AD ⋅=-⋅=-= ,所以1D F AD ⊥.因为1111()()00022D F AE DF D D B E B A ⋅=-⋅-=+-+= ,所以1D F AE ⊥ .因此1D F ⊥平面A D E .2、解:22()CD CD CA AB BD ==++222222361664268cos(18060)68C A AB BD C A AB C A BD AB BD =+++⋅+⋅+⋅=+++⨯⨯⨯︒-︒=∴CD =练习(P111)1、证明:1()()2M N A B M B B C C N A B M B B C C D A B ⋅=++⋅=++⋅222211()22111cos120cos 60cos 600222M B BC AD AC ABa a a a =++-⋅=+︒+︒-︒=∴ M N AB ⊥. 同理可证M N C D ⊥.2、解:222222()2cos l EF EA A A AF m d n mn θ''==++=+++(或2cos()mn πθ-)22222cos d l m n mn θ=-- ,所以AA d '==3、证明:以点D 为原点,,,DA DC DD '的方向分别为x 轴、y 轴、z 轴正方向,建立坐标系,得下列坐标:(0,0,0)D ,(0,1,0)C ,(1,1,0)B ,(0,1,1)C ',11(,1,)22O .∵ 11(,1,)(1,0,1)022D O BC '⋅=---⋅-= ∴D O B C '⊥习题3.2 A 组(P111)1、解:设正方形的棱长为1(1)1()()2M N C D M B B N C C C D ''''''⋅=+⋅+=,12M N C D '⋅=⋅=112cos 12θ==,60θ=︒.(2)1()2M N A D M B B N A D ''⋅=+⋅=,122M N AD ⋅==1cos 22θ==,45θ=︒.2、证明:设正方体的棱长为1因为11()000DB AC DB BB AC ⋅=+⋅=+=,所以1D B AC ⊥. 因为111111()000DB AD DA A B AD ⋅=+⋅=+=,所以11D B AD ⊥.因此,1D B ⊥平面1A C D .3、证明:∵()cos cos 0O A BC O C O B O A O C O A O B O A θθ⋅=-⋅=-=,∴O A B C ⊥.4、证明:(1)因为11()000A C LE A A AC LE ⋅=+⋅=+=,所以1A C LE ⊥.因为11()000A C EF A B BC EF ⋅=+⋅=+=,所以1A C EF ⊥.因此,1A C ⊥平面E F G H LK . (2)设正方体的棱长为1因为1111()()1A C DB A A AC DB DB ⋅=+⋅+=-,2113A C D B ⋅==所以 1cos 3θ=-.因此1D B 与平面E F G H LK 的所成角α的余弦cos 3α=.5、解:(1)222211111()()22222D E D E D E D E D A A B A C A B O A A C A B ==⋅=++-=++11(111111)42=++-+-=所以,2D E =(2)11111()()22222AE AO AC AB AO ⋅=+⋅=+=,2AE AO ⋅=1cos 32θ===,sin 3θ=点O 到平面ABC的距离sin 133O H O A θ==⨯=6、解:(1)设1AB =,作A O B C ⊥于点O ,连接D O .以点O 为原点,,,OD OC OA 的方向分别为x 轴、y 轴、z 轴正方向, 建立坐标系,得下列坐标:(0,0,0)O,0,0)2D ,1(0,,0)2B ,3(0,,0)2C,(0,2A .∴3(0,0)(2224D O D A ⋅=⋅-=,4D O D A ⋅=,cos 2θ=.∴ A D 与平面BC D 所成角等于45︒.(2)(0,1,0)(0,022BC D A ⋅=⋅-=. 所以,A D 与B C 所成角等于90︒.(3)设平面ABD 的法向量为(,,1)x y ,则1(,,1)(,,1)(0,,022x y AB x y ⋅=⋅-= ,(,,1)(,,1)0,022x y AD x y ⋅=⋅-= .解得 1x =,y =显然(0,0,1)为平面BC D 的法向量.(0,0,1)1⋅=,cos 5θ==.因此,二面角A B D C --的余弦cos cos()5απθ=-=-7、解:设点B 的坐标为(,,)x y z ,则(1,2,)AB x y z =-+.因为AB∥α,所以123412x y z -+==-.因为226AB α==,所以26=.解得5x =-,6y =,24z =,或7x =,10y =-,24z =-.8、解:以点O 为原点建立坐标系,得下列坐标:(,,0)A a a -,(,,0)B a a ,(,,0)C a a -,(,,0)D a a --,(0,0,)V h ,(,,)222a a h E -. (1)222233(,,)(,,)6222222cos ,10a a h a a h h a BE D E h a BE D E--⋅-<>==+. (2)223(,,)(,,)02222a a h h VC BE a a h a ⋅=--⋅--=-= ,222h a =222222641cos ,10123h a a BE DE h a a --<>===-+ 9、解:以点A 为原点建立坐标系,得下列坐标:(0,0,0)A ,(0,1,0)B ,111(,,)222O -, 1(0,0,1)A ,1(1,0,1)D -,1(0,0,)2M .因为10OM AA ⋅= ,10OM BD ⋅=,所以1O M AA ⊥,1O M BD ⊥,2O M ==.10、解:以点A 为原点建立坐标系,得下列坐标:(0,0,0)A ,(0,7,0)B ,(0,0,24)C ,(,,)D x y z .因为(,7,)(0,7,0)0BD AB x y z ⋅=-⋅=,所以7y =.由24BD ==,25CD ==解得12z =,x =1cos 2BD AC BD ACθ⋅==⋅ ,60θ=︒因此,线段B D 与平面α所成的角等于9030θ︒-=︒.11、解:以点O 为原点建立坐标系,得下列坐标:(0,0,0)O ,(4,0,0)A ,(0,3,0)B ,(0,0,4)O ',(4,0,4)A ',(0,3,4)B ',3(2,,4)2D ,(0,3,)P z .由3(0,3,)(2,,4)02O P B D z ⋅=⋅-= ,解得98z =. 所以,938tan 38PB O B θ===.12、解:不妨设这条线段M N 长为2,则点M 到二面角的棱的距离1M P =,点N 到二面角的棱的距离1NQ =,Q M PN ==,PQ =2cos 2PQ M N PQ M Nθ⋅====⋅ 45θ=︒. 习题3.2 B 组(P113) 1、解:12222A B C S ∆=⨯⨯=,()4502AD BE AB BD BE ⋅=+⋅=︒+=,AD BE θ⋅==,AD =,4BD ==.184233A B C D V =⨯⨯=2、解:(1)以点B 为原点建立坐标系,得下列坐标:(0,0,0)B ,(1,0,0)A ,(0,0,1)C ,(1,1,0)F,(,0,1)22M a -,,,0)22N a a .2221)122M Na =-=-+,M N =(2)2211(22a a -+=-+,当2a =时,M N 的长最小.(3)当2a =时,M N 的中点为111(,,)244G ,所求二面角的余弦值1cos 3G A G B G A G Bθ⋅==-⋅.3、证明:设A E B F b ==. 以点O 为原点建立坐标系,得下列坐标:(0,0,0)O ,(0,,0)A a , (,,0)B a a -,(,0,0)C a -,(0,0,)O a ',(0,,)A a a ',(,,)B a a a '-,(,0,)C a a '-,(,,0)E b a -,(,,0)F a a b --.(1)(,,)(,,)0A F C E a b a a b a a ''⋅=---⋅--=,A F C E ''⊥.(2)221111()[()]2242B E F S b a b a a b ∆=-=--,当2a b =时,BEF S ∆最大,三棱锥体积最大. 此时,E F 的中点G 与点B的连线4BG =,tan B B B Gθ'==.第三章 复习参考题A 组(P117)1、B .2、(1)111222A P a b c =++ ; (2)1122A M a b c =++;(3)12A N a b c =++ ; (4)114555A Q a b c =++.3、证明:因为1116()()302A MB A A B BC C M B A A A A B B A C M A A ⋅=++⋅+=⋅+⋅=-+=所以1AM BA ⊥4、解:(1)以点C 为原点建立坐标系,得下列坐标:(0,0,0)C ,(,0,0)A a,1(,,0)22B a ,1(,2)A a a,1(0,)C .(2)点1C 在侧面11ABB A内的射影为点23(,)44C a a ,1212cos 2A C A C A C A C θ⋅==⋅,30θ=︒. 5、解:(1)1cos 2AB AC AB ACθ⋅==⋅,60θ=︒,sin S AB AC θ=⋅=.(2)设a的坐标为(,,)x y z ,则(,,)(2,1,3)0x y z ⋅--=,(,,)(1,3,2)0x y z ⋅-=解得(1,1,1)a = ,或(1,1,1)a =---6、解:cos 42O A O C m n O A O C π⋅+===⋅,2m n +=;cos 42O B O C O B O Cπ⋅===⋅2n p += 22221m n n p +=+=,解得4n =22cos 4O A O BAO B O A O B⋅±∠===⋅.7、D . 8、C .9、解:以点C 为原点建立坐标系,得下列坐标:(0,0,0)C ,(1,0,0)A,1(,0)22B ,1(0,0,2)C,11(2)22B,1(0)44M ,(0,0,)N z . 10AB M N ⋅= ,得18z =.∴点N 坐标为1(0,0,)8,即点N 在1C C 上,18C N =.10、(1)证明:因为()0EF C F ED D F C F ED C F D F C F ⋅=+⋅=⋅+⋅=,所以E F C F ⊥.(2)解:因为1()()4E F C G E D D F C B B G ⋅=+⋅+=,cos 15E F C G E F C Gθ⋅==⋅所以,E F 与C G所成角的余弦值为15.(3)解:2C E ==.11、解:以点C 为原点建立坐标系,得下列坐标:(0,0,0)C ,(1,0,0)A ,(0,1,0)B ,1(1,0,2)A ,1(0,1,2)B ,1(0,0,2)C ,11(,,2)22M ,(1,0,1)N .(1)BN ==(2)111111cos ,10B A C B B A C B B A C B ⋅<>==⋅. (3)因为1111(1,1,2)(,,0)022A B C M ⋅=--⋅= ,所以11A B C M ⊥.12、解:以点O 为原点建立坐标系,得下列坐标:(0,0,0)O,0,0)2A,(0,0)2B ,(0,0)2C -,44E,(0)44F -.118cos 11222O E O F O E O F θ-⋅===-⋅⨯ ,120E O F ∠=︒. 13、证明:(1)因为11()22F E B A B C C A =-= ,11()22H G D A D C C A =-=所以FE HG =. 因此,,,E F G H 四点共面.(2)因为B D 在平面E F G H 之外,B D ∥E H ,所以B D ∥平面E F G H .(3)11111()[()()]()22224O M O E O G O A O B O C O D O A O B O C O D =+=+++=+++.第三章 复习参考题B 组(P119)1、解:(1)AC '===(2)设BD '与A C 的夹角为θ,则cos 42BD ACa bBD ACθ'⋅===-=-+'⋅ .由于BD '与A C 所成的角的范围为[0,]2π,因此直线BD '与A C夹角的余弦值为42a b+.2、(1)证明:因为11()()0A C AE A B BC AE BC AE BC AB BE ⋅=+⋅=⋅=⋅+=所以1A C AE ⊥;因为11()()0A C AF A D DC AF DC AF BC AD DF ⋅=+⋅=⋅=⋅+=所以1A C AF ⊥, 因此,1A C ⊥平面AEF .(2)解:以点1A 为原点建立坐标系,得下列坐标:1(0,0,0)A ,1(4,0,0)B ,1(4,3,0)C , 1(0,3,0)D ,(0,0,5)A -,(4,0,5)B -,(4,3,5)C -,(0,3,5)D -.设平面11D B BD 的法向量为(,,0)a x y =,则110a B D ⋅= ,得43x y =.令3,4x y ==,则(3,4,0)a = , 所以11cos 25a A C a A Cθ⋅==⋅3、解:(1)14V =.(2)以点A 为原点建立坐标系,得下列坐标:(0,0,0)A ,(0,1,0)B ,(1,1,0)C ,1(,0,0)2D ,(0,0,1)S设平面SD C 的法向量为(,,1)a x y =,则0a SC ⋅= ,0a SD ⋅= ,得2,1x y ==-.因此(2,1,1)a =- .cos 3a A D a A Dθ⋅==⋅ .。
一、选择题1.已知离心率为3的椭圆()2211x y m m +=>的左、右顶点分别为A ,B ,点P 为该椭圆上一点,且P 在第一象限,直线AP 与直线4x =交于点C ,直线BP 与直线4x =交于点D ,若83CD =,则直线AP 的斜率为( ) A .16或120 B .121C .16或121D .13或1202.已知P 为抛物线24y x =上任意一点,抛物线的焦点为F ,点(2,1)A 是平面内一点,则||||PA PF +的最小值为( )A .1B C .2D .33.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,点M 在双曲线C 的右支上,点N 在线段12F F 上(不与12,F F 重合),且1230F MN F MN ︒∠=∠=,若2132MN MF MF -=,则双曲线C 的渐近线方程为( )A .y x =±B .y =C .y =D .2y x =±4.已知椭圆中心在原点,且一个焦点为(0F ,直线43130x y +-=与其相交于M 、N 两点,MN 中点的横坐标为1,则此椭圆的方程是( )A .221325y x +=B .221325x y +=C .221369y x +=D .221369x y +=5.已知F 是双曲线22:13y C x -=的右焦点,Q 是双曲线C 左支上的一点,(0,M 是y 轴上的一点.当MQF 的周长最小时,过点Q 的椭圆与双曲线C 共焦点,则椭圆的离心率为( ) A .25B .45C .15D .236.过抛物线24y x =焦点F ,斜率为k (0k >)的直线交抛物线于A ,B 两点,若3AF BF =,则k =( )A B .2C D .17.已知椭圆C 的方程为22221(0,0)x y a b a b+=>>,过右焦点F 且倾斜角为4π的直线与椭圆C 交于A ,B 两点,线段AB 的垂直平分线分别交直线2a x c=和AB 于点P 和M ,若3||4||AB PM =,则椭圆C 的离心率为( )A .5B .3C D .28.设抛物线2:4C y x =的焦点为F ,倾斜角为30的直线l 过点F 且与曲线C 交于,A B 两点,则AOB (O 为坐标原点)的面积S=( )A .4B C .D .29.已知1F ,2F 是双曲线22221(0,0)x y a b a b-=>>的左右焦点,若在右支上存在点A 使得点2F 到直线1AF ,则离心率e 的取值范围是( )A .⎛ ⎝⎭B .⎫+∞⎪⎪⎝⎭C .⎛ ⎝⎭D .⎫+∞⎪⎪⎝⎭10.已知点P 是椭圆22:110064x y C +=上一点,M ,N 分别是圆22(6)1x y -+=和圆22(6)4x y ++=上的点,那么||||PM PN +的最小值为( )A .15B .16C .17D .1811.抛物线224y x x =-的焦点坐标是( ) A .F (0,18) B .F (1,-158) C .F (0,-158) D .(1,18) 12.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两个定点A 、B 的距离之比为λ(0λ>,1λ≠),那么点M 的轨迹就是阿波罗尼斯圆.若已知圆O :221x y +=和点1,02A ⎛⎫-⎪⎝⎭,点()4,2B ,M 为圆O 上的动点,则2MA MB +的最小值为( )A .B .C D 二、填空题13.椭圆2214924x y +=上一点P 与椭圆的两个焦点12,F F 的连线相互垂直,则12PF F △的面积为______.14.双曲线221916x y -=的左焦点到渐近线的距离为________.15.设1F ,2F 分别是椭圆()222210x y a b a b+=>>的左右焦点,过2F 的直线交椭圆于两点P ,Q ,若160F PQ ∠=︒,1PF PQ =,则椭圆的离心率为______.16.在平面直角坐标系xOy 中,抛物线()220y px p =>的焦点为F ,准线为l ,()2,0C p ,过抛物线上一点A 作l 的垂线,垂足为B ,AF 与BC 相交于点E .若2AF CF =,且ACE △的面积为p 的值为______.17.椭圆22143x y +=上一点A 到左焦点的距离为52,则A 点到右准线的距离为________.18.已知双曲线2222:1(0,0)x y C a b a b -=>>与椭圆221259x y +=的焦点重合,左准线方程为1x =-,设1F 、2F 分别为双曲线C 的左、右两个焦点,P 为右支上任意一点,则212PF PF 的最小值为_____________.19.已知1F 、2F 是椭圆22143x y +=的两个焦点,M 为椭圆上一点,若12MF F ∆为直角三角形,则12MF F S ∆=________.20.已知双曲线的方程为221916x y -=,点12,F F 是其左右焦点,A 是圆22(6)4x y +-=上的一点,点M 在双曲线的右支上,则1||||MF MA +的最小值是__________.三、解答题21.已知圆2219:24E x y ⎛⎫+-= ⎪⎝⎭,经过椭圆2222:1(0)x y C a b a b +=>>的左、右焦点12,F F ,且与椭圆C 在第一象限的交点为A ,且1F ,E ,A 三点共线,直线l 交椭圆C 于两点M ,N ,且(0)MN OA λλ=≠. (1)求椭圆C 的方程;(2)当AMN 的面积取到最大值时,求直线l 的方程.22.在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b+=>>的长轴长为准线的距离为8.(1)求椭圆的方程;(2)设N (0,2),过点P (-1,-2)作直线l ,交椭圆C 于不同于N 的A ,B 两点,直线NA ,NB 的斜率分别为k 1,k 2,证明:k 1+k 2为定值.23.在平面直角坐标系xOy 中,椭圆()2222:10x yC a b a b+=>>的离心率为12,过点(0,且BMN ∆是椭圆C 的内接三角形.(1)若点B 为椭圆C 的上顶点,且原点O 为BMN ∆的垂心,求线段MN 的长; (2)若点B 为椭圆C 上的一动点,且原点O 为BMN ∆的重心,求原点O 到直线MN 距离的最小值.24.已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点与抛物线24y x =的焦点相同,1F 、2F 分别为椭圆C 的左、右焦点,M 为C 上任意一点,12MF F S的最大值为1.(1)求椭圆C 的方程;(2)不过点F 2的直线l :y =kx +m (m ≠0)交椭圆C 于A ,B 两点. ①若k 2=12,且S △AOB =22,求m 的值; ②若x 轴上任意一点到直线AF 2与BF 2距离相等,求证:直线l 过定点,并求出该定点的坐标.25.已知椭圆C :()222210x y a b a b+=>>的左、右焦点和短轴的两个端点构成边长为2的正方形.(1)求椭圆C 的方程;(2)过点()1,0Q 的直线l 与椭圆C 相交于,A B 两点.点()4,3P ,记直线PA ,PB 的斜率分别为12,k k ,当12k k ⋅最大时,求直线l 的方程.26.在平面直角坐标系xOy 中,动点M 到点(1,0)A -和(1,0)B 的距离分别为1d 和2d ,2AMB θ∠=,且212cos 1d d θ=.(1)求动点M 的轨迹E 的方程;(2)是否存在直线l 过点B 与轨迹E 交于P ,Q 两点,且以PQ 为直径的圆过原点O ?若存在,求出直线l 的方程,若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由离心率求出9m =,设()00,p x y ,则20202200119999PA PBx y k k x x -⋅===---,设PA k k =(103k <<),则19PB k k=-,直线AP 的方程为()3y k x =+,则C 的坐标()4,7k ,直线BP 的方程为()139y x k -=-,则D 坐标14,9k ⎛⎫- ⎪⎝⎭,从而可表示出CD ,然后列方程可求出k 的值 【详解】由3e ==,得9m =. 设()00,p x y ,则20202200119999PA PBx y k k x x -⋅===---. 设PA k k =(103k <<),则19PB k k=-,直线AP 的方程为()3y k x =+,则C 的坐标()4,7k .直线BP 的方程为()139y x k -=-,则D 坐标14,9k ⎛⎫- ⎪⎝⎭.所以18793CD k k =+=,解得13k =(舍去)或121.故选:B. 【点睛】此题考查直线与椭圆的位置关系,考查直线方程的求法,考查计算能力,属于中档题2.D解析:D 【解析】设点P 在准线上的射影为D ,则根据抛物线的定义可知PF PD =,∴要求PA PF+取得最小值,即求PA PD +取得最小,当,,D P A 三点共线时PA PD +最小,为213--=(),故选D. 3.B解析:B 【分析】根据2132MN MF MF -=可得122F N F N =,所以112MF NMF NS S=,然后用面积公式将两个三角形面积表示出来,可得122MF MF =,再结合122MF MF a -=,余弦定理,可得a 、c 的关系,再利用222c a b =+ ,即可求出ba的值,进而可得渐近线方程. 【详解】∵2132MN MF MF -=,∴2122MN MF MF MN -=-,∴212F N NF =, ∴122F N F N =,∴122MF NMF NS S=.∵111||sin 302MF NSMF MN ︒=⋅⋅⋅,221||sin 302MF NS MF MN ︒=⋅⋅⋅, ∴122MF MF =,又122MF MF a -=,∴ 则124,2MF a MF a ==.在12MF F △中,由余弦定理得,222224164812c a a a a =+-=,故223c a =,∴222b a =, ∴2ba=, 故所求渐近线方程为2y x =±, 故选:B 【点睛】本题主要考查了双曲线离心率的求解,涉及了三角形面积公式、向量的线性运算、余弦定理,属于中档题.4.C解析:C 【解析】设椭圆方程为()222210y x a b a b+=>>联立方程:2222143130y x a b x y ⎧+=⎪⎨⎪+-=⎩,整理得:()222222216910416990b a x b x b a b +---=,设()11M x y ,,()22N x y ,,则1212x x +=,即2221042169b b a=+,化简得:224a b =, 又2227a b -=,易得:22369a b ⎧=⎨=⎩,∴此椭圆的方程是221369y x +=故选C点睛:弦中点问题解法一般为设而不求,关键是求出弦AB 所在直线方程的斜率k,方法一利用点差法,列出有关弦AB 的中点及弦斜率之间关系求解;方法二是直接设出斜率k ,利用根与系数的关系及中点坐标公式求得直线方程.5.B解析:B 【分析】当,,M Q E 三点共线时,MQ QE +最小,进而可求出Q 的坐标,结合椭圆的性质,可知椭圆的离心率EF e QE QF=+.【详解】由题意,双曲线22:13y C x -=中,2221,3,4a b c ===,设双曲线的左焦点为E ,则()2,0E -,右焦点()2,0F ,则4MF ==,根据双曲线的性质可知,2QF QE a -=,则MQF 的周长为26MF MQ QF MF MQ QE a MQ QE ++=+++=++,当,,M Q E 三点共线时,MQ QE +最小,此时MQF 的周长最小,此时直线ME 的方程为)32y x =+,联立)221332y x x y ⎧==+-⎪⎨⎪⎩,消去y 得450x +=,解得54x =-,则33y = 所以MQF 的周长最小时,点Q 的坐标为5334⎛- ⎝⎭, 过点Q 的椭圆的左焦点()2,0E -,右焦点()2,0F ,则2222533533224444QE QF ⎛⎫⎛⎫⎛⎫⎛⎫+=-++--+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭614544=+=, 所以椭圆的离心率45EFe QE QF ==+.故选:B. 【点睛】本题考查双曲线、椭圆的性质,考查椭圆离心率的求法,考查学生的计算求解能力,属于中档题.6.A解析:A 【分析】将直线方程代入抛物线可得212224k x x k++=,121=x x ,由3AF BF =可得1232x x =+,联立方程即可解出k .【详解】由题可得()1,0F ,则直线方程为()1y k x =-,将直线代入抛物线可得()2222240k x k x k -++=,设()()1122,,,A x y B x y ,则212224k x x k++=,121=x x ,由抛物线定义可得121,1AF x BF x =+=+,3AF BF =,则1232x x =+,结合212224k x x k++=可得1222312,x x k k =+=,代入121=x x , 则223121k k⎛⎫+⋅= ⎪⎝⎭,由0k >,可解得k = 故选:A. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.7.B解析:B 【分析】联立直线AB 与椭圆方程,表示出弦长AB ,求出中点M 的横坐标,即可表示出PM 的长,利用已知等量关系即可求出离心率. 【详解】设()()1122,,,A x y B x y ,易得直线AB 的方程为y x c =-,联立直线与椭圆方程22221y x cx y ab =-⎧⎪⎨+=⎪⎩,可得()()222222220a b x a cx a c b +-+-=,则212222a cx x a b +=+,()2221222a cb x x a b -=+,2224ab AB a b ∴==+, 212222M x x a cx a b +==+,直线PM 的斜率为1-, ()2222P Mb PM x xc a b ∴=-=+, 3||4||AB PM =,即()2222222434abb a bc a b ⨯=⨯++,解得c e a ==. 故选:B.【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.8.A解析:A 【分析】由已知求得直线l 的方程,与抛物线的方程联立,设1122(,),(,),A x y B x y 得出根与系数的关系1212 4.y y y y +==-再表示三角形的面积1211||2OABOAFOFBSSSy y =+=⨯⨯-,代入计算可得选项. 【详解】由2:4C y x =得(1,0)F ,所以直线l的方程为1)y x=-,即1x =+,联立得241y xx ⎧=⎪⎨=+⎪⎩,化简得240.y --=,设1122(,),(,),A x y B x y 则12124.y y y y +==-, 所以12111||422OABOAFOFBSSSy y =+=⨯⨯-===, 故选:A . 【点睛】方法点睛:本题考查直线与抛物线的位置关系,考查数学转化思想方法,涉及直线和圆锥曲线关系问题,常采用联立直线和圆锥曲线,然后利用一元二次方程的根与系数关系解题,将所求的目标转化到交点的坐标上去.9.D解析:D 【分析】设直线1AF 的方程,利用点2F 到直线的距离建立等式,解出斜率k ,因为0bk a<<,从而求出,a c 的不等关系,进而解出离心率的范围. 【详解】设1AF :()y k x c =+,因为点A 在右支上,则0b k a<<, 因为2231kca k=+,所以222222343a b k c a a =<-,即2247c a >,解得:72e > 故选:D . 【点睛】本题考查双曲线求离心率,属于中档题.方法点睛:(1)利用点到直线的距离建立等量关系; (2)解出斜率k 与,a b 的关系;(3)由点在右支和左焦点的位置关系,求出斜率k 的范围; (4)利用斜率k 的范围,建立,a c 的不等式,求出离心率的范围.10.C解析:C 【分析】由题意画出图形,数形结合以及椭圆的定义转化求解即可. 【详解】解:如图,椭圆22:110064x y C +=的10a =,8b =,所以6c =,圆22(6)1x y -+=和圆22(6)4x y ++=的圆心为椭圆的两个焦点,则当M ,N 为如图所示位置时,||||PM PN +的最小值为2(21)17a -+=. 故选:C . 【点睛】本题考查椭圆的简单性质,考查了椭圆定义的应用,考查数形结合的解题思想方法,属于中档题.11.B解析:B 【分析】右边配方后,利用抛物线的标准方程结合图象平移变换求解. 【详解】已知抛物线方程为22(1)2y x =--,即21(1)(2)2x y -=+,它的图象是由抛物线212x y =向右平移1单位,再向下平移2个单位得到的,抛物线212x y =中122p =,14p =,焦点坐标为1(0,)8,011+=,115288-=-,因此所求焦点坐标为15(1,)8-, 故选:B . 【点睛】本题考查求抛物线的焦点坐标,掌握抛物线的标准方程与图象变换是解题关键.12.B解析:B 【分析】令2MA MC =,则12MA MC=,所以12MAMC==,整理22222421333m n m n x y x y ++-+++=,得2m =-,0n =,点M 位于图中1M 、2M 的位置时,2MA MB MC MB +=+的值最小可得答案.【详解】设(),M x y ,令2MA MC =,则12MA MC=, 由题知圆221x y +=是关于点A 、C 的阿波罗尼斯圆,且12λ=, 设点(),C m n,则12MAMC==,整理得:22222421333m n m n x y x y ++-+++=, 比较两方程可得:2403m +=,203n =,22113m n +-=, 即2m =-,0n =,点()2,0C -, 当点M 位于图中1M 、2M 的位置时,2MA MBMC MB +=+的值最小,最小为.故选:B.【点睛】本题主要考查直线和圆的位置关系,圆上动点问题,考查两点间线段最短.二、填空题13.24【分析】设由结合椭圆定义可求得从而易得三角形面积【详解】椭圆中设由则又∴∴故答案为:24【点睛】本题考查椭圆的焦点三角形面积问题考查椭圆的定义属于基础题解析:24 【分析】设12,PF m PF n ==,由12PFPF ⊥结合椭圆定义可求得mn ,从而易得三角形面积. 【详解】椭圆2214924x y +=中7a =,26b =49245c =-,设12,PF m PF n ==,由12PFPF ⊥,则()2222100m n c +==,又214m n a +==, 2224100214m n c m n a ⎧+==⎨+==⎩,∴2222()()141004822m n m n mn +-+-===, ∴121242PF F S mn ==△. 故答案为:24. 【点睛】本题考查椭圆的焦点三角形面积问题,考查椭圆的定义,属于基础题.14.4【分析】首先根据题中所给的双曲线方程求出其左焦点坐标和渐近线方程之后利用点到直线的距离公式求得结果【详解】根据题意双曲线的方程为其中所以所以其左焦点的坐标为渐近线方程为即则左焦点到其渐近线的距离为解析:4 【分析】首先根据题中所给的双曲线方程,求出其左焦点坐标和渐近线方程,之后利用点到直线的距离公式求得结果. 【详解】根据题意,双曲线的方程为221916x y -=,其中3,4a b ==,所以5c =,所以其左焦点的坐标为(5,0)-,渐近线方程为43y x =±,即430x y ±=,则左焦点到其渐近线的距离为2045d ===, 故答案为:4. 【点睛】该题考查的是有关双曲线的问题,涉及到的知识点有根据双曲线的方程求其焦点坐标以及渐近线方程,点到直线的距离公式,属于简单题目.15.【分析】由几何关系得出为正三角形结合椭圆的定义得出轴利用椭圆方程得出结合直角三角形的边角关系得出再解方程即可得出答案【详解】为正三角形则由椭圆的定义可知则即轴设点由解得即在中即解得故答案为:【点睛】【分析】由几何关系得出1PFQ 为正三角形,结合椭圆的定义,得出PQ x ⊥轴,利用椭圆方程得出22b PF a=222ac =,再解方程220e +=,即可得出答案.【详解】1160,||F PQ PF PQ ︒∠==1PFQ 为正三角形,则11||PFPQ FQ == 由椭圆的定义可知,2112||2,2PF PF a QF QF a +=+= 则1212PF PF PF QF +=+,即22PF QF =PQ x ∴⊥轴设点()00,,0P c y y >,由220222221y c a ba b c ⎧+=⎪⎨⎪=+⎩,解得20b y a =,即22b PF a = 在12F PF ∆中,222211tan 2F F F PF c PF ab ∠==⋅=22ac =222ac =220e +=,解得3e =故答案为:33【点睛】本题主要考查了求椭圆的离心率,考查数形结合思想及运算能力,属于中档题.16.【分析】由题意知可求的坐标由于轴可得利用抛物线的定义可得代入可取再利用即可得出的值【详解】解:如图所示与轴平行解得代入可取解得故答案为:【点睛】本题考查了抛物线的定义及其性质平行线的性质三角形面积计 解析:6【分析】由题意知可求F 的坐标.由于//AB x 轴,||2||AF CF =,||||AB AF =,可得13||||22CF AB p ==,1||||2CE BE =.利用抛物线的定义可得A x ,代入可取A y ,再利用13ACE ABC S S ∆∆=,即可得出p 的值.【详解】 解:如图所示,,02p F ⎛⎫ ⎪⎝⎭,3||2CF p =,||||AB AF =.AB 与x 轴平行,||2||AF CF =,13||||22CF AB p ∴==,1||||2CE BE =.32A p x p ∴+=,解得52A x p =,代入可取5A y p =,1113535332ACE ABC S S p p ∆∆∴===,解得6p =.故答案为:6.【点睛】本题考查了抛物线的定义及其性质、平行线的性质、三角形面积计算公式.本题的关键在于求出A 的坐标后,如何根据已知面积列出方程.17.3【分析】先由椭圆的第一定义求出点到右焦点的距离再由第二定义求出点到右准线的距离【详解】由椭圆的第一定义得点到右焦点的距离等于离心率所以由椭圆的第二定义得即故点到右准线的距离故答案为:【点睛】本题考解析:3 【分析】先由椭圆的第一定义求出点P 到右焦点的距离,再由第二定义求出点P 到右准线的距离d . 【详解】由椭圆的第一定义得点P 到右焦点的距离等于53422-=,离心率12e =, 所以,由椭圆的第二定义得3122d =,即3d =,故点P 到右准线的距离3d =.故答案为:3 【点睛】本题考查椭圆的第一定义和第二定义,以及椭圆的简单性质,属于基础题.18.【分析】由焦点重合可知由左准线方程可知从而可求设根据双曲线的定义可知则结合基本不等式可求其最值【详解】解:由焦点重合可知;由左准线方程可知又由双曲线的定义可知从而可求出因为为右支上任意一点所以设则则解析:【分析】由焦点重合可知2216a b +=,由左准线方程可知21a c-=-,从而可求2,4a b c ===,设2PF t =,根据双曲线的定义可知,14PF t =+,则212168PF t PF t=++,结合基本不等式可求其最值. 【详解】解:由焦点重合可知,2225916a b +=-=;由左准线方程可知,21a c-=-,又由双曲线的定义可知,222c a b =+,从而可求出2,4a b c ===. 因为P 为右支上任意一点,所以1224PF PF a -==.设2,2PF t t c a =≥-=, 则14PF t =+,则()22124168816t PFt PF tt +==++≥+= 当且仅当16t t =,即4t =时等号成立.即21216PF PF ≥.故答案为:16. 【点睛】本题考查了双曲线的定义,考查了双曲线的准线方程,考查了椭圆的焦点求解,考查了基本不等式.本题的关键是由双曲线的定义,将所求的式子用一个变量来表示.利用基本不等式求最值时,一定要注意,一正二定三相等缺一不可.19.【分析】对各内角为直角进行分类讨论利用勾股定理和椭圆的定义建立方程组求得和利用三角形的面积公式可得出结果【详解】在椭圆中则(1)若为直角则该方程组无解不合乎题意;(2)若为直角则解得;(3)若为直角解析:32【分析】对12MF F ∆各内角为直角进行分类讨论,利用勾股定理和椭圆的定义建立方程组,求得1MF 和2MF ,利用三角形的面积公式可得出结果.【详解】在椭圆22143x y +=中,2a =,b =1c =,则122FF =.(1)若12F MF ∠为直角,则()12222122424MF MF a MF MF c ⎧+==⎪⎨+==⎪⎩,该方程组无解,不合乎题意; (2)若12MF F ∠为直角,则()12222212424MF MF a MF MF c ⎧+==⎪⎨-==⎪⎩,解得123252MF MF ⎧=⎪⎪⎨⎪=⎪⎩, 12121113322222MF F S F F MF ∆∴=⋅=⨯⨯=; (3)若12MF F ∠为直角,同理可求得1232MF F S ∆=. 综上所述,1232MF F S ∆=. 故答案为:32. 【点睛】本题考查椭圆中焦点三角形面积的计算,涉及椭圆定义的应用,考查计算能力,属于中等题.20.【分析】设点的坐标为利用双曲线的定义可得于是转化求解即可【详解】解:由题意可得即则的坐标分别为由双曲线的定义得又是圆上的点圆的圆心为半径为2由图可知则的最小值为故答案为:【点睛】本题主要考查双曲线的解析:【分析】设点C 的坐标为(0,6),利用双曲线的定义,可得12||||26MF MF a -==,于是1||||MF MA +=2||||2||MF CM a CA ++-2||62CF ≥+-,转化求解即可.【详解】解:由题意可得,291625c =+=,即5c =,则1F ,2F 的坐标分别为(5,0)-,(5,0),由双曲线的定义,得12||||26MF MF a -==,又A 是圆22(6)4x y +-=上的点,圆的圆心为(0,6)C ,半径为2, 由图可知,22||||||CM MF CF +≥,12||||||||2||MF MA MF CM a CA +=++-2||62461CF ≥+-=则1||||MF MA +的最小值为4+61 故答案为:4+61 【点睛】本题主要考查双曲线的几何性质,熟练掌握双曲线的性质及其圆外一点到圆上一点距离的最小值是解题的关键,属于中档题.三、解答题21.(1)22142x y +=;(2)220x +=或220x -=.【分析】(1)由题可先求出焦点坐标得出c ,由点1F ,E ,A 共线,可得21AF =,1||3AF =,则可求出a ,即可得出椭圆方程;(2)设出直线方程,联立直线与椭圆,利用韦达定理求出弦长,得出面积,即可求出最值,得出此时的直线方程. 【详解】(1)由2219()24x y +-=,令0y =得2x =±1(F ∴,2F ∴由点1F ,E ,A 共线,知E 为1AF 中点,则221AF OE ==,1||3AF =,242a a ∴=⇒=,∴2222b a c =-=,所求椭圆方程为:22142x y +=;(2)可知)A,由(MN OA λλ==,可得直线l设直线l 的方程为y x m =+,11(,)M x y ,22(,)N xy , 由22142y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩,得2220x m +-=, 由()22Δ)420m =-->,得22m-<<,12x x +=,2122x x m=-,12||MN x ∴=-==,又点A 到直线l 的距离为||d m =,∴1||||2AMNSMN d m ==)2242m m -+=≤=,当且仅当224mm -=,即m =时,等号成立, 综上,直线l的方程为2y x =+2y x =. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.22.(1)22184x y +=;(2)证明见解析.【分析】(1)根据长轴长、两准线的距离以及222a b c =+可得到椭圆的方程;(2)首先要对直线进行分类讨论,当斜率存在时,将直线与椭圆联立,设出,A B 两点的坐标,12k k +用12,x x 表示,再结合韦达定理就能得到证明. 【详解】(1)设椭圆的半焦距为c .因为椭圆的长轴长为8,所以2228a a c==,所以2a c ==,2b .所以椭圆的方程为22184x y +=.(2)证明①当直线l 的斜率不存在时,可得A ⎛- ⎝⎭,B 1,⎛- ⎝⎭, 得k 1+k 2=4.②当直线l 的斜率存在时,设斜率为k ,显然k ≠0,则其方程为y +2=k (x +1),由221,842(1),x y y k x ⎧+=⎪⎨⎪+=+⎩得(1+2k 2)x 2+4k (k -2)x +2k 2-8k =0. ∆=56k 2+32k >0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-24(2)12k k k -+,x 1x 2=222812k kk -+. 从而k 1+k 2=112y x -+222y x -=1212122(4)()kx x k x x x x +-+=2k -(k -4)·24(2)28k k k k--=4.综上,k 1+k 2为定值. 【点睛】方法点睛:求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 23.(12【分析】(1)根据题意,先求出椭圆的方程,由原点O 为BMN △的垂心可得BO MN ⊥,//MN x 轴,设(),M x y ,则(),N x y -,22443x y =-,根据·=0BM ON 求出线段MN 的长;(2)设MN 中点为D ,直线OD 与椭圆交于A ,B 两点,O 为BMN △的重心,则2BO OD OA ==,设MN :y kx m =+,()11,M x y ,()22,N x y ,则()1212,A x x y y ++,当MN 斜率不存在时,则O 到直线MN 的距离为1,由斜率存在时根据()()222222121211221434343x x y y x y x y +++=+=+=,即1212346x x y y +=-,由方程联立得出22443m k =+,再由点到直线的距离求出最值. 【详解】解:(1)设焦距为2c,由题意知:22212b b ac c a ⎧⎪=⎪=-⎨⎪⎪=⎩,22431a b c ⎧=⎪=⎨⎪=⎩因此,椭圆C 的方程为:22143x y +=;由题意知:BO MN ⊥,故//MN x 轴,设(),M x y ,则(),N x y -,22443x y =-,2227·403BM ON x y y =-+=-=,解得:y =, B ,M不重合,故y =213249x =,故2MN x ==(2)设MN 中点为D ,直线OD 与椭圆交于A ,B 两点,O 为BMN △的重心,则2BO OD OA ==,当MN 斜率不存在时,点D 在x 轴上,所以此时点B 在长轴的端点处 由2OB =,则1OD =,则O 到直线MN 的距离为1;当MN 斜率存在时,设MN :y kx m =+,()11,M x y ,()22,N x y , 则1212,22x x y y D ++⎛⎫⎪⎝⎭,所以()1212,A x x y y ++, 所以()()222222121211221434343x x y y x y x y +++=+=+=,即1212346x x y y +=-也即()()1212346x x kx m kx m +++=-()()221212434460kx x mk x x m +++++=223412y kx m x y =+⎧⎨+=⎩,则()2224384120k x mkx m +++-= ()2248430k m∆=+->,x =则:122843mk x x k -+=+,212241243m x x k -=+,代入式子得: 22223286043m k m k --=+,22443m k =+设O 到直线MN 的距离为d ,则2222431144441m k d k k k +===-+++0k =时,min 32d =; 综上,原点O 到直线MN 距离的最小值为32.【点睛】关键点睛:本题考查椭圆的内接三角形的相关性质的应用,解答本题的关键是设MN 中点为D ,直线OD 与椭圆交于A ,B 两点,O 为BMN △的重心,则2BO OD OA ==,根据点,,M N A 均在椭圆上,得出1212346x x y y +=-,由方程联立韦达定理得到22443m k =+,属于中档题.24.(1)2212x y +=;(2)①1m =±;②直线l 恒过定点(2,0).【分析】(1)根据题意,可求得1c =,1b =,进而求得a ,由此得到椭圆方程;(2)①联立方程,得到k 与m 的不等关系,及两根的关系,表示出弦长AB 及点O 到直线AB 的距离,由此建立等式解出即可;②依题意,120k k +=,由此可得到k 与m 的等量关系,进而求得定点. 【详解】(1)由抛物线的方程24y x =得其焦点为(1,0),则1c =, 当点M 为椭圆的短轴端点时,12MF F 面积最大,此时1212S c b =⨯⨯=,则1b =, ∴2a =2212x y +=;(2)联立2212x y y kx m ⎧+=⎪⎨⎪=+⎩得,222(12)4220k x kmx m +++-=,∆222222164(21)(22)8(21)0k m k m k m =-+-=-+>,得2212(*)k m +>,设1(A x ,1)y ,2(B x ,2)y ,则2121222422,1212km m x x x x k k-+=-=++, ①0m ≠且212k =,代入(*)得,202m <<,12|||AB x x -,设点O 到直线AB 的距离为d,则d ==∴12||||)23AOBm SAB d ==, 21(0,2)m ∴=∈,则1m =±; ②1122121122,1111y kx m y kx mk k x x x x ++====----,由题意,120k k +=, ∴1212011kx m kx m x x +++=--,即12122()()20kx x m k x x m +-+-=, ∴2222242()()201212m km k m k m k k-+---=++,解得2m k =-, ∴直线l 的方程为(2)y k x =-,故直线l 恒过定点,该定点坐标为(2,0).【点睛】方法点睛:证明曲线过定点,一般有两种方法.(1)特殊探求,一般证明:即可以先考虑动直线或曲线的特殊情况,找出定点的位置,然后证明该定点在该直线或该曲线上(定点的坐标直线或曲线的方程后等式恒成立).(2)分离参数法:一般可以根据需要选定参数R λ∈,结合已知条件求出直线或曲线的方程,分离参数得到等式2123(,)(,)(,)0f x y f x y f x y λλ++=,(一般地,(,)(1,2,3)i f x y i =为关于,x y 的二元一次关系式)由上述原理可得方程组123(,)0{(,)0(,)0f x y f x y f x y ===,从而求得该定点.25.(1)22142x y +=;(2)10x y --=.【分析】(1)已知条件得b c ==a ,可得椭圆标准方程;(2)当直线l 的斜率为0时,12k k 的值,当直线l 的斜率不为0时,设11(,)A x y ,22(,)B x y ,直线l 的方程为1x my =+,代入椭圆方程整理后应用韦达定理得1212,y y y y +,计算12k k ,化为m 的函数,然后换元,设41t m =+,求出12k k 的最大值,及m 的值得直线方程. 【详解】(1)由已知得2b c ==.又2224a b c =+=,所以椭圆的方程为22142x y +=.(2)①当直线l 的斜率为0时,则12k k ⋅=33342424⨯=-+; ②当直线l 的斜率不为0时,设11(,)A x y ,22(,)B x y ,直线l 的方程为1x my =+,将1x my =+代入22142x y +=,整理得22(2)230m y my ++-=.则12222m y y m -+=+,12232y y m -=+. 又111x my =+,221x my =+, 所以,112134y k k x -⋅=-2234y x -⋅-1212(3)(3)(3)(3)y y my my --=-- 12122121293()93()y y y y m y y m y y -++=-++=2232546m m m ++=+23414812m m +=++. 令41t m =+,则122324225t k k t t ⋅=+-+32254()2t t=++-1≤所以当且仅当5t =,即1m =时,取等号. 由①②得,直线l 的方程为10x y --=.【点睛】关键点点睛:本题考查求椭圆标准方程,考查椭圆中的最值问题.解题方法是设而不求的思想方法,即设交点坐标11(,)A x y ,22(,)B x y ,设直线l 的方程为1x my =+,直线方程代入椭圆方程整理后应用韦达定理得1212,y y y y +,然后代入12k k ,化为m 的函数,用换元法求得最值.26.(1)2212x y +=;(2)存在;2(1)y x =±-.【分析】(1)由余弦定理可得1222d d +=.(2)设P ,Q 两点的坐标依次为()11,x y ,()22,x y ,以线段PQ 为直径的圆过原点得,0OP OQ ⋅=,即12120x x y y +=,先假设存在直线l 满足题设,设直线l 的方程为(1)y k x =-,与椭圆方程联立,韦达定理代入求出k 的值,再检验斜率不存在的情况.【详解】(1)当0θ≠时,在ABM 中,由余弦定理得:22121242cos2d d d d θ=+-. 又212cos1d d θ=,整理得,12d d +=所以点M 的轨迹E 是以(1,0)A -和(1,0)B为焦点,长轴长为个端点)又当点M 为该椭圆的长轴的两个端点时,0θ=,也满足212cos1d d θ=.所以点M 的轨迹E 的方程是2212x y +=.(2)假设存在直线l 满足题设,设直线l 的方程为(1)y k x =-,由22(1)12y k x x y =-⎧⎪⎨+=⎪⎩ 得()2222124220k x k x k +-+-= 设P ,Q 两点的坐标依次为()11,x y ,()22,x y ,由韦达定理得,2122412k x x k +=+,21222212k x x k-=+. 由题意以线段PQ 为直径的圆过原点得,0OP OQ ⋅=,即12120x x y y +=.又()()()212121212111y y k x k x k x x x x =--=-++⎡⎤⎣⎦, 整理得:()212121210x k x x x x x =⎡-+⎤⎣⎦++.代入整理得:22222222222410121212k k k k k k k ⎛⎫--+-+= ⎪+++⎝⎭,即k = 当直线l 的斜率不存在时,直线l 的方程为1x =,此时1,2P ⎛ ⎝⎭、1,2Q ⎛- ⎝⎭,经验证0OP OQ ⋅≠不满足题意.综上所述,所求直线l存在,其方程为1)y x =-. 【点睛】关键点睛:本题考查求轨迹方程和根据条件求直线方程,解答本题的关键是由以线段PQ 为直径的圆过原点,得0OP OQ ⋅=,即12120x x y y +=,转化为方程联立韦达定理代入求解,将条件转化为向量的数量积为0,进而转化为利用韦达定理求解的方法,属于中档题.。
新课程标准数学选修2—1第一章课后习题解答第一章 常用逻辑用语1.1命题及其关系练习(P4)1、略.2、(1)真; (2)假; (3)真; (4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题.(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称. 这是真命题.(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题.练习(P6)1、逆命题:若一个整数能被5整除,则这个整数的末位数字是0. 这是假命题.否命题:若一个整数的末位数字不是0,则这个整数不能被5整除. 这是假命题.逆否命题:若一个整数不能被5整除,则这个整数的末位数字不是0. 这是真命题.2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题.否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题.逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题.3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题.否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题.逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题.练习(P8)证明:若1a b -=,则22243a b a b -+-- ()()2()2322310a b a b a b b a b b a b =+-+---=++--=--=所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题1.1 A 组(P8)1、(1)是; (2)是; (3)不是; (4)不是.2、(1)逆命题:若两个整数a 与b 的和a b +是偶数,则,a b 都是偶数. 这是假命题.否命题:若两个整数,a b 不都是偶数,则a b +不是偶数. 这是假命题.逆否命题:若两个整数a 与b 的和a b +不是偶数,则,a b 不都是偶数. 这是真命题.(2)逆命题:若方程20x x m +-=有实数根,则0m >. 这是假命题.否命题:若0m ≤,则方程20x x m +-=没有实数根. 这是假命题.逆否命题:若方程20x x m +-=没有实数根,则0m ≤. 这是真命题.3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等. 逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题.否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不 相等.这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上.这是真命题.(2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题.否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题.逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题.4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题1.1 B 组(P8)证明:要证的命题可以改写成“若p ,则q ”的形式:若圆的两条弦不是直径,则它们不能互相平分.此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设,AB CD 是O 的两条互相平分的相交弦,交点是E ,若E 和圆心O 重合,则,AB CD 是经过圆心O 的弦,,AB CD 是两条直径. 若E 和圆心O 不重合,连结,,AO BO CO 和DO ,则OE 是等腰AOB ∆,COD ∆的底边上中线,所以,OE AB ⊥,OE CD ⊥. AB 和CD 都经过点E ,且与OE 垂直,这是不可能的. 所以,E 和O 必然重合. 即AB 和CD 是圆的两条直径. 原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习(P10)1、(1)⇒; (2)⇒; (3)⇒; (4)⇒.2、(1). 3(1).4、(1)真; (2)真; (3)假; (4)真.练习(P12)1、(1)原命题和它的逆命题都是真命题,p 是q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是q 的必要条件.2、(1)p 是q 的必要条件; (2)p 是q 的充分条件;(3)p 是q 的充要条件; (4)p 是q 的充要条件.习题1.2 A 组(P12)1、略.2、(1)假; (2)真; (3)真.3、(1)充分条件,或充分不必要条件; (2)充要条件;(3)既不是充分条件,也不是必要条件; (4)充分条件,或充分不必要条件.4、充要条件是222a b r +=.习题1.2 B 组(P13)1、(1)充分条件; (2)必要条件; (3)充要条件.2、证明:(1)充分性:如果222a b c ab ac bc ++=++,那么2220a b c ab ac bc ++---=. 所以222()()()0a b a c b c -+-+-=所以,0a b -=,0a c -=,0b c -=.即 a b c ==,所以,ABC ∆是等边三角形.(2)必要性:如果ABC ∆是等边三角形,那么a b c ==所以222()()()0a b a c b c -+-+-=所以2220a b c ab ac bc ++---=所以222a b c ab ac bc ++=++1.3简单的逻辑联结词练习(P18)1、(1)真; (2)假.2、(1)真; (2)假.3、(1)225+≠,真命题; (2)3不是方程290x -=的根,假命题;(31≠-,真命题.习题1.3 A 组(P18)1、(1)4{2,3}∈或2{2,3}∈,真命题; (2)4{2,3}∈且2{2,3}∈,假命题;(3)2是偶数或3不是素数,真命题; (4)2是偶数且3不是素数,假命题.2、(1)真命题; (2)真命题; (3)假命题.3、(1不是有理数,真命题; (2)5是15的约数,真命题;(3)23≥,假命题; (4)8715+=,真命题;(5)空集不是任何集合的真子集,真命题.习题1.3 B 组(P18)(1)真命题. 因为p 为真命题,q 为真命题,所以p q ∨为真命题;(2)真命题. 因为p 为真命题,q 为真命题,所以p q ∧为真命题;(3)假命题. 因为p 为假命题,q 为假命题,所以p q ∨为假命题;(4)假命题. 因为p 为假命题,q 为假命题,所以p q ∧为假命题.1.4全称量词与存在量词练习(P23)1、(1)真命题; (2)假命题; (3)假命题.2、(1)真命题; (2)真命题; (3)真命题.练习(P26)1、(1)00,n Z n Q ∃∈∉; (2)存在一个素数,它不是奇数;(3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形; (2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题1.4 A 组(P26)1、(1)真命题; (2)真命题; (3)真命题; (4)假命题.2、(1)真命题; (2)真命题; (3)真命题.3、(1)32000,x N x x ∃∈≤; (2)存在一个可以被5整除的整数,末位数字不是0; (3)2,10x R x x ∀∈-+>; (4)所有四边形的对角线不互相垂直.习题1.4 B 组(P27)(1)假命题. 存在一条直线,它在y 轴上没有截距;(2)假命题. 存在一个二次函数,它的图象与x 轴不相交;(3)假命题. 每个三角形的内角和不小于180︒;(4)真命题. 每个四边形都有外接圆.第一章 复习参考题A 组(P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等.逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题; 逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题.2、略.3、(1)假; (2)假; (3)假; (4)假.4、(1)真; (2)真; (3)假; (4)真; (5)真.5、(1)2,0n N n ∀∈>; (2){P P P ∀∈在圆222x y r +=上},(OP r O =为圆心);(3)(,){(,),x y x y x y ∃∈是整数},243x y +=;(4)0{x x x ∃∈是无理数},30{x q q ∈是有理数}. 6、(1)32≠,真命题; (2)54≤,假命题; (3)00,0x R x ∃∈≤,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章 复习参考题B 组(P31)1、(1)p q ∧; (2)()()p q ⌝∧⌝,或()p q ⌝∨.2、(1)Rt ABC ∀∆,90C ∠=︒,,,A B C ∠∠∠的对边分别是,,a b c ,则222c a b =+;(2)ABC ∀∆,,,A B C ∠∠∠的对边分别是,,a b c ,则sin sin sin a b c A B C ==.新课程标准数学选修2—1第二章课后习题解答第二章 圆锥曲线与方程2.1曲线与方程练习(P37)1、是. 容易求出等腰三角形ABC 的边BC 上的中线AO 所在直线的方程是0x =.2、3218,2525a b ==. 3、解:设点,A M 的坐标分别为(,0)t ,(,)x y .(1)当2t ≠时,直线CA 斜率 20222CA k t t -==-- 所以,122CB CA t k k -=-= 由直线的点斜式方程,得直线CB 的方程为 22(2)2t y x --=-. 令0x =,得4y t =-,即点B 的坐标为(0,4)t -.由于点M 是线段AB 的中点,由中点坐标公式得4,22t t x y -==. 由2t x =得2t x =,代入42t y -=, 得422x y -=,即20x y +-=……① (2)当2t =时,可得点,A B 的坐标分别为(2,0),(0,2)此时点M 的坐标为(1,1),它仍然适合方程①由(1)(2)可知,方程①是点M 的轨迹方程,它表示一条直线.习题2.1 A 组(P37)1、解:点(1,2)A -、(3,10)C 在方程2210x xy y -++=表示的曲线上;点(2,3)B -不在此曲线上2、解:当0c ≠时,轨迹方程为12c x +=;当0c =时,轨迹为整个坐标平面. 3、以两定点所在直线为x 轴,线段AB 垂直平分线为y 轴,建立直角坐标系,得点M 的轨迹方程为224x y +=.4、解法一:设圆22650x y x +-+=的圆心为C ,则点C 的坐标是(3,0).由题意,得CM AB ⊥,则有1CM AB k k =-.所以,13y y x x⨯=--(3,0)x x ≠≠ 化简得2230x y x +-=(3,0)x x ≠≠当3x =时,0y =,点(3,0)适合题意;当0x =时,0y =,点(0,0)不合题意.解方程组 222230650x y x x y x ⎧+-=⎪⎨+-+=⎪⎩, 得5,3x y == 所以,点M 的轨迹方程是2230x y x +-=,533x ≤≤. 解法二:注意到OCM ∆是直角三角形, 利用勾股定理,得2222(3)9x y x y ++-+=,即2230x y x +-=. 其他同解法一.习题2.1 B 组(P37)1、解:由题意,设经过点P 的直线l 的方程为1x y a b+=.因为直线l 经过点(3,4)P ,所以341a b+= 因此,430ab a b --= 由已知点M 的坐标为(,)a b ,所以点M 的轨迹方程为430xy x y --=.2、解:如图,设动圆圆心M 的坐标为(,)x y . 由于动圆截直线30x y -=和30x y +=所得弦分别为 AB ,CD ,所以,8AB =,4CD =. 过点M 分别 作直线30x y -=和30x y +=的垂线,垂足分别为E ,F ,则4AE =,2CF =.ME =,MF =. 连接MA ,MC ,因为MA MC =, 则有,2222AE ME CF MF +=+ 所以,22(3)(3)1641010x y x y -++=+,化简得,10xy =. 因此,动圆圆心的轨迹方程是10xy =.2.2椭圆练习(P42)1、14. 提示:根据椭圆的定义,1220PF PF +=,因为16PF =,所以214PF=. 2、(1)22116x y +=; (2)22116y x +=; (3)2213616x y +=,或2213616y x +=. 3、解:由已知,5a =,4b =,所以3c .(1)1AF B ∆的周长1212AF AF BF BF =+++. 由椭圆的定义,得122AF AF a +=,122BF BF a +=.所以,1AF B ∆的周长420a ==.(2)如果AB 不垂直于x 轴,1AF B ∆的周长不变化.这是因为①②两式仍然成立,1AF B ∆的周长20=,这是定值.4、解:设点M 的坐标为(,)x y ,由已知,得 直线AM 的斜率 1AM y k x =+(1)x ≠-; 直线BM 的斜率 1BMy k x =-(1)x ≠; 由题意,得2AM BM k k =,所以211y y x x =⨯+-(1,0)x y ≠±≠ 化简,得3x =-(0)y ≠因此,点M 的轨迹是直线3x =-,并去掉点(3,0)-.练习(P48)1、以点2B (或1B)为圆心,以线段2OA (或1OA ) 为半径画圆,圆与x 轴的两个交点分别为12,F F .点12,F F 就是椭圆的两个焦点.这是因为,在22Rt B OF ∆中,2OB b =,22B F OA =所以,2OF c =. 同样有1OF c =.2、(1)焦点坐标为(8,0)-,(8,0);(2)焦点坐标为(0,2),(0,2)-. 3、(1)2213632x y +=; (2)2212516y x+=. 4、(1)22194x y += (2)22110064x y +=,或22110064y x +=. 5、(1)椭圆22936x y +=的离心率是3,椭圆2211612x y +=的离心率是12, 12>,所以,椭圆2211612x y +=更圆,椭圆22936x y +=更扁; (2)椭圆22936x y +=的离心率是3,椭圆221610x y +=的离心率是5, 因为35>,所以,椭圆221610x y +=更圆,椭圆22936x y +=更扁.6、(1)8(3,)5; (2)(0,2); (3)4870(,)3737--. 7、7. 习题2.2 A 组(P49) 1、解:由点(,)M x y10=以及椭圆的定义得,点M 的轨迹是以1(0,3)F -,2(0,3)F 为焦点,长轴长为10的椭圆. 它的方程是2212516y x +=. 2、(1)2213632x y +=; (2)221259y x +=; (3)2214940x y +=,或2214940y x +=. 3、(1)不等式22x -≤≤,44y -≤≤表示的区域的公共部分;(2)不等式x -≤≤101033y -≤≤表示的区域的公共部分. 图略. 4、(1)长轴长28a =,短轴长24b =,离心率2e =,焦点坐标分别是(-,,顶点坐标分别为(4,0)-,(4,0),(0,2)-,(0,2);(2)长轴长218a =,短轴长26b =,离心率3e =,焦点坐标分别是(0,-,,顶点坐标分别为(0,9)-,(0,9),(3,0)-,(3,0).5、(1)22185x y +=; (2)2219x y +=,或221819y x +=; (3)221259x y +=,或221259y x +=. 6、解:由已知,椭圆的焦距122F F =.因为12PF F ∆的面积等于1,所以,12112P F F y ⨯⨯=,解得1P y =. 代入椭圆的方程,得21154x +=,解得2x =±. 所以,点P的坐标是(1)2±±,共有4个. 7、解:如图,连接QA . 由已知,得QA QP =.所以,QO QA QO QP OP r +=+==.又因为点A 在圆内,所以OA OP <根据椭圆的定义,点Q 的轨迹是以,O A 为焦点,r 为长轴长的椭圆.8、解:设这组平行线的方程为32y x m =+. 把32y x m =+代入椭圆方程22149x y +=,得22962180x mx m ++-=. 这个方程根的判别式 223636(218)m m ∆=--(1)由0∆>,得m -<<当这组直线在y 轴上的截距的取值范围是(-时,直线与椭圆相交.(2)设直线与椭圆相交得到线段AB ,并设线段AB 的中点为(,)M x y . 则 1223x x m x +==-. 因为点M 在直线32y x m =+上,与3m x =-联立,消去m ,得320x y +=. 这说明点M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上. 9、222213.525 2.875x y +=. 10、地球到太阳的最大距离为81.528810⨯km ,最下距离为81.471210⨯km.习题2.2 B 组(P50)1、解:设点M 的坐标为(,)x y ,点P 的坐标为00(,)x y ,则0x x =,032y y =. 所以0x x =,023y y = ……①. 因为点00(,)P x y 在圆上,所以22004x y += ……②.将①代入②,得点M 的轨迹方程为22449x y +=,即22149x y += 所以,点M 的轨迹是一个椭圆与例2相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为(,)P x y ,半径为R ,两已知圆的圆心分别为12,O O .分别将两已知圆的方程 22650x y x +++=,226910x y x +--=配方,得 22(3)4x y ++=, 22(3)100x y -+=当P 与1O :22(3)4x y ++=外切时,有12O P R =+……① 当P 与2O :22(3)100x y -+=内切时,有210O P R =- ……② ①②两式的两边分别相加,得1212O P O P +=12……③化简方程③.先移项,再两边分别平方,并整理,得 12x =+ ……④ 将④两边分别平方,并整理,得 22341080x y +-= ……⑤ 将常数项移至方程的右边,两边分别除以108,得 2213627x y += ……⑥ 由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,. 12= ……①由方程①可知,动圆圆心(,)P x y 到点1(3,0)O -和点2(3,0)O 距离的和是常数12, 所以点P 的轨迹方程是焦点为(3,0)-、(3,0),长轴长等于12的椭圆.并且这个椭圆的中心与坐标原点重合,焦点在x轴上,于是可求出它的标准方程. 因为 26c =,212a =,所以3c =,6a =所以236927b =-=. 于是,动圆圆心的轨迹方程为2213627x y +=. 3、解:设d 是点M 到直线8x =的距离,根据题意,所求轨迹就是集合12MF PM d ⎧⎫==⎨⎬⎩⎭由此得 12= 将上式两边平方,并化简,得 223448x y +=,即2211612x y += 所以,点M 的轨迹是长轴、短轴长分别为8,.4、解:如图,由已知,得(0,3)E -,(4,0)F 因为,,R S T 是线段OF 的四等分点,,,R S T '''是线段CF 的四等分点, 所以,(1,0),(2,0),(3,0)R S T ;933(4,),(4,),(4,)424R S T '''. 直线ER 的方程是33y x =-;直线GR '的方程是3316y x =-+. 联立这两个方程,解得 3245,1717x y ==. 所以,点L 的坐标是3245(,)1717.同样,点M 的坐标是169(,)55,点N 的坐标是9621(,)2525.由作图可见,可以设椭圆的方程为22221x y m n+=(0,0)m n >> ……①把点,L M 的坐标代入方程①,并解方程组,得22114m =,22113n =. 所以经过点,L M 的椭圆方程为221169x y +=. 把点N 的坐标代入22169x y +,得22196121()()11625925⨯+⨯=, 所以,点N 在221169x y +=上. 因此,点,,L M N 都在椭圆221169x y +=上. 2.3双曲线 练习(P55)1、(1)221169x y -=. (2)2213y x -=. (3)解法一:因为双曲线的焦点在y 轴上所以,可设它的标准方程为22221y x a b-=(0,0)a b >>将点(2,5)-代入方程,得222541a b-=,即22224250a b a b +-= 又 2236a b +=解方程组 222222425036a b a b a b ⎧+-=⎪⎨+=⎪⎩令22,m a n b ==,代入方程组,得425036mn m n m n +-=⎧⎨+=⎩解得 2016m n =⎧⎨=⎩,或459m n =⎧⎨=-⎩第二组不合题意,舍去,得2220,16a b ==所求双曲线的标准方程为2212016y x -=解法二:根据双曲线的定义,有2a ==.所以,a = 又6c =,所以2362016b =-=由已知,双曲线的焦点在y 轴上,所以所求双曲线的标准方程为2212016y x -=. 2、提示:根据椭圆中222a b c -=和双曲线中222a b c +=的关系式分别求出椭圆、双曲线的焦点坐标.3、由(2)(1)0m m ++>,解得2m <-,或1m >- 练习(P61)1、(1)实轴长2a =,虚轴长24b =;顶点坐标为-;焦点坐标为(6,0),(6,0)-;离心率4e =. (2)实轴长26a =,虚轴长218b =;顶点坐标为(3,0),(3,0)-;焦点坐标为-;离心率e =(3)实轴长24a =,虚轴长24b =;顶点坐标为(0,2),(0,2)-;焦点坐标为-;离心率e =(4)实轴长210a =,虚轴长214b =;顶点坐标为(0,5),(0,5)-;焦点坐标为;离心率e =2、(1)221169x y -=; (2)2213628y x -=. 3、22135x y -= 4、2211818x y -=,渐近线方程为y x =±. 5、(1)142(6,2),(,)33-; (2)25(,3)4习题2.3 A 组(P61)1、把方程化为标准方程,得2216416y x -=. 因为8a =,由双曲线定义可知,点P 到两焦点距离的差的绝对值等于16. 因此点P 到另一焦点的距离是17.2、(1)2212016x y -=. (2)2212575x y -= 3、(1)焦点坐标为12(5,0),(5,0)F F -,离心率53e =; (2)焦点坐标为12(0,5),(0,5)F F -,离心率54e =;4、(1)2212516x y -=. (2)221916y x -=(3)解:因为ce a==,所以222c a =,因此2222222b c a a a a =-=-=. 设双曲线的标准方程为 22221x y a a -=,或22221y x a a-=.将(5,3)-代入上面的两个方程,得222591a a -=,或229251a a -=.解得 216a = (后一个方程无解).所以,所求的双曲线方程为2211616x y -=. 5、解:连接QA ,由已知,得QA QP =.所以,QA QO QP QO OP r -=-==. 又因为点A 在圆外,所以OA OP >.根据双曲线的定义,点Q 的轨迹是以,O A 为焦点,r 为实轴长的双曲线.6、22188x y -=.习题2.3 B 组(P62)1、221169x y -= 2、解:由声速及,A B 两处听到爆炸声的时间差,可知,A B 两处与爆炸点的距离的差,因此爆炸点应位于以,A B 为焦点的双曲线上.使,A B 两点在x 轴上,并且原点O 与线段AB 的中点重合,建立直角坐标系xOy . 设爆炸点P 的坐标为(,)x y ,则 34031020PA PB -=⨯=. 即 21020a =,510a =.又1400AB =,所以21400c =,700c =,222229900b c a =-=.因此,所求双曲线的方程为221260100229900x y -=. 3、22221x y a b-=4、解:设点11(,)A x y ,22(,)B x y 在双曲线上,且线段AB 的中点为(,)M x y .设经过点P 的直线l 的方程为1(1)y k x -=-,即1y kx k =+-把1y kx k =+-代入双曲线的方程2212y x -=得 222(2)2(1)(1)20k x k k x k ------=(220k -≠) ……①所以,122(1)22x x k k x k +-==- 由题意,得2(1)12k k k-=-,解得 2k =. 当2k =时,方程①成为22430x x -+=.根的判别式162480∆=-=-<,方程①没有实数解.所以,不能作一条直线l 与双曲线交于,A B 两点,且点P 是线段AB 的中点.2.4抛物线 练习(P67)1、(1)212y x =; (2)2y x =; (3)22224,4,4,4y x y x x y x y ==-==-.2、(1)焦点坐标(5,0)F ,准线方程5x =-; (2)焦点坐标1(0,)8F ,准线方程18y =-;(3)焦点坐标5(,0)8F -,准线方程58x =; (4)焦点坐标(0,2)F -,准线方程2y =; 3、(1)a ,2pa -. (2),(6,- 提示:由抛物线的标准方程求出准线方程. 由抛物线的定义,点M 到准线的距离等于9,所以 39x +=,6x =,y =±练习(P72)1、(1)2165y x =; (2)220x y =;(3)216y x =-; (4)232x y =-. 2、图形见右,x 的系数越大,抛物线的开口越大. 3、解:过点(2,0)M 且斜率为1的直线l 的方程 为2y x =-与抛物线的方程24y x =联立 224y x y x=-⎧⎨=⎩解得1142x y ⎧=+⎪⎨=+⎪⎩2242x y ⎧=-⎪⎨=-⎪⎩ 设11(,)A x y ,22(,)B x y,则AB ===4、解:设直线AB 的方程为x a =(0)a >.将x a =代入抛物线方程24y x =,得24y a =,即y =±因为22AB y ==⨯== 所以,3a =因此,直线AB 的方程为3x =.习题2.4 A 组(P73)1、(1)焦点坐标1(0,)2F ,准线方程12y =-; (2)焦点坐标3(0,)16F -,准线方程316y =;(3)焦点坐标1(,0)8F -,准线方程18x =;(4)焦点坐标3(,0)2F ,准线方程32x =-.2、(1)28y x =-; (2),或(4,-3、解:由抛物线的方程22y px =(0)p >,得它的准线方程为2px =-. 根据抛物线的定义,由2MF p =,可知,点M 的准线的距离为2p .设点M 的坐标为(,)x y ,则 22p x p +=,解得32px =. 将32p x =代入22y px =中,得y =. 因此,点M的坐标为3()2p,3(,)2p.4、(1)224y x =,224y x =-; (2)212x y =-(图略)5、解:因为60xFM ∠=︒,所以线段FM所在直线的斜率tan 60k =︒=. 因此,直线FM 的方程为1)y x =-与抛物线24y x =联立,得21)142y x y x ⎧=-⎪⎨=⎪⎩将1代入2得,231030x x -+=,解得,113x =,23x =把113x =,23x =分别代入①得1y =,2y =由第5题图知1(,33-不合题意,所以点M 的坐标为.因此,4FM ==6、证明:将2y x =-代入22y x =中,得2(2)2x x -=,化简得 2640x x -+=,解得 3x=±则 321y ==±因为OB k ,OA k=所以15195OB OA k k -⋅===--所以 OA OB ⊥7、这条抛物线的方程是217.5x y = 8、解:建立如图所示的直角坐标系,设拱桥抛物线的方程为22x py =-, 因为拱桥离水面2 m ,水面宽4 m 所以 222(2)p =--,1p =因此,抛物线方程为22x y =- ……①水面下降1 m ,则3y =-,代入①式,得22(3)x =-⨯-,x =这时水面宽为 m.习题2.2 B 组(P74)1、解:设垂线段的中点坐标为(,)x y ,抛物线上相应点的坐标为11(,)x y .根据题意,1x x =,12y y =,代入2112y px =,得轨迹方程为212y px =. 由方程可知,轨迹为顶点在原点、焦点坐标为(,0)8p的抛物线. 2、解:设这个等边三角形OAB 的顶点,A B 在抛物线上,且坐标分别为11(,)x y ,22(,)x y ,则 2112y px =,2222y px =.又OA OB =,所以 22221122x y x y +=+即221212220x x px px -+-=,221212()2()0x x p x x -+-=因此,1212()(2)0x x x x p -++= 因为120,0,20x x p >>>,所以12x x = 由此可得12y y =,即线段AB 关于x 轴对称. 因为x 轴垂直于AB ,且30AOx ∠=︒,所以11tan30y x =︒=. 因为2112y x p=,所以1y =,因此12AB y ==.3、解:设点M 的坐标为(,)x y由已知,得 直线AM 的斜率 (1)1AM yk x x =≠-+. 直线BM 的斜率 (1)1BM yk x x =≠-. 由题意,得2AM BM k k -=,所以,2(1)11y y x x x -=≠±+-,化简,得2(1)(1)x y x =--≠± 第二章 复习参考题A 组(P80)1、解:如图,建立直角坐标系,使点2,,A B F 在x 轴上,2F 为椭圆的右焦点(记1F 为左焦点).因为椭圆的焦点在x 轴上,所以设它的标准方程为22221(0)x y a b a +=>>.则 22a c OA OF F A -=-=63714396810=+=,22a c OB OF F B +=+=637123848755=+=,解得 7782.5a =,8755c =所以b ===用计算器算得 7722b ≈因此,卫星的轨道方程是2222177837722x y +=. 2、解:由题意,得 12a c R r a c R r -=+⎧⎨+=+⎩, 解此方程组,得1221222R r r a r r c ++⎧=⎪⎪⎨-⎪=⎪⎩因此卫星轨道的离心率21122c r r e a R r r -==++. 3、(1)D ; (2)B .4、(1)当0α=︒时,方程表示圆.(2)当090α︒<<︒时,方程化成2211cos y x α+=. 方程表示焦点在y 轴上的椭圆. (3)当90α=︒时,21x =,即1x =±,方程表示平行于y 轴的两条直线.(4)当90180α︒<≤︒时,因为cos 0α<,所以22cos 1x y α+=表示双曲线,其焦点在x 轴上.而当180α=︒时,方程表示等轴双曲线. 5、解:将1y kx =-代入方程224x y -=得 2222140x k x kx -+--= 即 22(1)250k x kx -+-= ……① 222420(1)2016k k k ∆=+-=-令 0∆<,解得2k >,或2k <- 因为0∆<,方程①无解,即直线与双曲线没有公共点, 所以,k的取值范围为k >k <6、提示:设抛物线方程为22y px =,则点B 的坐标为(,)2p p ,点C 的坐标为(,)2pp - 设点P 的坐标为(,)x y ,则点Q 的坐标为(,0)x .因为,PQ y ==2BC p =,OQ x =.所以,2PQ BC OQ =,即PQ 是BC 和OQ 的比例中项.7、解:设等边三角形的另外两个顶点分别是,A B ,其中点A 在x 轴上方.直线FA 的方程为 )32py x =-与22y px =联立,消去x ,得 220y p --=解方程,得 12)y p =,22)y p =把12)y p =代入)2p y x =-,得 17(2x p =+.把22)y p =代入)32p y x =-,得 27(2x p =-.所以,满足条件的点A 有两个17((2))2A p p +,27((2))2A p p -.根据图形的对称性,可得满足条件的点B 也有两个17((,2))2B p p +-,27((,2))2B p p --所以,等边三角形的边长是112)A B p =,或者222(2A B p =. 8、解:设直线l 的方程为2y x m =+.把2y x m =+代入双曲线的方程222360x y --=,得221012360x mx m +++=.1265mx x +=-,2123610m x x += ……①由已知,得 21212(14)[()4]16x x x x ++-= ……②把①代入②,解得 3m =±所以,直线l 的方程为23y x =±9、解:设点A的坐标为11(,)x y,点B的坐标为22(,)x y,点M的坐标为(,)x y.并设经过点M的直线l的方程为1(2)y k x-=-,即12y kx k=+-.把12y kx k=+-代入双曲线的方程2212yx-=,得222(2)2(12)(12)20k x k k x k------=2(20)k-≠. ……①所以,122(12)22x x k kxk+-==-由题意,得2(12)22k kk-=-,解得4k=当4k=时,方程①成为21456510x x-+=根的判别式25656512800∆=-⨯=>,方程①有实数解.所以,直线l的方程为47y x=-.10、解:设点C的坐标为(,)x y.由已知,得直线AC的斜率(5)5ACyk xx=≠-+直线BC的斜率(5)5BCyk xx=≠-由题意,得AC BCk k m=. 所以,(5)55y ym xx x⨯=≠±+-化简得,221(5)2525x yxm-=≠±当0m<时,点C的轨迹是椭圆(1)m≠-,或者圆(1)m=-,并除去两点(5,0),(5,0)-;当0m>时,点C的轨迹是双曲线,并除去两点(5,0),(5,0)-;11、解:设抛物线24y x=上的点P的坐标为(,)x y,则24y x=.点P到直线3y x=+的距离d===当2y=时,d. 此时1x=,点P的坐标是(1,2).12、解:如图,在隧道的横断面上,以拱顶为原点、拱高所在直线为y轴(向上),建立直角坐标系.设隧道顶部所在抛物线的方程为22x py=-因为点(4,4)C -在抛物线上 所以 242(4)p =-- 解得 24p =-所以,隧道顶部所在抛物线的方程 为24x y =-.设0.5EF h =+. 则(3, 5.5)F h -把点F 的坐标代入方程24x y =-,解得 3.25h =. 答:车辆通过隧道的限制高度为3.2 m.第二章 复习参考题B 组(P81)1、12PF F S ∆=.2、解:由题意,得1PF x ⊥轴.把x c =-代入椭圆方程,解得 2b y a=±. 所以,点P 的坐标是2(,)b c a -直线OP 的斜率21b k ac =-. 直线AB 的斜率2bk a =-.由题意,得2b bac a =,所以,b c =,a =.由已知及1F A a c =+,得a c +=所以 (1c +=+ c =所以,a =,b =因此,椭圆的方程为221105x y +=. 3、解:设点A 的坐标11(,)x y ,点B 的坐标22(,)x y .由OA OB ⊥,得12120x x y y +=. 由已知,得直线AB 的方程为25y x =-+. 则有 12125()250y y y y -++= ……①由25y x =-+与22y px =消去x ,得250y py p +-= ……②(第4题)12y y p +=-,125y y p =- ……③ 把③代入①,解得54p = 当54p =时,方程②成为245250y y +-=,显然此方程有实数根. 所以,54p = 4、解:如图,以连接12,F F 的直线为x 轴,线段12F F 的中点为原点,建立直角坐标系.对于抛物线,有176352922922p=+=, 所以,4584p =,29168p =.对于双曲线,有2080529c a c a +=⎧⎨-=⎩解此方程组,得775.5a =,1304.5c = 因此,2221100320b c a =-=.所以,所求双曲线的方程是221601400.31100320x y -=(775.5)x ≥. 因为抛物线的顶点横坐标是 (1763)(1763775.5)987.5a --=--=- 所以,所求抛物线的方程是 29168(987.5)y x =+ 答:抛物线的方程为29168(987.5)y x =+,双曲线的方程是221601400.31100320x y -=(775.5)x ≥. 5、解:设点M 的坐标为(,)x y由已知,得 直线AM 的斜率 (1)1AM yk x x =≠-+ 直线BM 的斜率 (1)1BM yk x x =≠-由题意,得2AM BM k k +=,所以2(1)11y y x x x +=≠±-+,化简,得21(1)xy x x =-≠± 所以,点M 轨迹方程是21(1)xy x x =-≠±.6、解:(1)当1m =时,方程表示x 轴;(2)当3m =时,方程表示y 轴;(3)当1,3m m ≠≠时,把方程写成22131x y m m +=--. ①当13,2m m <<≠时,方程表示椭圆; ②2m =时,方程表示圆;③当1m <,或3m >时,方程表示双曲线.7、以AB 为直径的圆与抛物线的准线l 相切.证明:如图,过点,A B 分别作抛物线22(0)y px p =>的准线l 的 垂线,垂足分别为,D E .由抛物线的定义,得 AD AF =,BE BF =.所以,AB AF BF AD BE =+=+.设AB 的中点为M ,且过点M 作抛物线22(0)y px p =>的准线l 的垂线,垂足为C .显然MC ∥x 轴,所以,MC 是直角梯形ADEB 的中位线. 于是,11()22MC AD BE AB =+=. 因此,点C 在以AB 为直径的圆上.又MC l ⊥,所以,以AB 为直径的圆与抛物线的准线l 相切. 类似地,可以证明:对于椭圆,以经过焦点的弦为直径的圆与相应的准线相离; 对于双曲线,以经过焦点的弦为直径的圆与相应的准线相交.新课程标准数学选修2—1第三章课后习题解答第三章 空间向量与立体几何 3.1空间向量及其运算 练习(P86)1、略.2、略.3、A C AB AD AA ''=+-,BD AB AD AA ''=-+,DB AA AB AD ''=--. 练习(P89)1、(1)AD ; (2)AG ; (3)MG .2、(1)1x =; (2)12x y ==; (3)12x y ==. 3.练习(P92) 1、B .2、解:因为AC AB AD AA ''=++,所以22()AC AB AD AA ''=++2222222()4352(0107.5)85AB AD AA AB AD AB AA AD AA '''=+++⋅+⋅+⋅=+++⨯++=(第7题)PRS B CAQ O(第3题)所以85AC '=3、解:因为AC α⊥所以AC BD ⊥,AC AB ⊥,又知BD AB ⊥.所以0AC BD ⋅=,0AC AB ⋅=,又知0BD AB ⋅=. 2CD CD CD =⋅222222()()CA AB BD CA AB BD CA AB BDa b c =++⋅++=++=++所以CD .练习(P94)1、向量c 与a b +,a b -一定构成空间的一个基底. 否则c 与a b +,a b -共面, 于是c 与a ,b 共面,这与已知矛盾.2、共面2、(1)解:OB OB BB OA AB BB OA OC OO a b c ''''=+=++=++=++;BA BA BB OC OO c b '''=+=-+=-CA CA AA OA OC OO a b c '''=+=-+=-+(2)1111()2222OG OC CG OC CB b a c a b c '=+=+=++=++. 练习(P97)1、(1)(2,7,4)-; (2)(10,1,16)-; (3)(18,12,30)-; (4)2.2、略.3、解:分别以1,,DA DC DD 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系.则(0,0,0)D ,1(1,1,1)B ,1(1,,0)2M ,(0,1,0)C 所以,1(1,1,1)DB =,1(1,,0)2CM =-.所以,111110cos ,153DB CM DB CM DB CM-+⋅<>===⋅.习题3.1 A 组(P97)1、解:如图,(1)AB BC AC +=;(2)AB AD AA AC AA AC CC AC ''''++=+=+=;(3)设点M 是线段CC '的中点,则12AB AD CC AC CM AM '++=+=; (4)设点G 是线段AC '的三等分点,则11()33AB AD AA AC AG ''++==.向量,,,AC AC AM AG '如图所示. 2、A .3、解:22()AC AB AD AA ''=++2222222()15372(53573722298AB AD AA AB AD AB AA AD AA '''=+++⋅+⋅+⋅=+++⨯⨯+⨯⨯+⨯⨯=+所以,13.3AC '≈.4、(1)21cos602AB AC AB AC a ⋅=⋅︒=; (2)21cos1202AD DB AD DB a ⋅=⋅︒=-;(3)21cos1802GF AC GF AC a ⋅=⋅︒=- 11()22GF AC a ==;(4)21cos604EF BC EF BC a ⋅=⋅︒= 11()22EF BD a ==;(5)21cos1204FG BA FG BA a ⋅=⋅︒=- 11()22FG AC a ==;(6)11()22GE GF GC CB BA CA ⋅=++⋅2111()222111424111cos120cos60cos6042414DC CB BA CA DC CA CB CA BA CA DC CA CB CA BA CA a =++⋅=⋅+⋅+⋅=⋅︒+⋅︒+⋅︒=5、(1)60︒; (2)略.6、向量a 的横坐标不为0,其余均为0;向量b 的纵坐标不为0,其余均为0;向量c 的竖坐标不为0,其余均为0.7、(1)9; (2)(14,3,3)-.8、解:因为a b ⊥,所以0a b ⋅=,即8230x --+=,解得103x =.9、解:(5,1,10)AB =--,(5,1,10)BA =-设AB 的中点为M ,119()(,,2)222OM OA OB =+=-, 所以,点M 的坐标为19(,,2)22-,(AB =-10、解:以1,,DA DC DD 分别作为x 轴、y 轴、z 轴建立空间直角坐标系O xyz -.则1,,,C M D N 的坐标分别为:(0,1,0)C ,1(1,0,)2M ,1(0,0,1)D ,1(1,1,)2N . 1(1,1,)2CM =-,11(1,1,)2D N =- 所以2312CM ==,21312D N == 111114cos ,994CM D N --<>==- 由于异面直线CM 和1D N 所成的角的范围是[0,]2π因此,CM 和1D N 所成的角的余弦值为19. 11、31(,,3)22- 习题3.1 B 组(P99)1、证明:由已知可知,OA BC ⊥,OB AC ⊥∴ 0OA BC ⋅=,0OB AC ⋅=,所以()0OA OC OB ⋅-=,()0OB OC OA ⋅-=. ∴ OA OC OA OB ⋅=⋅,OB OC OB OA ⋅=⋅.∴ 0OA OC OB OC ⋅-⋅=,()0OA OB OC -⋅=,0BA OC ⋅=. ∴ OC AB ⊥.2、证明:∵ 点,,,E F G H 分别是,,,OA OB BC CA 的中点.∴ 12EF AB =,12HG AB =,所以EF HG = ∴四边形EFGH 是平行四边形.1122EF EH AB OC ⋅=⋅11()()44OB OA OC OB OC OA OC =-⋅=⋅-⋅∵ OA OB =,CA CB =(已知),OC OC =. ∴ BOC ∆≌AOC ∆(SSS ) ∴ BOC AOC ∠=∠∴ OB OC OA OC ⋅=⋅∴ 0EF EH ⋅= ∴ EF EH ⊥∴ 平行四边形□EFGH 是矩形.3、已知:如图,直线OA ⊥平面α,直线BD ⊥平面α,,O B 为垂足. 求证:OA ∥BD证明:以点O 为原点,以射线OA 方向为z 轴正方向,建立空间直角坐标系O xyz -,,,i j k 分别为沿x 轴、y 轴、z 轴的坐标向量,且设(,,)BD x y z =.∵ BD α⊥.∴ BD i ⊥,BD j ⊥.∴ (,,)(1,0,0)0BD i x y z x ⋅=⋅==,(,,)(0,1,0)0BD j x y z y ⋅=⋅==. ∴ (0,0,)BD z =. ∴ BD zk =.∴ BD ∥k ,又知,O B 为两个不同的点.∴ BD ∥OA .3.2立体几何中的向量方法 练习(P104)1、(1)3b a =,1l ∥2l ; (2)0a b ⋅=,1l ⊥2l ; (3)3b a =-,1l ∥2l .2、(1)0u v ⋅=,αβ⊥; (2)2v u =-,α∥β; (3)292247u v u v⋅=-,α与β相交,交角的余弦等于292247.练习(P107)1、证明:设正方形的棱长为1.11D F DF DD =-,AE BE BA =-.因为11()000D F AD DF DD AD ⋅=-⋅=-=,所以1D F AD ⊥. 因为1111()()00022D F AE DF DD BE BA ⋅=-⋅-=+-+=,所以1D F AE ⊥. 因此1D F ⊥平面ADE .2、解:22()CD CD CA AB BD ==++(第3题)222222361664268cos(18060)68CA AB BD CA AB CA BD AB BD =+++⋅+⋅+⋅=+++⨯⨯⨯︒-︒=∴CD =练习(P111)1、证明:1()()2MN AB MB BC CN AB MB BC CD AB ⋅=++⋅=++⋅ 222211()22111cos120cos60cos600222MB BC AD AC AB a a a a =++-⋅=+︒+︒-︒=∴ MN AB ⊥. 同理可证MN CD ⊥.2、解:222222()2cos l EF EA A A AF m d n mn θ''==++=+++(或2cos()mn πθ-)22222cos d l m n mn θ=--,所以 22cos AA d mn θ'=.3、证明:以点D 为原点,,,DA DC DD '的方向分别为x 轴、y 轴、z 轴正方向,建立坐标系,得下列坐标:(0,0,0)D ,(0,1,0)C ,(1,1,0)B ,(0,1,1)C ',11(,1,)22O . ∵ 11(,1,)(1,0,1)022DO BC '⋅=---⋅-= ∴DO BC '⊥ 习题3.2 A 组(P111)1、解:设正方形的棱长为1(1)1()()2MN CD MB B N CC C D ''''''⋅=+⋅+=,212MN CD '⋅== 112cos 12θ==,60θ=︒.(2)1()2MN AD MB B N AD ''⋅=+⋅=,212MN AD ⋅==1cos 2θ==,45θ=︒.2、证明:设正方体的棱长为1因为11()000DB AC DB BB AC ⋅=+⋅=+=,所以1DB AC ⊥.因为111111()000DB AD DA AB AD ⋅=+⋅=+=,所以11DB AD ⊥. 因此,1DB ⊥平面1ACD .3、证明:∵()cos cos 0OA BC OC OB OA OC OA OB OA θθ⋅=-⋅=-=,∴OA BC ⊥.4、证明:(1)因为11()000AC LE A A AC LE ⋅=+⋅=+=,所以1AC LE ⊥. 因为11()000AC EF A B BC EF ⋅=+⋅=+=,所以1AC EF ⊥. 因此,1AC ⊥平面EFGHLK . (2)设正方体的棱长为1因为1111()()1AC DB A A AC DB DB ⋅=+⋅+=-,211(3)3AC DB ⋅== 所以 1cos 3θ=-. 因此1DB 与平面EFGHLK 的所成角α的余弦cos 3α=. 5、解:(1)222211111()()22222DE DE DE DE DA AB AC AB OA AC AB ==⋅=++-=++11(111111)42=++-+-= 所以,2DE =(2)11111()()22222AE AO AC AB AO ⋅=+⋅=+=,32AE AO ⋅=1cos 2θ===sin θ=点O 到平面ABC 的距离sin 1OH OA θ===. 6、解:(1)设1AB =,作AO BC ⊥于点O ,连接DO .以点O 为原点,,,OD OC OA 的方向分别为x 轴、y 轴、z 轴正方向, 建立坐标系,得下列坐标:(0,0,0)O,D ,1(0,,0)2B,3(0,,0)2C,A . ∴3((4DO DA ⋅=-⋅=,184DO DA ⋅=,cos 2θ=. ∴ AD 与平面BCD 所成角等于45︒. (2)(0,1,0)(0BC DA ⋅=⋅=. 所以,AD 与BC 所成角等于90︒.(3)设平面ABD 的法向量为(,,1)x y ,则1(,,1)(,,1)(0,,02x y AB x y ⋅=⋅=,(,,1)(,,1)0x y AD x y ⋅=⋅=. 解得 1x =,y =显然(0,0,1)为平面BCD 的法向量.(0,0,1)1⋅=,cos θ==因此,二面角A BD C --的余弦cos cos()απθ=-=7、解:设点B 的坐标为(,,)x y z ,则(1,2,)AB x y z =-+.因为AB ∥α,所以123412x y z-+==-. 因为226AB α==26=.解得5x =-,6y =,24z =,或7x =,10y =-,24z =-.8、解:以点O 为原点建立坐标系,得下列坐标:(,,0)A a a -,(,,0)B a a ,(,,0)C a a -,(,,0)D a a --,(0,0,)V h ,(,,)222a a hE -.(1)222233(,,)(,,)6222222cos ,10a a h a a h h a BE DE h a BE DE--⋅-<>==+.(2)223(,,)(,,)02222a a h h VC BE a a h a ⋅=--⋅--=-=,222h a = 222222641cos ,10123h a a BE DE h a a --<>===-+9、解:以点A 为原点建立坐标系,得下列坐标:(0,0,0)A ,(0,1,0)B ,111(,,)222O -,1(0,0,1)A ,1(1,0,1)D -,1(0,0,)2M .因为10OM AA ⋅=,10OM BD ⋅=,所以1OM AA ⊥,1OM BD ⊥,2OM ==. 10、解:以点A 为原点建立坐标系,得下列坐标:(0,0,0)A ,(0,7,0)B ,(0,0,24)C ,(,,)D x y z .因为(,7,)(0,7,0)0BD AB x y z ⋅=-⋅=,所以7y =.由24BD ==,25CD ==解得12z =,x =1cos 2BD AC BD ACθ⋅==⋅,60θ=︒ 因此,线段BD 与平面α所成的角等于9030θ︒-=︒.11、解:以点O 为原点建立坐标系,得下列坐标:(0,0,0)O ,(4,0,0)A ,(0,3,0)B ,(0,0,4)O ',(4,0,4)A ',(0,3,4)B ',3(2,,4)2D ,(0,3,)P z .由3(0,3,)(2,,4)02OP BD z ⋅=⋅-=,解得98z =. 所以,938tan 38PB OB θ===.12、解:不妨设这条线段MN 长为2,则点M 到二面角的棱的距离1MP =,点N 到二面角的棱的距离1NQ =,QM PN ==PQ =22cos 2PQ MNPQ PQ MNθ⋅====⋅, 45θ=︒. 习题3.2 B 组(P113) 1、解:12222ABC S ∆=⨯⨯=, ()224502AD BE AB BD BE ⋅=+⋅=︒+=,202cos AD BE AD AD θ⋅==,20AD =,204BD ==. 184233ABCD V =⨯⨯=2、解:(1)以点B 为原点建立坐标系,得下列坐标:(0,0,0)B ,(1,0,0)A ,(0,0,1)C ,(1,1,0)F,,0,1)M -,,0)N .。
高二数学选修2-1第三章第1节空间向量及其运算人教新课标A 版(理)一、学习目标:1. 理解空间向量的概念,了解共线或平行向量的概念,掌握其表示方法;会用图形说明空间向量的加法、减法、数乘向量及它们的运算律;能用空间向量的运算意义及运算律解决简单的立体几何中的问题.2. 理解共线向量的定理及其推论.3. 掌握空间向量的夹角和模的概念及其表示方法;掌握两个向量数量积的概念、性质和计算方法及运算律;掌握两个向量数量积的主要用途,会用它解决立体几何中的一些简单问题.4. 掌握空间向量的正交分解,空间向量的基本定理及其坐标表示;掌握空间向量的坐标运算的规律;会根据向量的坐标,判断两个向量共线或垂直.二、重点、难点:重点:空间向量的加减与数乘运算及运算律,空间直线、平面的向量参数方程及线段中点的向量公式,点在已知平面内的充要条件,两个向量的数量积的计算方法及其应用,空间向量的基本定理、向量的坐标运算.难点:由平面向量类比学习空间向量,对点在已知平面内的充要条件的理解与运用,向量运算在几何证明与计算中的应用,理解空间向量的基本定理.三、考点分析:本讲知识主要为由平面向量类比学习空间向量的概念及其基本运算,涉及到空间向量中的共线向量和共面向量,以及空间向量的基本定理和空间向量的坐标运算.数量积的运用,是我们学习的重点.一、空间向量的概念:模(或长度)为0的向量称为零向量;模为1的向量称为单位向量.与向量a 长度相等且方向相反的向量称为a 的相反向量,记作a -.方向相同且模相等的向量称为相等向量.二、空间向量的加法和减法、数乘运算1. 求两个向量和的运算称为向量的加法,它遵循平行四边形法则.2. 求两个向量差的运算称为向量的减法,它遵循三角形法则.3. 实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘运算.当0λ>时,a λ与a 方向相同;当0λ<时,a λ与a 方向相反;当0λ=时,a λ为零向量,记为0.a λ的长度是a 的长度的λ倍.三、共线向量与共面向量1. 向量共线的充要条件:对于空间任意两个向量a ,()0b b ≠,//a b 的充要条件是存在实数λ,使a b λ=.2. 向量共面定理:平行与同一平面的向量是共面向量.四、向量的数量积1. 已知两个非零向量a 和b ,在空间任取一点O ,作a OA =,b OB =,则∠AOB 称为向量a ,b 的夹角,记作,a b 〈〉.两个向量夹角的取值范围是:[],0,a b π〈〉∈.2. 对于两个非零向量a 和b ,若,2a b π〈〉=,则向量a ,b 互相垂直,记作a b ⊥.3. 已知两个非零向量a 和b ,则cos ,a b a b 〈〉称为a ,b 的数量积,记作a b ⋅.即cos ,a b a b a b ⋅=〈〉.零向量与任何向量的数量积为0.五、空间向量的坐标表示和运算设()111,,a x y z =,()222,,b x y z =,则 1. ()121212,,a b x x y y z z +=+++. 2. ()121212,,a b x x y y z z -=---. 3. ()111,,a x y z λλλλ=. 4. 121212a b x x y y z z ⋅=++.5. 若a 、b 为非零向量,则12121200a b a b x x y y z z ⊥⇔⋅=⇔++=.6. 若0b ≠,则121212//,,a b a b x x y y z z λλλλ⇔=⇔===.7. 222111a a a x y z =⋅=++.8. 121212222222111222cos ,a b a b a bx y z x y z⋅〈〉==++⋅++.9. ()111,,x y z A ,()222,,x y z B ,则()()()222212121d x x y y z z AB =AB =-+-+-知识点一 空间向量的概念的运用例1、与向量(1,3,2)a =-平行的一个向量的坐标是( )A .(31,1,1) B .(-1,-3,2) C .(-21,23,-1)D .(2,-3,-22)思路分析:1)题意分析:本题主要考查共线向量的概念的运用.2)解题思路:利用共线向量的概念,如果b a b a b λ=⇔≠//,0,那么说向量→→b a ,共线.也可观察坐标的系数是不是成比例.解答过程:解析:向量的共线和平行是一样的,可利用空间向量共线定理写成数乘的形式. 即b a b a b λ=⇔≠//,0,因为(1,3,2)a =-=-2(-21,23,-1),故答案为C . 解题后的思考:对于空间共线向量的判定,要么利用坐标对应成比例,要么利用向量的线性关系来判定.例2、在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若11B A =a ,11D A =b ,A A 1=c ,则下列向量中与MB 1相等的向量是( )A .++-2121B .++2121 C .c b a +-2121D .c b a +--2121思路分析:1)题意分析:本题考查的是基本的向量相等与向量的加法,考查学生的空间想象能力. 2)解题思路:把未知向量表示为已知向量,可利用三角形或平行四边形法则解决.用向量的方法处理立体几何问题,使复杂的线面空间关系代数化.解答过程:解析:)(21111BC BA A A BM B B MB ++=+==+21(-+)=-21+21+.故选A . 解题后的思考:对于空间向量的线性表示,我们本着把所求的向量与已知向量尽量放在一个封闭图形中的原则,再结合向量的加法得到.例3、在下列条件中,使M 与A 、B 、C 一定共面的是 ( )A .OM --=2B .213151++=C .=++MC MB MA 0D .=+++OC OB OA OM 0 思路分析:1)题意分析:本题主要考查共面向量的概念的运用.2)解题思路:空间的四点P 、A 、B 、C 共面只需满足,OC z OB y OA x OP ++=且1=++z y x 即可,或者AC y AB x AP +=.解答过程:由于空间的四点P 、A 、B 、C 共面只需满足,OC z OB y OA x OP ++=且1=++z y x 即可,首先判定A ,B ,D 项都不符合题意,由排除法可知只有选C .利用向量的加法和减法我们可以把+-+-=++)()(OM OB OM OA MC MB MA03)()(=-++=-OM OC OB OA OM OC ,)(31++=,显然满足题意. 解题后的思考:对空间向量的共面问题,我们只需利用课本中的两个结论判定即可.,z y x ++=且1=++z y x 或,y x +=都可判定P ,A ,B ,C 共面.例4、①如果向量,a b 与任何向量都不能构成空间向量的一组基底,那么,a b 的关系是不共线;②,,,O A B C 为空间四点,且向量,,OA OB OC 不构成空间的一个基底,那么点,,,O A B C 一定共面;③已知向量,,a b c 是空间的一个基底,则向量,,a b a b c +-也是空间的一个基底. 其中正确的命题是( )A .①②B .①③C .②③D .①②③ 思路分析:1)题意分析:本题考查空间向量的基底.2)解题思路:结合空间向量基底的概念,我们逐一的判定.解答过程:命题①中,由于,a b 与任何向量都共面,说明,a b 是共线向量.因此①是错误的.命题②中,由四点确定的、共起点的三个向量不能构成基底,说明了这四点是共面的,因此②是正确的.命题③中,要判定三个向量是否可构成基底,关键是看这三个向量是不是不共面,共面与是共面的,,→→→→→→-+b a b a b a ,因此③是正确的.选C .解题后的思考:理解空间向量的基底是由不共面的四点,或者说不共面的三个向量构成的.知识点二 空间向量的坐标运算的运用例5、在ΔABC 中,已知)0,4,2(=AB ,)0,3,1(-=BC ,则∠ABC =___.思路分析:1)题意分析:本题考查用向量数量积求夹角.2)解题思路:首先要注意夹角的概念,是共起点,因此在求角的时候,要注意向量的方向,否则容易出错.解答过程:(2,4,0),(1,3,0),BA BC =--=-2cos ,2||||2510BA BC BA BC BA BC ⋅∴===-⋅ ∴∠ABC =145°解题后的思考:向量夹角的求解是高考中的常考题型,因此,同学们要注意准确运用.例6、已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5). ⑴求以向量AC AB ,为一组邻边的平行四边形的面积S ;⑵若向量a 分别与向量AC AB ,垂直,且|a |=3,求向量a 的坐标思路分析:1)题意分析:本题综合运用向量的数量积来判定垂直,求解夹角.2)解题思路:首先分析平行四边形的面积实际上是三角形面积的2倍,于是可转化为求三角形的面积,需先结合数量积求出夹角的余弦值,然后得到夹角的正弦值,再求面积;求向量的坐标,一般是先设出其坐标,然后结合已知条件,列出关系式,进而求解.解答过程:⑴21||||cos ),2,3,1(),3,1,2(==∠∴-=--=AC AB AC AB BAC AC AB . ∴∠BAC =60°,3760sin ||||==∴ AC AB S . ⑵设a =(x ,y ,z ),则,032=+--⇒⊥z y x AB a33||,023222=++⇒==+-⇒⊥z y x a z y x AC a解得x =y =z =1或x =y =z =-1,∴a =(1,1,1)或a =(-1,-1,-1).解题后的思考:向量的数量积是高考中的一个热点话题,出题形式较灵活,只要同学们抓住数量积解决的问题一般是有关夹角、距离的问题这个本质即可.例7、如图所示,直三棱柱ABC —A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点.(1)求的长;(2)求cos<11,CB BA >的值; (3)求证:M C B A 11⊥思路分析:1)题意分析:本题主要考查空间向量的概念及其运算的基本知识.考查空间两向量垂直的充要条件.2)解题思路:先建立空间直角坐标系,然后写出坐标,利用坐标的运算进行求解. 解答过程:如图,建立空间直角坐标系O -xyz .(1)解:依题意得B (0,1,0)、N (1,0,1) ∴|BN |=3)01()10()01(222=-+-+-.(2)解:依题意得A 1(1,0,2)、B (0,1,0)、C (0,0,0)、B 1(0,1,2) ∴1BA ={1,-1,2},1CB ={0,1,2},1BA ·1CB =3,|1BA |=6,|1CB |=5∴cos<1BA ,1CB >=30101||||1111=⋅⋅CB BA CB BA .(3)证明:依题意,得C 1(0,0,2)、M (21,21,2),B A 1={-1,1,-2},MC 1={21,21,0}.∴B A 1·M C 1=-2121++0=0,∴B A 1⊥M C 1.解题后的思考:对于空间中的角和垂直的判定,如果不能直接利用定义,我们可以运用代数的方法,结合坐标运算进行.例8、已知正方体''''ABCD A B C D -的棱长为a ,M 为'BD 的中点,点N 在'A C '上,且|'|3|'|A N NC =,试求MN 的长.思路分析:1)题意分析:本题考查向量的概念及向量的坐标运算,求解有关距离的问题.2)解题思路:对于空间向量的距离的求解,可借助于向量的数量积的性质来解,也可利用坐标运算进行求解.解答过程: 以D 为原点,建立如图所示的空间直角坐标系.因为正方体棱长为a ,所以B (a ,a ,0),A'(a ,0,a ),'C (0,a ,a ),'D (0,0,a ).由于M 为'BD 的中点,取''A C 的中点O',所以M (2a ,2a ,2a ),O'(2a ,2a,a ).因为|'|3|'|A N NC =,所以N 为''A C 的四等分点,从而N 为''O C 的中点,故N (4a ,34a ,a ).根据空间两点间的距离公式,可得22236||()()()242424a a a a a MN a a =-+-+-=.解题后的思考:本题是求解空间几何体中距离的问题,我们一般利用坐标的运算进行求解.解题关键是能把坐标准确地表示出来.小结:通过以上的典型例题,同学们应熟练掌握以下基本概念:共线向量与共面向量,空间向量的基底,以及运用向量的坐标运算解决有关的距离和夹角问题.注意处理以上问题的两个方法:向量法与坐标法.空间向量及其运算是解决立体几何的一种重要工具,同学们要理解基本概念,并能对比平面向量进行加、减运算和数乘运算及数量积的运算和应用.数量积问题是向量问题中经常考查的知识点,要能灵活解决有关的夹角和距离问题,从而为后面的学习打下坚实的基础.一、预习新知本讲学习了空间向量的概念及其基本运算,那么能否利用向量解决空间中有关角与距离的问题呢?二、预习点拨探究与反思:探究任务一:用空间向量解决立体几何中有关角的问题 【反思】(1)如何用向量表示线面角、二面角及异面直线所成的角 (2)具体的求角的公式应如何怎么表示?探究任务二:用空间向量解决立体几何中有关距离的问题 【反思】(1)如何用空间向量表示空间的点线的距离、异面直线的距离、线面的距离、面面的距离?(2)求解距离的具体的计算公式是什么?(答题时间:50分钟)一、选择题1.下列命题正确的是( )A .若a 与b 共线,b 与c 共线,则a 与c 共线B .向量,,a b c 共面就是它们所在的直线共面C .零向量没有确定的方向D .若//a b ,则存在唯一的实数λ使得a b λ=2. 已知A (-1,-2,6),B (1,2,-6),O 为坐标原点,则向量OA OB 与的夹角是( )A .0B .2πC .πD .32π 3. 已知空间四边形ABCO 中,c OC ,b OB ,a OA ===,点M 在OA 上,且OM =2MA ,N 为BC 中点,则MN =( )A .c b a 213221+- B .c b a 212132++- C .c b a 212121-+ D .c b a 213232-+4. 设A 、B 、C 、D 是空间不共面的四点,且满足000=⋅=⋅=⋅AD AB ,AD AC ,AC AB ,则△BCD 是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定5. 空间四边形OABC 中,OB =OC ,∠AOB =∠AOC =60°,则cos BC ,OA =( ) A .21B .22C .-21D .06. 已知A (1,1,1)、B (2,2,2)、C (3,2,4),则△ABC 的面积为( ) A .3B .32C .6D .267. 已知),,2(),,1,1(t t b t t t a =--=,则||b a -的最小值为( ) A .55 B .555 C .553 D .511二、填空题8.若)1,3,2(-=a ,)3,1,2(-=b ,则以b a ,为邻边的平行四边形的面积为 . 9.已知空间四边形OABC ,其对角线为OB 、AC ,M 、N 分别是对边OA 、BC 的中点,点G 在线段MN 上,且GN MG 2=,现用基组{}OC OB OA ,,表示向量OG ,有OG =x OC z OB y OA ++,则x 、y 、z 的值分别为 .10.已知点A (1,-2,11)、B (4,2,3),C (6,-1,4),则△ABC 的形状是 . 11.已知向量)0,3,2(-=a ,)3,0,(k b =,若b a ,成120°的角,则k = .三、解答题12.如图,在空间直角坐标系中BC =2,原点O 是BC 的中点,点A 的坐标是(21,23,0),点D 在平面yOz 上,且∠BDC =90°,∠DCB =30°.(1)求向量OD 的坐标;(2)设向量AD 和BC 的夹角为θ,求cos θ的值13.四棱锥P -ABCD 中,底面ABCD 是一个平行四边形,AB =(2,-1,-4),AD =(4,2,0),AP =(-1,2,-1). (1)求证:PA ⊥底面ABCD ; (2)求四棱锥P -ABCD 的体积;(3)对于向量a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),c =(x 3,y 3,z 3),定义一种运算:(a ×b )·c =x 1y 2z 3+x 2y 3z 1+x 3y 1z 2-x 1y 3z 2-x 2y 1z 3-x 3y 2z 1,试计算(AB ×AD )·AP 的绝对值的值;说明其与四棱锥P -ABCD 体积的关系,并由此猜想向量这一运算(AB ×AD )·AP 的绝对值的几何意义.14.若四面体对应棱的中点间的距离都相等,证明这个四面体的对棱两两垂直.1.C ;解析:由于选项A 中当b =→0时,就不符合题意,因此A 错误.选项B ,向量共面,但向量所在的直线不一定共面,可以是平行.选项D ,应说明b ≠→0. 2.C ;解析:||||cos b a ⋅=θ,计算结果为-1.3.B ;解析:显然OA OC OB OM ON MN 32)(21-+=-=. 4.B ;解析:过点A 的棱两两垂直,通过设棱长、应用余弦定理可得△BCD 为锐角三角形. 5.D ;解析:先建立一组基向量OC OB OA ,,,再处理⋅的值. 6.D ;解析:应用向量的运算,显然><⇒>=<AC AB AC AB ,sin ,cos ,从而得><=S ,sin ||||21. 7.C ;解析:利用向量数量积的性质求解模的平方的最小值,然后再开方即可得到. 8.56;解析:72||||,cos -=>=<b a ,得753,sin >=<b a ,从而可得结果.9.313161、、; 解析:OM ON OA MN OA MG OM OG 313161]21)(21[3221)(32213221++=-++=-+=+=+= 10.直角三角形;解析:利用空间两点间的距离公式得:222||||||AC BC AB +=.11.39-;解析:219132,cos 2-=+=>=<k k b a ,得39±=k . 12.解:(1)过D 作DE ⊥BC ,垂足为E ,在Rt △BDC 中,由∠BDC =90°,∠DCB =30°,BC =2,得BD =1,CD =3,∴DE =CD ·sin30°=23. OE =OB -BE =OB -BD ·cos60°=1-2121=. ∴D 点坐标为(0,-23,21),即向量的坐标为(0,-23,21). (2)依题意:)()()(0,1,0,0,1,0,0,21,23=-==, 所以)()(0,2,0,23,1,23=-=--=-=OB OC BC OA OD AD .设向量和BC 的夹角为θ,则cos θ222222020)23()1()23(0232)1(023||||++⋅+-+-⨯+⨯-+⨯-=⋅BC AD BC AD 1051-=. 13.(1)证明:∵AB AP ⋅=-2-2+4=0,∴AP ⊥AB . 又∵AD AP ⋅=-4+4+0=0,∴AP ⊥AD .∵AB 、AD 是底面ABCD 上的两条相交直线,∴PA ⊥底面ABCD . (2)解:设AB 与AD 的夹角为θ,则 cos θ1053416161428||||=+⋅++-=⋅AD AB AD ABABCD P V -=31|AB |·|AD |·sin θ·|AP |=161411059110532=++⋅-⋅ (3)解:|(AB ×AD )·AP |=|-4-32-4-8|=48,它是四棱锥P -ABCD 体积的3倍.猜测:|(AB ×AD )·AP |在几何上可表示以AB 、AD 、AP 为棱的平行六面体的体积(或以AB 、AD 、AP 为棱的直四棱柱的体积). 14.证明:如图,设321,,r SC r SB r SA ===,则SN SM SH SG SF SE ,,,,,分别为121r ,)(2132r r +,)(2121r r +,321r ,)(2131r r +,221r ,由条件EF =GH =MN 得: 223123212132)2()2()2(r r r r r r r r r -+=-+=-+展开得313221r r r r r r ⋅=⋅=⋅∴0)(231=-⋅r r r ,∵1r ≠,23r r -≠, ∴1r ⊥(23r r -),即SA ⊥BC .同理可证SB ⊥AC ,SC ⊥AB .。
第3课时 用向量方法求空间中的角课时过关·能力提升基础巩固1若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( ) A.120° B.60°C.30°D.以上均错l 的方向向量与平面α的法向量的夹角为120°,∴它们所在直线的夹角为60°.则直线l 与平面α所成的角为90°-60°=30°.2设四边形ABCD ,ABEF 都是边长为1的正方形,FA ⊥平面ABCD ,则异面直线AC 与BF 所成的角等于 ( )A.45°B.30°C.90°D.60°,则A (0,0,0),F (0,0,1),B (0,1,0),C (1,1,0), ∴AC⃗⃗⃗⃗⃗ =(1,1,0),BF ⃗⃗⃗⃗⃗ =(0,-1,1). ∴AC ⃗⃗⃗⃗⃗ ·BF⃗⃗⃗⃗⃗ =-1. 设异面直线AC 与BF 所成的角为θ, ∴cos θ=|cos <AC ⃗⃗⃗⃗⃗ ,BF ⃗⃗⃗⃗⃗ >|=12. 又∵θ∈(0°,90°],∴θ=60°.3若a =(λ,1,2)与b =(2,-1,-2)的夹角为钝角,则实数λ的取值范围为( ) A.λ<52B.λ<52,且λ≠-2C.λ≥52,且λ≠4D.λ≥52,得a ·b =2λ+(-1)-4<0,即λ<52.而|a |=√5+λ2,|b |=3,又<a ,b >为钝角,∴3√5+λ≠-1,即λ≠-2.4若斜线段与它在平面α内射影的长之比是2∶1,则AB 与平面α所成角为( ) A.π6 B.π3C.23πD.56πAB 与平面α所成角为θ,由题意知cos θ=12,则AB 与平面α所成角为π3.5若平面α的一个法向量为n =(4,1,1),直线l 的一个方向向量为a =(-2,-3,3),则l 与α所成角的余弦值为 ( )A.-√11B.√11C.-√110D.√913<a ,n >=√4+9+9√16+1+1=3√11=-4√1133, 故l 与α所成角的余弦值为√1-(-4√1133)2=√91333.6在正方体ABCD-A 1B 1C 1D 1中,二面角A-BD 1-B 1的大小为 .,以点C 为原点建立空间直角坐标系.设正方体的边长为a ,则A (a ,a ,0),B (a ,0,0),D 1(0,a ,a ),B 1(a ,0,a ), ∴BA ⃗⃗⃗⃗⃗ =(0,a ,0),BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(-a ,a ,a ),BB 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,a ). 设平面ABD 1的法向量为n =(x ,y ,z ), 则n ·BA ⃗⃗⃗⃗⃗ =(x ,y ,z )·(0,a ,0)=ay=0, n ·BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(-a ,a ,a )=-ax+ay+az=0. ∵a ≠0,∴y=0,x=z.令x=z=1,则n =(1,0,1),同理,求得平面B 1BD 1的法向量m =(1,1,0),∴cos <n ,m >=n ·m |n ||m |=12,∴<n ,m >=60°.而二面角A-BD 1-B 1为钝角,故为120°.°7在正四棱锥P-ABCD 中,高为1,底面边长为2,E 为BC 的中点,则异面直线PE 与DB 所成的角为 .,则B (1,1,0),D (-1,-1,0),E (0,1,0),P (0,0,1),∴DB⃗⃗⃗⃗⃗⃗ =(2,2,0),PE ⃗⃗⃗⃗⃗ =(0,1,-1). ∴cos <DB ⃗⃗⃗⃗⃗⃗ ,PE ⃗⃗⃗⃗⃗ >=DB ⃗⃗⃗⃗⃗⃗ ·PE ⃗⃗⃗⃗⃗⃗|DB ⃗⃗⃗⃗⃗⃗ ||PE ⃗⃗⃗⃗⃗⃗|=√8×√2=12.∴<DB ⃗⃗⃗⃗⃗⃗ ,PE ⃗⃗⃗⃗⃗ >=π.∴PE 与DB 所成的角为π.8在长方体ABCD-A 1B 1C 1D 1中,已知DA=DC=4,DD 1=3,则异面直线A 1B 与B 1C 所成角的余弦值为 .9如图,在长方体ABCD-A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 是棱AB 上的动点.若异面直线AD 1与EC 所成角为60°,试确定此时动点E 的位置.DA 所在直线为x 轴,以DC 所在直线为y 轴,以DD 1所在直线为z 轴,建立空间直角坐标系.设E (1,t ,0)(0≤t ≤2),则A (1,0,0),D (0,0,0),D 1(0,0,1),C (0,2,0),D 1A ⃗⃗⃗⃗⃗⃗⃗ =(1,0,-1),CE ⃗⃗⃗⃗⃗ =(1,t-2,0), 根据数量积的定义及已知得:1+0×(t-2)+0=√2×√1+(t -2)2·cos 60°, 所以t=1.所以点E 的位置是AB 的中点. 10如图,在四棱锥P-ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC=∠BAD=π,PA=AD=2,AB=BC=1.求平面PAB 与平面PCD 所成二面角的余弦值.{AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ }为正交基底建立如图所示的空间直角坐标系Axyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).因为AD ⊥平面PAB ,所以AD ⃗⃗⃗⃗⃗ 是平面PAB 的一个法向量,AD ⃗⃗⃗⃗⃗ =(0,2,0).因为PC⃗⃗⃗⃗⃗ =(1,1,-2),PD ⃗⃗⃗⃗⃗ =(0,2,-2).设平面PCD 的法向量为m =(x ,y ,z ), 则m ·PC ⃗⃗⃗⃗⃗ =0,m ·PD ⃗⃗⃗⃗⃗ =0. 即{x +y -2z =0,2y -2z =0. 令y=1,解得z=1,x=1.所以m =(1,1,1)是平面PCD 的一个法向量.从而cos <AD ⃗⃗⃗⃗⃗ ,m >=AD ⃗⃗⃗⃗⃗⃗·m |AD ⃗⃗⃗⃗⃗⃗ ||m |=√33,所以平面PAB 与平面PCD 所成二面角的余弦值为√33.能力提升1已知E ,F 分别是棱长为1的正方体ABCD-A 1B 1C 1D 1的棱BC ,CC 1的中点,则截面AEFD 1与底面ABCD 所成二面角的正弦值是( ) A.23B.√23C.√53D.2√33D 为坐标原点,以DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,如图,则A (1,0,0),E (12,1,0),F (0,1,12),D 1(0,0,1),∴AD 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),AE ⃗⃗⃗⃗⃗ =(-12,1,0). 设平面AEFD 1的法向量为n =(x ,y ,z ),则 {n ·AD 1⃗⃗⃗⃗⃗⃗⃗ =0,n ·AE ⃗⃗⃗⃗⃗ =0⇒{-x +z =0,-x 2+y =0,∴x=2y=z. 取y=1,则n =(2,1,2),而平面ABCD 的一个法向量为u =(0,0,1),∴cos <n ,u >=2,∴sin <n ,u >=√5.2在棱长为1的正方体ABCD-A 1B 1C 1D 1中,M ,N 分别是A 1B 1,BB 1的中点,那么直线AM 与CN 所成角的余弦值是( )A.√32B.√1010C.35D.25,建立空间直角坐标系,则A (1,0,0),M (1,12,1),C (0,1,0),N (1,1,12),∴AM ⃗⃗⃗⃗⃗⃗ =(0,12,1),CN ⃗⃗⃗⃗⃗ =(1,0,12).∴AM ⃗⃗⃗⃗⃗⃗ ·CN ⃗⃗⃗⃗⃗ =12,|AM ⃗⃗⃗⃗⃗⃗ |=|CN ⃗⃗⃗⃗⃗ |=√52. ∴cos <AM ⃗⃗⃗⃗⃗⃗ ,CN ⃗⃗⃗⃗⃗ >=1252×52=25.3在正方体ABCD-A 1B 1C 1D 1中,EF ⊥AC ,EF ⊥A 1D ,则EF 与BD 1所成的角是( ) A.90°B.60°C.30°D.0°,以D 为原点建立空间直角坐标系,设正方体的棱长为a ,则A 1(a ,0,a ),D (0,0,0),A (a ,0,0),C (0,a ,0),B (a ,a ,0),D 1(0,0,a ), ∴DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(a ,0,a ),AC ⃗⃗⃗⃗⃗ =(-a ,a ,0),BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(-a ,-a ,a ). ∵EF ⊥AC ,EF ⊥A 1D ,设EF ⃗⃗⃗⃗⃗ =(x ,y ,z ), ∴EF ⃗⃗⃗⃗⃗ ·DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(a ,0,a )=ax+az=0, EF ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =(x ,y ,z )·(-a ,a ,0)=-ax+ay=0.∵a ≠0,∴x=y=-z (x ≠0).∴EF ⃗⃗⃗⃗⃗ =(x ,x ,-x ).∴BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =-aEF ⃗⃗⃗⃗⃗ . ∴BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ∥EF ⃗⃗⃗⃗⃗ ,即BD 1∥EF. 故EF 与BD 1所成的角是0°.4二面角α-l-β内有一点P ,若点P 到平面α,β的距离分别是5,8,且点P 在平面α,β内的射影间的距离为7,则二面角的度数是( ) A.30°B.60°C.120°D.150°,PA ⊥α,PB ⊥β,∠ADB 为二面角α-l-β的平面角.由题意知PA=5,PB=8,AB=7, 由余弦定理,可得cos ∠APB=52+82-72=1,则∠APB=60°,故∠ADB=120°.5在空间中,已知平面α过点(3,0,0)和(0,4,0)及z 轴上一点(0,0,a )(a>0),若平面α与平面xOy 的夹角为45°,则a= .6在长方体ABCD-A 1B 1C 1D 1中,B 1C 和C 1D 与底面所成的角分别为60°和45°,则异面直线B 1C 和C 1D 所成角的余弦值为 .,可知∠CB 1C 1=60°,∠DC 1D 1=45°.设B 1C 1=1,则CC 1=√3=DD 1.∴C 1D 1=√3,则有B 1(√3,0,0),C (√3,1,√3),C 1(√3,1,0),D (0,1,√3).∴B 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,1,√3),C 1D ⃗⃗⃗⃗⃗⃗⃗ =(-√3,0,√3). ∴cos <B 1C ⃗⃗⃗⃗⃗⃗⃗ ,C 1D ⃗⃗⃗⃗⃗⃗⃗ >=B 1C ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·C 1D⃗⃗⃗⃗⃗⃗⃗⃗⃗ |B 1C ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||C 1D ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=2√6=√64.7如图,在三棱锥P-ABC 中,PA=PB=PC=BC ,且∠BAC=π2,则PA 与底面ABC 所成角的大小为 .,∵PA=PB=PC ,∴P 在底面上的射影O 是△ABC 的外心.又∠BAC=π2,∴O 在BC 上且为BC 的中点.∴AO 为PA 在底面上的射影,∠PAO 即为所求的角.在△PAO 中,PO=√32PB=√32PA ,∴sin ∠PAO=PO =√3.∴∠PAO=π3.8在正方体ABCD-A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成角的余弦值是 .,设棱长为1,则B (1,1,0),C 1(0,1,1),A 1(1,0,1),D (0,0,0). BC 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,0,-1),BD ⃗⃗⃗⃗⃗⃗ =(-1,-1,0). 设平面A 1BD 的一个法向量为n =(1,x ,y ),设BC 1与平面A 1BD 所成的角为θ,n ⊥A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ ,n ⊥BD⃗⃗⃗⃗⃗⃗ , 所以n ·A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =0,n ·BD ⃗⃗⃗⃗⃗⃗ =0, 所以{-1-y =0,-1-x =0,解得{x =-1,y =-1.所以n =(1,-1,-1),则cos <BC 1⃗⃗⃗⃗⃗⃗⃗ ,n >=BC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·n|BC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗|·|n |=-√63,所以sin θ=√63.所以cos θ=√1-(√63)2=√33.9如图,在直三棱柱ABC-A 1B 1C 1中,AA 1=BC=AB=2,AB ⊥BC ,求二面角B 1-A 1C-C 1的大小.,则A (2,0,0),C (0,2,0),A 1(2,0,2),B 1(0,0,2),C 1(0,2,2).设AC 的中点为M ,连接BM.∵BM ⊥AC ,BM ⊥CC 1,∴BM ⊥平面AA 1C 1C ,即BM ⃗⃗⃗⃗⃗⃗ =(1,1,0)是平面AA 1C 1C 的一个法向量.设平面A 1B 1C 的一个法向量是n =(x ,y ,z ).A 1C ⃗⃗⃗⃗⃗⃗⃗ =(-2,2,-2),A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-2,0,0),∴n ·A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-2x=0,n ·A 1C ⃗⃗⃗⃗⃗⃗⃗ =-2x+2y-2z=0,令z=1,解得x=0,y=1.∴n =(0,1,1).设法向量n 与BM⃗⃗⃗⃗⃗⃗ 的夹角为φ,二面角B 1-A 1C-C 1为θ,显然θ为锐角.∴cos θ=|cos φ|=|n ·BM ⃗⃗⃗⃗⃗⃗⃗ ||n ||BM ⃗⃗⃗⃗⃗⃗⃗ |=12,解得θ=π3.∴二面角B 1-A 1C-C 1的大小为π3.★10四棱柱ABCD-A 1B 1C 1D 1的侧棱AA 1垂直于底面,底面ABCD 为直角梯形,AD ∥BC ,AD ⊥AB ,AD=AB=AA 1=2BC ,E 为DD 1的中点,F 为A 1D 的中点. (1)求证:EF ∥平面A 1BC ;(2)求直线EF 与平面A 1CD 所成角θ的正弦值.E ,F 分别是DD 1,DA 1的中点,∴EF ∥A 1D 1.又A 1D 1∥B 1C 1∥BC ,∴EF ∥BC ,且EF ⊄平面A 1BC ,BC ⊂平面A 1BC , ∴EF ∥平面A 1BC.AB ,AD ,AA 1两两垂直,以AB 所在直线为x 轴,以AD 所在直线为y 轴,以AA 1所在直线为z 轴,建立空间直角坐标系,如图.设BC=1,则A (0,0,0),A 1(0,0,2),C (2,1,0),D (0,2,0),D 1(0,2,2),F (0,1,1),E (0,2,1), 故FE ⃗⃗⃗⃗⃗ =(0,1,0),A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(0,2,-2),CD ⃗⃗⃗⃗⃗ =(-2,1,0). 设平面A 1CD 的法向量n =(x ,y ,z ), 则{n ·A 1D⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(0,2,-2)=2y -2z =0,n ·CD ⃗⃗⃗⃗⃗ =(x ,y ,z )·(-2,1,0)=-2x +y =0.取n =(1,2,2),则sin θ=|cos <n ,FE ⃗⃗⃗⃗⃗ >|=|n ·FE ⃗⃗⃗⃗⃗⃗|n ||FE ⃗⃗⃗⃗⃗⃗ || =|√1+4+4·√0+1+0|=23,故直线EF 与平面A 1CD 所成角θ的正弦值等于23.。
章末复习课[整合·网络构建][警示·易错提醒]1.几种空间向量之间的区别与联系(1)a与其相反向量-a为共线向量(平行向量).(2)相等向量为共线向量(平行向量),但共线向量(平行向量)不一定为相等向量.(3)若两个非零向量共线,则这两个向量所在的直线可能平行,也可能重合,空间中任意两个向量都是共面的,这些概念一定要准确理解.2.向量的数量积运算与实数的乘法运算的不同点(1)a·b=0 a=0或b=0.(2)a·c=a·b c=b.(3)(a·b)c a·(b·c)(4)a·b=k a=错误!错误!。
3.向量共线充要条件及注意点(1)对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使a=λb.(2)注意点:l为经过已知点A且平行于已知非零向量a的直线,对空间任意一点O,点P在直线l上的充要条件是存在实数t,使错误!=错误!+ta.(3)坐标表示下的向量平行条件.设a=(a1,a2,a3),b=(b1,b2,b3),则a∥b⇔a1=λb1,a2=λb2,a3=λb3(λ∈R),这一形式不能等价于错误!=错误!=错误!,只有在向量b与三个坐标轴都不平行时才可以这样写.4.向量共面充要条件及注意点(1)若两个向量a,b不共线,则向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb。
(2)注意点:①空间一点P位于平面ABC内的充要条件是存在有序实数对(x,y),使错误!=x错误!+y错误!;②空间任意一点O和不共线的三点A,B,C,满足向量关系式OP→=x错误!+y错误!+z错误!(其中x+y+z=1),则点P与点A,B,C共面.5.利用向量法求空间角的注意事项(1)利用向量法求空间角时,要注意空间角的取值范围与向量夹角取值范围的区别.例如,若△ABC的内角∠BAC=θ,则错误!与错误!夹角为π-θ,而非θ.(2)特别地,二面角的大小等于其法向量的夹角或其补角,到底等于哪一个,要根据题目的具体情况看二面角的大小.(3)对所用的公式要熟练,变形时运用公式要正确并注意符号等细节,避免出错.专题一空间向量及其运算空间向量及其运算的知识与方法与平面向量及其运算类似,是平面向量的拓展,主要考查空间向量的共线与共面以及数量积运算,是用向量法求解立体几何问题的基础.[例1] 沿着正四面体O.ABC的三条棱错误!、错误!、错误!的方向有大小等于1、2和3的三个力f1,f2,f3。
高中数学选修2-1 课后习题答案 [ 人教版 ]高中数学选修2-1 课后习题答案第一章常用逻辑用语1.1命题及其关系练习( P4)1、例:(1)若x2x 2 0,则 x 1;(2) 若x 1,则x2x 20 .2、(1)真;(2)假;(3)真;(4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题 .(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称 . 这是真命题 .(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题 .练习( P6)1、逆命题:若一个整数能被 5 整除,则这个整数的末位数字是0. 这是假命题 .否命题:若一个整数的末位数字不是0,则这个整数不能被 5 整除 . 这是假命题 .逆否命题:若一个整数不能被 5 整除,则这个整数的末位数字不是0. 这是真命题 .2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题 .否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题 .逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题 .3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题 .否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题 .逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题 .练习( P8)证明:证明:命题的逆否命题是:若 a b 1,则 a2b22a 4b 3a2b22a 4b 3 (a b) (a b) 2 (a b )2b当 a b 1时原式 a b 2 2 b 3 a b 10所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题 1.1 A组(P8)1、(1)是;(2)是;(3)不是;(4)不是.2、(1)逆命题:若两个整数 a 与b的和a b 是偶数,则 a,b 都是偶数 . 这是假命题 .否命题:若两个整数a,b 不都是偶数,则 a b 不是偶数 . 这是假命题 .逆否命题:若两个整数 a 与b的和a b 不是偶数,则a, b 不都是偶数 . 这是真命题 .高中数学选修2-1 课后习题答案 [ 人教版 ] ( 2)逆命题:若方程x2x m 0 有实数根,则 m 0 . 这是假命题 .否命题:若 m 0 ,则方程 x2x m 0 没有实数根 . 这是假命题 .逆否命题:若方程x2x m 0 没有实数根,则m 0 . 这是真命题 .3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等 .逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题 .否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不相等 .这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上 .这是真命题.( 2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题 .否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题 .逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题 .4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题 1.1 B组(P8)证明:要证的命题可以改写成“若p ,则 q ”的形式:若圆的两条弦不是直径,则它们不能互相平分 .此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设AB,CD 是O 的两条互相平分的相交弦,交点是E,若 E和圆心 O 重合,则 AB,CD 是经过圆心 O 的弦, AB,CD 是两条直径 . 若 E 和圆心O 不重合,连结AO, BO ,CO 和DO,则OE是等腰AOB,COD的底边上中线,所以,OE AB OE CD.,AB 和 CD 都经过点 E ,且与 OE 垂直,这是不可能的 . 所以, E 和 O 必然重合 . 即 AB 和 CD 是圆的两条直径 .原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习( P10)1、(1);(2);(3);(4).2、(1). 3(1).4、(1)真;(2)真;(3)假;(4)真 .练习( P12)1、(1)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是 q 的必要条件 .2、(1) p 是 q 的必要条件;(2)p是q的充分条件;( 3) p 是 q 的充要条件;(4)p是q的充要条件.习题 1.2 A组(P12)1、略 .2、( 1)假;(2)真;(3)真.3、(1)充分条件,或充分不必要条件;(2)充要条件;(3)既不是充分条件,也不是必要条件;(4)充分条件,或充分不必要条件.4、充要条件是 a2b2r 2 .习题 1.2 B组(P13)1、(1)充分条件;(2)必要条件;(3)充要条件.2、证明:( 1)充分性:如果 a2b2c2ab ac bc ,那么 a2b2c2ab ac bc0 .所以 (a b)2(a c)2(b c)20所以, a b 0 , a c 0 , b c0 .即 a b c ,所以,ABC 是等边三角形 .( 2)必要性:如果ABC 是等边三角形,那么 a b c所以 (a b)2 (a c)2 (b c)2 0所以 a2 b2 c2 ab ac bc 0所以 a2 b2 c2 ab ac bc1.3简单的逻辑联结词练习( P18)1、(1)真;(2)假.2、(1)真;(2)假.3、(1) 2 2 5 ,真命题;(2)3不是方程x290 的根,假命题;(3) ( 1)21,真命题 .习题 1.3 A组(P18)1、(1) 4 {2,3} 或 2 {2,3} ,真命题;(2)4{2,3} 且 2 {2,3} ,假命题;(3)2 是偶数或 3 不是素数,真命题;(4)2是偶数且3不是素数,假命题.2、(1)真命题;(2)真命题;(3)假命题.3、(1) 2 不是有理数,真命题;(2)5是15的约数,真命题;(3) 2 3 ,假命题;(4)8715 ,真命题;(5)空集不是任何集合的真子集,真命题.习题 1.3 B组(P18)(1)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(2)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(3)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题;(4)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题 .1.4全称量词与存在量词练习( P23)1、(1)真命题;(2)假命题;(3)假命题.2、(1)真命题;(2)真命题;(3)真命题.练习( P26)1、(1)n0Z, n0Q ;(2)存在一个素数,它不是奇数;( 3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形;(2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题 1.4 A组(P26)1、(1)真命题;(2)真命题;(3)真命题;(4)假命题.2、(1)真命题;(2)真命题;(3)真命题.3、(1)x0N , x03x02;(2)存在一个可以被 5 整除的整数,末位数字不是0;(3)x R, x2x 1 0 ;(4)所有四边形的对角线不互相垂直.习题 1.4 B组(P27)( 1)假命题 . 存在一条直线,它在y 轴上没有截距;( 2)假命题 . 存在一个二次函数,它的图象与x轴不相交;( 3)假命题 . 每个三角形的内角和不小于 180 ;( 4)真命题 . 每个四边形都有外接圆 .第一章复习参考题 A 组( P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等.逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题;逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题 .2、略 .3、( 1)假;(2)假;(3)假;(4)假.4、(1)真;(2)真;(3)假;(4)真;(5)真.5、(1)n N ,n2 0 ;(2)P { P P 在圆 x2 y2 r 2上}, OP r (O 为圆心);(3)( x, y) {( x, y) x, y是整数 } , 2x 4y 3 ;( 4)x0 { x x 是无理数}, x03 { q q 是有理数} .6、(1) 3 2 ,真命题;(2) 5 4 ,假命题;( 3)x0 R, x0 0 ,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章复习参考题 B 组( P31)1、(1) p q;(2) ( p) ( q) ,或( p q) .2、(1)Rt ABC , C 90,A, B, C 的对边分别是 a, b, c ,则 c2 a2 b2;(2)ABC ,A, B, C 的对边分别是a b c a, b, c ,则.sin A sin B sin C第二章 圆锥曲线与方程2.1曲线与方程练习( P37)1、是 . 容易求出等腰三角形 ABC 的边 BC 上的中线 AO 所在直线的方程是 x 0 .2、 a 32 , b 18 .25 253、解:设点 A, M 的坐标分别为 (t,0) , ( x, y) .(1)当 t 2 时,直线 CA 斜率 k CA2 0 22 t2 t1 t 2所以, k CB2kCA由直线的点斜式方程,得直线 CB 的方程为 y2 t 2 ( x 2) .2令 x 0 ,得 y 4 t ,即点 B 的坐标为 (0,4 t) .由于点 M 是线段 AB 的中点,由中点坐标公式得xt, y 4 t .t4 t ,22由 x得 t 2x ,代入 y2 2得 y42x,即 x y 20 ⋯⋯①2( 2)当 t 2 时,可得点 A, B 的坐标分别为 (2,0) , (0,2)此时点 M 的坐标为 (1,1) ,它仍然适合方程①由( 1)( 2)可知,方程①是点 M 的轨迹方程,它表示一条直线.习题 2.1 A组( P37)1、解:点 A(1, 2) 、 C (3,10) 在方程 x 2xy 2 y 1 0 表示的曲线上;点 B(2, 3) 不在此曲线上2、解:当 c 0 时,轨迹方程为 xc 1;当 c 0 时,轨迹为整个坐标平面 .23、以两定点所在直线为 x 轴,线段 AB 垂直平分线为 y 轴,建立直角坐标系,得点 M 的轨迹方程为 x 2y 24.4、解法一:设圆 x 2 y 2 6x 5 0 的圆心为 C ,则点 C 的坐标是 (3,0) .由题意,得 CMAB ,则有 k CM k AB1 .高中数学选修 2-1 课后习题答案 [ 人教版 ]所以,yy 1 (x 3, x0)x 3x化简得 x 2y 2 3x 0 (x 3, x 0)当 x 3 时, y0 ,点 (3,0) 适合题意;当 x 0 时, y0 ,点 (0,0) 不合题意 .解方程组x 2 y 2 3x 0, 得 x5, y2 5x 2y 26x 5 033所以,点 M 的轨迹方程是 x2y 2 3x0 ,5x 3.OCM 是直角三角形,3解法二:注意到利用勾股定理,得 x 2 y 2 ( x 3)2 y 2 9 ,即 x 2 y 2 3x0 . 其他同解法一 .习题 2.1 B 组( P37)1、解:由题意,设经过点P 的直线 l 的方程为 xy 1 .a b因为直线 l 经过点 P(3,4) ,所以34 1 因此, ab 4a 3ba b由已知点 M 的坐标为 (a,b) ,所以点 M 的轨迹方程为 xy4x 3y 0 .2、解:如图,设动圆圆心 M 的坐标为 (x, y) .y由于动圆截直线 3x y 0 和 3x y 0 所得弦分别为BAB , CD ,所以, AB8 , CD4 .过点M 分别CMF E作直线 3xy 0 和 3x y 0 的垂线,垂足分别为 E ,DF ,则 AE4, CF 2 . A3x y3x yME, MF10 .10Ox连接 MA , MC ,因为 MAMC ,(第 2题)22CF 22 则有, AE MEMF所以, 16 (3 x y)24 (3 x y) 2 ,化简得, xy 10 .10 10因此,动圆圆心的轨迹方程是xy 10 .高中数学选修2-1 课后习题答案 [ 人教版 ]2.2椭圆练习( P42)1、 14. 提示:根据椭圆的定义,PF1 PF2 20 ,因为 PF1 6 ,所以 PF22、(1)x2y2 1;(2) y2 x2 1;(3) x2 y2 1,或 y2 x2 16 16 36 16 36 163、解:由已知, a 5 , b 4 ,所以c a2 b2 3.(1)AF1 B 的周长 AF1 AF2 BF1 BF2.由椭圆的定义,得 AF1 AF2 2a , BF1 BF2 2a .所以,AF1B 的周长4a20 .(2)如果 AB 不垂直于x轴,AF1B的周长不变化 .这是因为①②两式仍然成立,AF1B 的周长20,这是定值.4、解:设点 M 的坐标为 ( x, y) ,由已知,得直线 AM 的斜率y(x 1) ;kAMx 1直线 BM 的斜率y(x 1) ;kBMx 1由题意,得kAM2 ,所以y 2 y (x 1, y 0) k BM x 1 x 1化简,得 x 3 ( y 0)因此,点 M 的轨迹是直线 x 3 ,并去掉点 ( 3,0) .练习( P48)yB2 1、以点B2(或B1)为圆心,以线段OA2 (或 OA1)为半径画圆,圆与 x 轴的两个交点分别为 F1 , F2. A 1 F1O点 F1 , F2就是椭圆的两个焦点.B 1 这是因为,在 Rt B2OF2中, OB2 b , B2 F2 OA2 a ,(第 1题)所以, OF2 c . 同样有 OF1 c .2、(1)焦点坐标为( 8,0) , (8,0) ;14 .1.F2A2x( 2)焦点坐标为 (0,2) , (0, 2) .3、(1)x 2 y 21;( 2) y2x 2 1 .36 3225 164、(1)x 2y21( 2) x2y21 ,或 y 2x 2 1. 94100 64100645、(1)椭圆 9x2y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是 1 ,316 12 2因为221,所以,椭圆x 2y 2 1 更圆,椭圆 9x 2y 2 36 更扁;3216 12(2)椭圆 x29 y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是10 ,36105 因为2210,所以,椭圆x 2y 2 1 更圆,椭圆 x 2 9 y 2 36更扁 .356106、(1) (3, 8) ; (2) (0,2) ; (3) ( 48 , 70) .7、82 . 5 3737 7习题 2.2 A组( P49)1、解:由点 M (x, y) 满足的关系式x 2 ( y 3)2 x 2 ( y 3) 2 10 以及椭圆的定义得,点 M 的轨迹是以 F 1(0, 3) , F 2 (0,3) 为焦点,长轴长为 10 的椭圆 .它的方程是y 2x 2 1.25 162、(1)x 2y 21; ( 2)y 2x 21 ;(3) x2y 21 ,或 y 2x 21.36 3225 9494049403、(1)不等式 2 x 2 , 4 y 4 表示的区域的公共部分;(2)不等式 25 x2 5 , 10 y10表示的区域的公共部分 .图略 .334、(1)长轴长 2a8,短轴长 2b 4 ,离心率 e 3 ,2焦点坐标分别是 ( 2 3,0) , (2 3,0) ,顶点坐标分别为 ( 4,0) , (4,0) , (0, 2) , (0,2) ;(2)长轴长 2a18 ,短轴长 2b6 ,离心率 e2 2 ,3焦点坐标分别是 (0, 6 2) , (0,6 2) ,顶点坐标分别为 (0, 9) ,(0,9) , ( 3,0) , (3,0) .5、(1)x2y2 1 ;(2) x2 y2 1,或 y2 x2 1 ;8 5 9 81 9(3) x2 y2 1,或 y 2 x2 1 .25 9 25 96、解:由已知,椭圆的焦距F1F2 2.因为PF1F2的面积等于1,所以,1F1F2 y P 1,解得y P1. 2代入椭圆的方程,得x2 1 1 ,解得 x 15 .P5 4 215 l所以,点 P 的坐标是1) ,共有 4 个 .( ,2 QA 7、解:如图,连接 QA . 由已知,得 QA QP . O所以, QO QA QO QP OP r .又因为点 A 在圆内,所以OA OP(第 7题)根据椭圆的定义,点 Q 的轨迹是以 O, A 为焦点,r为长轴长的椭圆 .8、解:设这组平行线的方程为y 3 x m .2把 y 3 x2 y21 ,得 9x2 6mx 2 18 0.x m 代入椭圆方程92m2 4这个方程根的判别式36m2 36(2m2 18)( 1)由0 ,得 3 2 m 3 2 .当这组直线在 y 轴上的截距的取值范围是( 3 2,3 2) 时,直线与椭圆相交. ( 2)设直线与椭圆相交得到线段AB ,并设线段 AB 的中点为 M (x, y) .则 x x1 x2 m .2 3因为点 M 在直线 y 3 x m 上,与 x m联立,消去 m ,得3x 2y 0 .2 3这说明点 M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上 .高中数学选修2-1 课后习题答案 [ 人教版 ]x2y29、3.5252 2.87521.10、地球到太阳的最大距离为 1.5288 108 km,最下距离为 1.4712108 km. 习题 2.2 B 组( P50)1、解:设点 M 的坐标为 ( x, y) ,点 P 的坐标为( x0, y0),则 x x0,y 3y0 . 所以 x0 x ,y0 2 y ⋯⋯① .2 3因为点 P(x0 , y0 ) 在圆上,所以 x02 y02 4 ⋯⋯②.将①代入②,得点 M 的轨迹方程为 x2 4 y2 4,即 x2 y2 19 4 9所以,点 M 的轨迹是一个椭圆与例 2 相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为P( x, y) ,半径为 R ,两已知圆的圆心分别为 O1, O2.分别将两已知圆的方程x 2 y2 6x 5 0 , x2 y2 6x 91 0配方,得(x 3)2 y 2 4 , ( x 3)2 y2 100当 P 与O1: ( x 3)2 y2 4 外切时,有O1P R 2 ⋯⋯①当P 与O2:( x 3)2y2100内切时,有O2P 10 R⋯⋯②①②两式的两边分别相加,得 O1P O2 P 12即, ( x 3)2 y2 (x 3) 2 y2 12 ⋯⋯③化简方程③ .先移项,再两边分别平方,并整理,得 2 (x 3)2 y2 12 x ⋯⋯④将④两边分别平方,并整理,得3x2 4 y2 108 0 ⋯⋯⑤将常数项移至方程的右边,两边分别除以108,得x2y2 1 ⋯⋯⑥36 27由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,6 3 . 解法二:同解法一,得方程( x 3)2 y2 ( x 3)2 y2 12 ⋯⋯①由方程①可知,动圆圆心P(x, y) 到点O1( 3,0)和点O2(3,0) 距离的和是常数12,第11页共38页。
学业分层测评 (建议用时:45分钟)[学业达标]一、选择题1.设a ,b ,c 是任意的非零平面向量,且它们相互不共线,下列命题:①(a ·b )c -(c ·a )b =0;②|a |=a ·a ;③a 2b =b 2a ;④(3a +2b )·(3a -2b )=9|a |2-4|b |2.其中正确的有( )A .①②B .②③C .③④D .②④【解析】 由于数量积不满足结合律,故①不正确,由数量积的性质知②正确,③中,|a |2·b =|b |2·a 不一定成立,④运算正确.【答案】 D2.已知a +b +c =0,|a |=2,|b |=3,|c |=4,则a 与b 的夹角〈a ,b 〉=( )A .30°B .45°C .60°D .以上都不对【解析】 ∵a +b +c =0,∴a +b =-c ,∴(a +b )2=|a |2+|b |2+2a ·b =|c |2,∴a ·b =32,∴cos 〈a ,b 〉=a ·b |a ||b |=14.【答案】 D3.已知四边形ABCD 为矩形,PA ⊥平面ABCD ,连接AC ,BD ,PB ,PC ,PD ,则下列各组向量中,数量积不为零的是( )A.PC→与BD→B.DA→与PB→C.PD→与AB→D.PA→与CD→【解析】用排除法,因为PA⊥平面ABCD,所以PA⊥CD,故PA→·CD→=0,排除D;因为AD⊥AB,PA⊥AD,又PA∩AB=A,所以AD⊥平面PAB,所以AD⊥PB,故DA→·PB→=0,排除B,同理PD→·AB→=0,排除C.【答案】 A4.如图3125,已知空间四边形每条边和对角线都等于a,点E,F,G分别是AB,AD,DC的中点,则下列向量的数量积等于a2的是( )图3125A.2BA→·AC→B.2AD→·DB→C.2FG→·AC→D.2EF→·CB→【解析】2BA→·AC→=-a2,故A错;2AD→·DB→=-a2,故B错;2EF→·CB→=-12a2,故D错;2FG→·AC→=AC→2=a2,故只有C正确.【答案】 C5.在正方体ABCDA1B1C1D1中,有下列命题:①(AA1→+AD→+AB→)2=3AB→2;②A 1C →·(A 1B 1→-A 1A →)=0; ③AD 1→与A 1B →的夹角为60°.其中正确命题的个数是( ) 【导学号:18490091】 A .1个 B .2个 C .3个D .0个【解析】 由题意知①②都正确,③不正确,AD 1→与A 1B →的夹角为120°. 【答案】 B 二、填空题6.已知|a |=2,|b |=3,〈a ,b 〉=60°,则|2a -3b |=________. 【解析】 |2a -3b |2=(2a -3b )2=4a 2-12a ·b +9b 2 =4×|a |2+9×|b |2-12×|a |·|b |·cos 60°=61, ∴|2a -3b |=61. 【答案】617.已知|a |=2,|b |=1,〈a ,b 〉=60°,则使向量a +λb 与λa -2b 的夹角为钝角的实数λ的取值范围是________.【解析】 由题意知⎩⎪⎨⎪⎧(a +λb )·(λa -2b )<0,cos 〈a +λb ,λa -2b 〉≠-1.即⎩⎪⎨⎪⎧(a +λb )·(λa -2b )<0,(a +λb )·(λa -2b )≠-|a +λb ||λa -2b | 得λ2+2λ-2<0. ∴-1-3<λ<-1+ 3. 【答案】 (-1-3,-1+3)8.如图3126,已知正三棱柱ABC A 1B 1C 1的各条棱长都相等,M 是侧棱CC 1的中点,则异面直线AB 1和BM 所成的角的大小是________.图3126【解析】 不妨设棱长为2,则AB →1=BB 1→-BA →,BM →=BC →+12BB 1→,cos 〈AB 1→,BM →〉=(BB 1→-BA →)·⎝ ⎛⎭⎪⎫BC →+12BB 1→22×5=0-2+2-022×5=0,故填90°.【答案】 90° 三、解答题9.如图3127,在正方体ABCD A 1B 1C 1D 1中,O 为AC 与BD 的交点,G 为CC 1的中点.求证:A 1O ⊥平面BDG .图3127【证明】 设A 1B 1→=a ,A 1D 1→=b ,A 1A →=c . 则a ·b =0,a ·c =0,b ·c =0. 而A 1O →=A 1A →+AO → =A 1A →+12(AB →+AD →)=c +12(a +b ),BD→=AD →-AB →=b -a , OG→=OC →+CG → =12(AB →+AD →)+12CC 1→ =12(a +b )+12c . ∴A 1O →·BD →=⎝ ⎛⎭⎪⎫c +12a +12b ·(b -a )=c ·(b -a )+12(a +b )·(b -a )=c ·b -c ·a +12(b 2-a 2)=12(|b |2-|a |2)=0. ∴A 1O →⊥BD →. ∴A 1O ⊥BD . 同理可证A 1O →⊥OG →. ∴A 1O ⊥OG .又OG ∩BD =O 且A 1O ⊄平面BDG , ∴A 1O ⊥平面BDG .10.已知长方体ABCD A 1B 1C 1D 1中,AB =AA 1=2,AD =4,E 为侧面AB 1的中心,F 为A 1D 1的中点,试计算:(1)BC →·ED 1→;(2)BF →·AB 1→;(3)EF →·FC 1→. 【解】 如图所示,设AB →=a ,AD →=b ,AA 1→=c ,则|a |=|c |=2,|b |=4,a·b =b·c =c·a =0.(1)BC →·ED 1→=AD →·(EA 1→+A 1D 1→) =AD →·⎣⎢⎡⎦⎥⎤12(AA 1→-AB →)+AD →=b ·⎣⎢⎡⎦⎥⎤12(c -a )+b =|b |2=42=16.(2)BF →·AB 1→=(BA 1→+A 1F →)·(AB →+BB 1→) =⎝ ⎛⎭⎪⎫AA 1→-AB →+12AD →·(AB →+AA 1→)=⎝ ⎛⎭⎪⎫c -a +12b ·(a +c )=|c |2-|a |2=22-22=0.(3)EF →·FC 1→=(EA 1→+A 1F →)·(FD 1→+D 1C 1→) =⎣⎢⎡⎦⎥⎤12(AA 1→-AB →)+12AD →·⎝ ⎛⎭⎪⎫12AD →+AB →=⎣⎢⎡⎦⎥⎤12(c -a )+12b ·⎝ ⎛⎭⎪⎫12b +a=12(-a +b +c )·⎝ ⎛⎭⎪⎫12b +a =-12|a |2+14|b |2=2.[能力提升]1.已知边长为1的正方体ABCD A 1B 1C 1D 1的上底面A 1B 1C 1D 1的中心为O 1,则AO 1→·AC →的值为( )A .-1B .0C .1D .2【解析】 AO 1→=AA 1→+A 1O 1→=AA 1→+12(A 1B 1→+A 1D 1→)=AA 1→+12(AB →+AD →),而AC→=AB →+AD →,则AO 1→·AC →=12(AB →2+AD →2)=1,故选C.【答案】 C2.已知a ,b 是两异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b 且AB =2,CD =1,则直线a ,b 所成的角为( )A .30°B .60°C .90°D .45°【解析】 由于AB→=AC →+CD →+DB →,则AB →·CD →=(AC →+CD →+DB →)·CD →=CD →2=1.cos 〈AB→,CD →〉=AB→·CD →|AB →|·|CD →|=12,得〈AB→,CD →〉=60°. 【答案】 B3.已知正三棱柱ABC DEF 的侧棱长为2,底面边长为1,M 是BC 的中点,若直线CF 上有一点N ,使MN ⊥AE ,则CNCF=________. 【导学号:18490092】【解析】 设CN CF =m ,由于AE →=AB →+BE →,MN →=12BC →+mAD→,又AE→·MN →=0, 得12×1×1×⎝ ⎛⎭⎪⎫-12+4m =0, 解得m =116.【答案】 1164.如图3128,平行六面体ABCD A 1B 1C 1D 1中,AB =1,AD =2,AA 1=3,∠BAD =90°,∠BAA 1=∠DAA 1=60°,求AC 1的长.图3128【解】 ∵AC 1→=AB →+AD →+AA 1→,∴|AC 1→|=(AB →+AD →+AA 1→)2=AB →2+AD →2+AA 1→2+2(AB →·AD →+AB →·AA 1→+AD →·AA 1→).∵AB =1,AD =2,AA 1=3,∠BAD =90°,∠BAA 1=∠DAA 1=60°, ∴〈AB →,AD →〉=90°,〈AB →,AA 1→〉=〈AD →,AA 1→〉=60°, ∴|AC 1→| =1+4+9+2(1×3×cos 60°+2×3×cos 60°) =23.。
新课程标准数学选修2—1第三章课后习题解答第三章空间向量与立体几何3.1空间向量及其运算练习(P86)1、略.2、略.3、A C AB AD AA ''=+-,BD AB AD AA ''=-+ ,DB AA AB AD ''=--.练习(P89)1、(1)AD;(2)AG;(3)MG .2、(1)1x =;(2)12x y ==;(3)12x y ==.3、如图.练习(P92)1、B .2、解:因为AC AB AD AA ''=++,所以22()AC AB AD AA ''=++ 2222222()4352(0107.5)85AB AD AA AB AD AB AA AD AA '''=+++⋅+⋅+⋅=+++⨯++=所以AC '=3、解:因为AC α⊥所以AC BD ⊥,AC AB ⊥,又知BD AB ⊥.所以0AC BD ⋅= ,0AC AB ⋅= ,又知0BD AB ⋅= .2CD CD CD=⋅ 222222()()CA AB BD CA AB BD CA AB BD a b c =++⋅++=++=++所以CD =.(第3题)练习(P94)1、向量c 与a b + ,a b - 一定构成空间的一个基底.否则c 与a b + ,a b -共面,于是c 与a ,b共面,这与已知矛盾.2、共面2、(1)解:OB OB BB OA AB BB OA OC OO a b c ''''=+=++=++=++ ;BA BA BB OC OO c b '''=+=-+=- CA CA AA OA OC OO a b c'''=+=-+=-+ (2)1111()2222OG OC CG OC CB b a c a b c '=+=+=++=++.练习(P97)1、(1)(2,7,4)-;(2)(10,1,16)-;(3)(18,12,30)-;(4)2.2、略.3、解:分别以1,,DA DC DD 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系.则(0,0,0)D ,1(1,1,1)B ,1(1,,0)2M ,(0,1,0)C 所以,1(1,1,1)DB = ,1(1,,0)2CM =- .所以,111110152cos ,151314DB CM DB CM DB CM-+⋅<>===⋅⋅+.习题3.1A 组(P97)1、解:如图,(1)AB BC AC +=;(2)AB AD AA AC AA AC CC AC ''''++=+=+=;(3)设点M 是线段CC '的中点,则12AB AD CC AC CM AM '++=+=;(4)设点G 是线段AC '的三等分点,则11()33AB AD AA AC AG ''++==.向量,,,AC AC AM AG '如图所示.2、A .3、解:22()AC AB AD AA ''=++ (第1题)2222222()15372(535737)22298AB AD AA AB AD AB AA AD AA '''=+++⋅+⋅+⋅=+++⨯⨯+⨯⨯⨯⨯=+ 所以,13.3AC '≈.4、(1)21cos602AB AC AB AC a ⋅=⋅︒= ;(2)21cos1202AD DB AD DB a ⋅=⋅︒=- ;(3)21cos1802GF AC GF AC a ⋅=⋅︒=- 11()22GF AC a ==;(4)21cos604EF BC EF BC ⋅=⋅︒= 11()22EF BD a ==;(5)21cos1204FG BA FG BA a ⋅=⋅︒=- 11()22FG AC a ==;(6)11()22GE GF GC CB BA CA⋅=++⋅ 2111()222111424111cos120cos60cos6042414DC CB BA CA DC CA CB CA BA CA DC CA CB CA BA CA a =++⋅=⋅+⋅+⋅=⋅︒+⋅︒+⋅︒=5、(1)60︒;(2)略.6、向量a 的横坐标不为0,其余均为0;向量b的纵坐标不为0,其余均为0;向量c的竖坐标不为0,其余均为0.7、(1)9;(2)(14,3,3)-.8、解:因为a b ⊥ ,所以0a b ⋅= ,即8230x --+=,解得103x =.9、解:(5,1,10)AB =-- ,(5,1,10)BA =-设AB 的中点为M ,119()(,2)222OM OA OB =+=- ,所以,点M 的坐标为19(,,2)22-,AB ==10、解:以1,,DA DC DD 分别作为x 轴、y 轴、z 轴建立空间直角坐标系O xyz -.则1,,,C M D N 的坐标分别为:(0,1,0)C ,1(1,0,)2M ,1(0,0,1)D ,1(1,1,2N .1(1,1,2CM =- ,11(1,1,2D N =-所以32CM =,132D N = 111114cos ,994CM D N --<>==-由于异面直线CM 和1D N 所成的角的范围是[0,]2π因此,CM 和1D N 所成的角的余弦值为19.11、31(,,3)22-习题3.1B 组(P99)1、证明:由已知可知,OA BC ⊥ ,OB AC⊥∴0OA BC ⋅= ,0OB AC ⋅=,所以()0OA OC OB ⋅-= ,()0OB OC OA ⋅-=.∴OA OC OA OB ⋅=⋅ ,OB OC OB OA ⋅=⋅ .∴0OA OC OB OC ⋅-⋅= ,()0OA OB OC -⋅= ,0BA OC ⋅=.∴OC AB ⊥.2、证明:∵点,,,E F G H 分别是,,,OA OB BC CA 的中点.∴12EF AB = ,12HG AB = ,所以EF HG= ∴四边形EFGH 是平行四边形.1122EF EH AB ⋅=⋅ 11())44OB OA OC OB OC OA OC =-⋅=⋅-⋅ ∵OA OB =,CA CB =(已知),OC OC =.∴BOC ∆≌AOC ∆(SSS )∴BOC AOC∠=∠∴OB OC OA OC⋅=⋅∴0EF EH ⋅= ∴EF EH⊥ ∴平行四边形□EFGH 是矩形.3、已知:如图,直线OA ⊥平面α,直线BD ⊥平面α,,O B 为垂足.求证:OA ∥BD证明:以点O 为原点,以射线OA 方向为z 轴正方向,建立空间直角坐标系O xyz -,,,i j k分别为沿x 轴、y 轴、z 轴的坐标向量,且设(,,)BD x y z =.∵BD α⊥.∴BD i ⊥ ,BD j ⊥.∴(,,)(1,0,0)0BD i x y z x ⋅=⋅== ,(,,)(0,1,0)0BD j x y z y ⋅=⋅==.∴(0,0,)BD z =.∴BD zk = .∴BD ∥k,又知,O B 为两个不同的点.∴BD ∥OA .3.2立体几何中的向量方法练习(P104)1、(1)3b a =,1l ∥2l ;(2)0a b ⋅=,1l ⊥2l ;(3)3b a =-,1l ∥2l .2、(1)0u v ⋅= ,αβ⊥;(2)2v u =-,α∥β;(3)u v u v ⋅= α与β.练习(P107)1、证明:设正方形的棱长为1.11D F DF DD =- ,AE BE BA =-.因为11()000D F AD DF DD AD ⋅=-⋅=-= ,所以1D F AD ⊥ .因为1111()()00022D F AE DF DD BE BA ⋅=-⋅-=+-+= ,所以1D F AE ⊥ .(第3题)因此1D F ⊥平面ADE .2、解:22()CD CD CA AB BD ==++ 222222361664268cos(18060)68CA AB BD CA AB CA BD AB BD =+++⋅+⋅+⋅=+++⨯⨯⨯︒-︒=∴CD =练习(P111)1、证明:1()()2MN AB MB BC CN AB MB BC CD AB⋅=++⋅=++⋅222211()22111cos120cos60cos600222MB BC AD AC ABa a a a =++-⋅=+︒+︒-︒= ∴MN AB ⊥.同理可证MN CD ⊥.2、解:222222()2cos l EF EA A A AF m d n mn θ''==++=+++ (或2cos()mn πθ-)22222cos d l m n mn θ=--,所以AA d '==.3、证明:以点D 为原点,,,DA DC DD '的方向分别为x 轴、y 轴、z 轴正方向,建立坐标系,得下列坐标:(0,0,0)D ,(0,1,0)C ,(1,1,0)B ,(0,1,1)C ',11(,1,)22O .∵11(,1,(1,0,1)022DO BC '⋅=---⋅-= ∴DO BC '⊥习题3.2A 组(P111)1、解:设正方形的棱长为1(1)1()()2MN CD MB B N CC C D ''''''⋅=+⋅+=,212MN CD '⋅=112cos 12θ==,60θ=︒.(2)1()2MN AD MB B N AD ''⋅=+⋅= ,22122MN AD ⋅=⋅=12cos 222θ==,45θ=︒.2、证明:设正方体的棱长为1因为11()000DB AC DB BB AC ⋅=+⋅=+=,所以1DB AC ⊥.因为111111()000DB AD DA A B AD ⋅=+⋅=+=,所以11DB AD ⊥.因此,1DB ⊥平面1ACD .3、证明:∵()cos cos 0OA BC OC OB OA OC OA OB OA θθ⋅=-⋅=-=,∴OA BC ⊥.4、证明:(1)因为11()000AC LE A A AC LE ⋅=+⋅=+=,所以1ACLE ⊥.因为11()000AC EF A B BC EF ⋅=+⋅=+=,所以1AC EF ⊥.因此,1AC ⊥平面EFGHLK .(2)设正方体的棱长为1因为1111()()1AC DB A A AC DB DB ⋅=+⋅+=-,2113AC DB ⋅==所以1cos 3θ=-.因此1DB 与平面EFGHLK 的所成角α的余弦22cos 3α=.5、解:(1)222211111()()22222DE DE DE DE DA AB AC AB OA AC AB ==⋅=++-=++ 11(111111)42=++-+-=所以,22DE =(2)11111()()22222AE AO AC AB AO ⋅=+⋅=+=,2AE AO ⋅=132cos 332θ===,6sin 3θ=点O 到平面ABC 的距离66sin 133OH OA θ==⨯=.6、解:(1)设1AB =,作AO BC ⊥于点O ,连接DO .以点O 为原点,,,OD OC OA 的方向分别为x 轴、y 轴、z 轴正方向,建立坐标系,得下列坐标:(0,0,0)O ,,0,0)2D ,1(0,,0)2B ,3(0,,0)2C ,(0,0,)2A .∴3333(()2224DO DA ⋅=-⋅-= ,184DO DA ⋅= ,2cos 2θ=.∴AD 与平面BCD 所成角等于45︒.(2)(0,1,0)()022BC DA ⋅=⋅--= .所以,AD 与BC 所成角等于90︒.(3)设平面ABD 的法向量为(,,1)x y ,则13(,,1)(,,1)(0,)022x y AB x y ⋅=⋅-= ,33(,,1)(,,1))022x y AD x y ⋅=⋅-= .解得1x =,y =显然(0,0,1)为平面BCD 的法向量.(0,0,1)1⋅=,cos5θ=.因此,二面角A BD C --的余弦5cos cos()5απθ=-=-.7、解:设点B 的坐标为(,,)x y z ,则(1,2,)AB x y z =-+.因为AB ∥α,所以123412x y z-+==-.因为226AB α==26=.解得5x =-,6y =,24z =,或7x =,10y =-,24z =-.8、解:以点O 为原点建立坐标系,得下列坐标:(,,0)A a a -,(,,0)B a a ,(,,0)C a a -,(,,0)D a a --,(0,0,)V h ,(,,)222a a hE -.(1)222233(,,)(,,)6222222cos ,10a a h a a h h a BE DE h a BE DE--⋅-<>==+.(2)223(,,)(,,)02222a a h h VC BE a a h a ⋅=--⋅--=-= ,222h a =222222641cos ,10123h a a BE DE h a a --<>===-+ 9、解:以点A 为原点建立坐标系,得下列坐标:(0,0,0)A ,(0,1,0)B ,111(,,222O -,1(0,0,1)A ,1(1,0,1)D -,1(0,0,)2M .因为10OM AA ⋅= ,10OM BD ⋅=,所以1OM AA ⊥,1OM BD ⊥,22OM ==.10、解:以点A 为原点建立坐标系,得下列坐标:(0,0,0)A ,(0,7,0)B ,(0,0,24)C ,(,,)D x y z .因为(,7,)(0,7,0)0BD AB x y z ⋅=-⋅=,所以7y =.由24BD ==,25CD =解得12z =,x =1cos 2BD AC BD AC θ⋅==⋅ ,60θ=︒因此,线段BD 与平面α所成的角等于9030θ︒-=︒.11、解:以点O 为原点建立坐标系,得下列坐标:(0,0,0)O ,(4,0,0)A ,(0,3,0)B ,(0,0,4)O ',(4,0,4)A ',(0,3,4)B ',3(2,,4)2D ,(0,3,)P z .由3(0,3,)(2,,4)02OP BD z ⋅=⋅-= ,解得98z =.所以,938tan 38PB OB θ===.12、解:不妨设这条线段MN 长为2,则点M 到二面角的棱的距离1MP =,点N 到二面角的棱的距离1NQ =,QM PN ==,PQ =.22cos 2PQ MN PQ MNθ⋅==⋅ ,45θ=︒.习题3.2B 组(P113)1、解:12222ABC S ∆=⨯⨯=,()4502AD BE AB BD BE ⋅=+⋅=︒+=,AD BE θ⋅==,AD =,4BD == .184233ABCD V =⨯⨯=2、解:(1)以点B 为原点建立坐标系,得下列坐标:(0,0,0)B ,(1,0,0)A ,(0,0,1)C ,(1,1,0)F ,22,0,1)22M a -,22(,,0)22N a a.222(0,,1)122MN a =-=-+,MN =(2)22211()22a a -+=-+,当22a =时,MN 的长最小.(3)当22a =时,MN 的中点为111(,,244G ,所求二面角的余弦值1cos 3GA GB GA GBθ⋅==-⋅ .3、证明:设AE BF b ==.以点O 为原点建立坐标系,得下列坐标:(0,0,0)O ,(0,,0)A a ,(,,0)B a a -,(,0,0)C a -,(0,0,)O a ',(0,,)A a a ',(,,)B a a a '-,(,0,)C a a '-,(,,0)E b a -,(,,0)F a a b --.(1)(,,)(,,)0A F C E a b a a b a a ''⋅=---⋅--=,A F C E ''⊥.(2)221111()()]2242BEF S b a b a a b ∆=-=--,当2a b =时,BEF S ∆最大,三棱锥体积最大.此时,EF 的中点G 与点B 的连线24BG a =,tan BB BGθ'==.第三章复习参考题A 组(P117)1、B .2、(1)111222AP a b c =++ ;(2)1122AM a b c =++ ;(3)12AN a b c =++ ;(4)114555AQ a b c =++ .3、证明:因为1116()()302AM BA AB BC CM BA AA AB BA CM AA ⋅=++⋅+=⋅+⋅=-+ 所以1AM BA ⊥4、解:(1)以点C 为原点建立坐标系,得下列坐标:(0,0,0)C ,(,0,0)A a,1(,,0)22B a a,1()A a,1)C .(2)点1C 在侧面11ABB A内的射影为点23(,)44C a ,12123cos 2AC AC AC AC θ⋅==⋅ ,30θ=︒.5、解:(1)1cos 2AB AC AB AC θ⋅==⋅ ,60θ=︒,sin S AB AC θ=⋅=.(2)设a 的坐标为(,,)x y z ,则(,,)(2,1,3)0x y z ⋅--=,(,,)(1,3,2)0x y z ⋅-=解得(1,1,1)a = ,或(1,1,1)a =--- 6、解:2cos 42OA OC OA OC π⋅==⋅ ,62m n +=;2cos 42OB OC OB OC π⋅===⋅ ,62n p +=.22221m n n p +=+=,解得624n ±=.22cos4OA OBAOBOA OB⋅±∠==⋅.7、D.8、C.9、解:以点C为原点建立坐标系,得下列坐标:(0,0,0)C,(1,0,0)A ,13(22B,1(0,0,2)C ,113(,,2)22B ,13(,44M,(0,0,)N z.1AB MN⋅=,得18z=.∴点N坐标为1(0,0,)8,即点N在1CC上,18CN=.10、(1)证明:因为()0EF CF ED DF CF ED CF DF CF⋅=+⋅=⋅+⋅=,所以EF CF⊥.(2)解:因为1()()4EF CG ED DF CB BG⋅=+⋅+=,15cos15EF CGEF CGθ⋅==⋅,所以,EF与CG 所成角的余弦值为1515.(3)解:52CE==.11、解:以点C为原点建立坐标系,得下列坐标:(0,0,0)C,(1,0,0)A,(0,1,0)B,1(1,0,2)A,1(0,1,2)B,1(0,0,2)C,11(,,2)22M,(1,0,1)N.(1)BN==(2)11111130cos,10BA CBBA CBBA CB⋅<>==⋅.(3)因为1111(1,1,2)(,,0)022A B C M⋅=--⋅=,所以11A B C M⊥.12、解:以点O为原点建立坐标系,得下列坐标:(0,0,0)O ,2(,0,0)2A ,22B,2(,0,0)2C -,22)44E ,22(,44F -.118cos 11222OE OF OE OF θ-⋅===-⋅⨯ ,120EOF ∠=︒.13、证明:(1)因为11()22FE BA BC =-= ,11()22HG DA DC =-= 所以FE HG = .因此,,,E F GH 四点共面.(2)因为BD 在平面EFGH 之外,BD ∥EH ,所以BD ∥平面EFGH .(3)11111()[()()]()22224OM OE OG OA OB OC OD OA OB OC OD =+=+++=+++ .第三章复习参考题B 组(P119)1、解:(1)AC '==.(2)设BD ' 与AC 的夹角为θ,则22cos 42BD AC a b BD AC θ'⋅==--+'⋅ .由于BD '与AC 所成的角的范围为[0,2π,因此直线BD '与AC夹角的余弦值为2242a b+.2、(1)证明:因为11()()0AC AE A B BC AE BC AE BC AB BE ⋅=+⋅=⋅=⋅+= 所以1AC AE ⊥;因为11()()0AC AF A D DC AF DC AF BC AD DF ⋅=+⋅=⋅=⋅+= 所以1AC AF ⊥,因此,1AC ⊥平面AEF .(2)解:以点1A 为原点建立坐标系,得下列坐标:1(0,0,0)A ,1(4,0,0)B ,1(4,3,0)C ,1(0,3,0)D ,(0,0,5)A -,(4,0,5)B -,(4,3,5)C -,(0,3,5)D -.设平面11D B BD 的法向量为(,,0)a x y = ,则110a B D ⋅= ,得43x y =.令3,4x y ==,则(3,4,0)a = ,所以11cos 25a AC a AC θ⋅==⋅ 3、解:(1)14V =.(2)以点A 为原点建立坐标系,得下列坐标:(0,0,0)A ,(0,1,0)B ,(1,1,0)C ,1(,0,0)2D ,(0,0,1)S 设平面SDC 的法向量为(,,1)a x y = ,则0a SC ⋅= ,0a SD ⋅= ,得2,1x y ==-.因此(2,1,1)a =- .6cos 3a AD a AD θ⋅==⋅ .。