命题与证明的技巧及练习题附解析
- 格式:doc
- 大小:172.00 KB
- 文档页数:10
初中数学命题与证明的经典测试题含答案一、选择题1.下列各命题的逆命题成立的是()A.全等三角形的对应角相等B.如果两个数相等,那么它们的绝对值相等C.两直线平行,同位角相等D.如果两个角都是45°,那么这两个角相等【答案】C【解析】试题分析:首先写出各个命题的逆命题,再进一步判断真假.解:A、逆命题是三个角对应相等的两个三角形全等,错误;B、绝对值相等的两个数相等,错误;C、同位角相等,两条直线平行,正确;D、相等的两个角都是45°,错误.故选C.2.“两条直线相交只有一个交点”的题设是()A.两条直线 B.相交C.只有一个交点 D.两条直线相交【答案】D【解析】【分析】任何一个命题,都由题设和结论两部分组成.题设,是命题中的已知事项,结论,是由已知事项推出的事项.【详解】“两条直线相交只有一个交点”的题设是两条直线相交.故选D.【点睛】本题考查的知识点是命题和定理,解题关键是理解题设和结论的关系.3.下列命题中逆命题是假命题的是()A.如果两个三角形的三条边都对应相等,那么这两个三角形全等B.如果a2=9,那么a=3C.对顶角相等D.线段垂直平分线上的任意一点到这条线段两个端点的距离相等【答案】C【解析】【分析】首先写出各命题的逆命题(将每个命题的题设与结论调换),然后再证明各命题的正误.因为相等的角不只是对顶角,所以此答案是假命题,继而得到正确答案.【详解】解:A、逆命题为:如果两个三角形全等,那么这两个三角形的三条边都对应相等.是真命题;B、逆命题为:如果a=3,那么a2=9.是真命题;C、逆命题为:相等的角是对顶角.是假命题;D、逆命题为:到线段两个端点的距离相等的点在这条线段垂直平分线上.是真命题.故选C.【点睛】此题考查了命题与逆命题的关系.解题的关键是找到各命题的逆命题,再证明正误即可.4.下列命题是真命题的是()A.如果一个数的相反数等于这个数本身,那么这个数一定是0B.如果一个数的倒数等于这个数本身,那么这个数一定是1C.如果一个数的平方等于这个数本身,那么这个数一定是0D.如果一个数的算术平方根等于这个数本身,那么这个数一定是0【答案】A【解析】【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.【详解】A、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题;故选A.【点睛】此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.5.下列命题是真命题的是()A.内错角相等B.平面内,过一点有且只有一条直线与已知直线垂直C.相等的角是对顶角D.过一点有且只有一条直线与已知直线平行【答案】B【解析】【分析】命题的“真”“假”是就命题的内容而言.任何一个命题非真即假,正确的命题为真命题,错误的命题为假命题.【详解】A、内错角相等,是假命题,故此选项不合题意;B、平面内,过一点有且只有一条直线与已知直线垂直,是真命题,故此选项符合题意;C、相等的角是对顶角,是假命题,故此选项不合题意;D、过一点有且只有一条直线与已知直线平行,是假命题,故此选项不合题意;故选:B.【点睛】此题主要考查了命题与定理,关键是掌握要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.下列命题中是真命题的是()A.多边形的内角和为180°B.矩形的对角线平分每一组对角C.全等三角形的对应边相等D.两条直线被第三条直线所截,同位角相等【答案】C【解析】【分析】根据多边形内角和公式可对A进行判定;根据矩形的性质可对B进行判定;根据全等三角形的性质可对C进行判定;根据平行线的性质可对D进行判定.【详解】A.多边形的内角和为(n-2)·180°(n≥3),故该选项是假命题,B.矩形的对角线不一定平分每一组对角,故该选项是假命题,C.全等三角形的对应边相等,故该选项是真命题,D.两条平行线被第三条直线所截,同位角相等,故该选项是假命题,故选:C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.熟练掌握矩形的性质、平行线的性质、全等三角形的性质及多边形的内角和公式是解题关键.7.下列命题的逆命题不成立的是()A.两直线平行,同旁内角互补B.如果两个实数相等,那么它们的平方相等C.平行四边形的对角线互相平分D.全等三角形的对应边相等【答案】B【解析】【分析】把一个命题的条件和结论互换就得到它的逆命题.分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】选项A,两直线平行,同旁内角互补的逆命题是同旁内角互补,两直线平行,正确,成立;选项B ,如果两个实数相等,那么它们的平方相等的逆命题是平方相等的两个数相等,错误,不成立,如(﹣3)2=32,但﹣3≠3;选项C ,平行四边形的对角线互相平分的逆命题是对角线互相平分的四边形是平行四边形,正确,成立;选项D ,全等三角形的对应边相等的逆命题是对应边相等的三角形全等,正确,成立; 故选B .【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.8.下列命题中,是假命题的是( )A .若a>b ,则-a<-bB .若a>b ,则a+3>b+3C .若a>b ,则44a b > D .若a>b ,则a 2>b 2【答案】D【解析】【分析】 利用不等式的性质分别判断后即可确定正确的选项.【详解】A 、若a >b ,则-a <-b ,正确,是真命题;B 、若a >b ,则a+3>b+3,正确,是真命题;C 、若a >b ,则44a b >,正确,是真命题; D 、若a >b ,则a 2>b 2,错误,是假命题;故选:D .【点睛】 此题考查命题与定理的知识,解题的关键是了解不等式的性质,难度不大.9.下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合; ③若ABC V 与'''A B C V 成轴对称,则ABC V 一定与'''A B C V 全等;④有一个角是60度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是( )A .2B .3C .4D .5【答案】A【解析】【分析】利用轴对称的性质、等腰三角形的性质、等边三角形的判定等知识分别判断后即可确定正确的选项.【详解】解:①等腰三角形底边的中点到两腰的距离相等;正确;②等腰三角形的底边上的高、底边上的中线、顶角的平分线互相重合;不正确: ③若ABC V 与'''A B C V 成轴对称,则ABC V 一定与'''A B C V 全等;正确; ④有一个角是60度的等腰三角形是等边三角形;不正确;⑤等腰三角形的对称轴是顶角的平分线所在的直线,不正确.正确命题为:2①③,个;故选:A【点睛】本题考查了命题与定理的知识,解题的关键是了解轴对称的性质、等腰三角形的性质、等边三角形的判定等知识,属于基础知识,难度不大.10.下列选项中,可以用来说明命题“若22a b >,则a b >”是假命题的反例是( ) A .2,a =b=-1B .2,1a b =-=C .3,a =b=-2D .2,0a b ==【答案】B【解析】分析:根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题. 详解:∵当a =﹣2,b =1时,(﹣2)2>12,但是﹣2<1,∴a =﹣2,b =1是假命题的反例. 故选B .点睛:本题考查的是命题与定理,要说明数学命题的错误,只需举出一个反例即可.这是数学中常用的一种方法.11.交换下列命题的题设和结论,得到的新命题是假命题的是( )A .两直线平行,内错角相等;B .相等的角是对顶角;C .所有的直角都是相等的;D .若a =b ,则a -1=b -1.【答案】C【解析】【分析】【详解】分析:写出原命题的逆命题,根据相关的性质、定义判断即可.详解:交换命题A 的题设和结论,得到的新命题是内错角相等,两直线平行,是真命题; 交换命题B 的题设和结论,得到的新命题是对顶角相等,是真命题;交换命题C 的题设和结论,得到的新命题是所有的相等的角都是直角,是假命题; 交换命题D 的题设和结论,得到的新命题是若a ﹣1=b ﹣1,则a =b ,是真命题. 故选C .点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.12.下列命题正确的是()A.矩形对角线互相垂直x=B.方程214=的解为14x xC.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等【答案】D【解析】【分析】由矩形的对角线互相平分且相等得出选项A不正确;由方程x2=14x的解为x=14或x=0得出选项B不正确;由六边形内角和为(6-2)×180°=720°得出选项C不正确;由直角三角形全等的判定方法得出选项D正确;即可得出结论.【详解】A.矩形对角线互相垂直,不正确;B.方程x2=14x的解为x=14,不正确;C.六边形内角和为540°,不正确;D.一条斜边和一条直角边分别相等的两个直角三角形全等,正确;故选D.【点睛】本题考查了命题与定理、矩形的性质、一元二次方程的解、六边形的内角和、直角三角形全等的判定;要熟练掌握.13.下列四个命题:①两直线平行,内错角相等;②对顶角相等;③等腰三角形的两个底角相等;④菱形的对角线互相垂直,其中逆命题是真命题的是()A.①②③④B.①③④C.①③D.①【答案】C【解析】【分析】首先写出各个命题的逆命题,然后进行判断即可.【详解】①两直线平行,内错角相等;其逆命题:内错角相等,两直线平行,是真命题;②对顶角相等,其逆命题:相等的角是对顶角,是假命题;③等腰三角形的两个底角相等,其逆命题:有两个角相等的三角形是等腰三角形,是真命题;④菱形的对角线互相垂直,其逆命题:对角线互相垂直的四边形是菱形,是假命题;故选C.本题考查了写一个命题的逆命题的方法,真假命题的判断,弄清命题的题设与结论,掌握相关的定理是解题的关键.14.39.下列命题中,是假命题的是()A.同旁内角互补B.对顶角相等C.直角的补角仍然是直角D.两点之间,线段最短【答案】A【解析】同旁内角不一定互补,同旁内角互补的条件是两直线平行,故选A.15.利用反证法证明命题“四边形中至少有一个角是钝角或直角”时,应假设( )A.四边形中至多有一个内角是钝角或直角B.四边形中所有内角都是锐角C.四边形的每一个内角都是钝角或直角D.四边形中所有内角都是直角【答案】B【解析】【分析】先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法.【详解】假设命题中的结论不成立,即命题“四边形中至少有一个角是钝角或直角”不成立,即“四边形中的四个角都不是钝角或直角”,即“四边形中的四个角都是锐角”故选B.【点睛】本题考查反证法,要注意命题“至少有一个是”不成立,对应的命题应为“都不是”.16.下列命题的逆命题是真命题的是()A.直角都相等 B.钝角都小于180° C.如果x2+y2=0,那么x=y=0 D.对顶角相等【答案】C【解析】【分析】根据逆命题是否为真命题逐一进行判断即可.【详解】相等的角不都是直角,故A选项不符合题意,小于180°的角不都是钝角,故B选项不符合题意,如果x=y=0,那么x2+y2=0,正确,是真命题,符合题意,相等的角不一定都是对顶角,故D选项不符合题意,【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.17.下列正确说法的个数是( )①同位角相等;②等角的补角相等;③两直线平行,同旁内角相等;④在同一平面内,过一点有且只有一条直线与已知直线垂直A .1B .2C .3D .4【答案】B【解析】【分析】根据平行线的性质以及等角或同角的补角相等的知识,即可求得答案.【详解】解:∵两直线平行,同位角相等,故①错误;∵等角的补角相等,故②正确;∵两直线平行,同旁内角互补,故③错误;∵在同一平面内,过一点有且只有一条直线与已知直线垂直,故④正确.∴正确说法的有②④.故选B .【点睛】此题考查了平行线的性质与对顶角的性质,以及等角或同角的补角相等的知识.解题的关键是注意需熟记定理.18.已知:在ABC V 中,AB AC ≠,求证:.B C ∠≠∠若用反证法来证明这个结论,可以假设( )A .AB ∠=∠B .AB BC = C .B C ∠=∠D .A C ∠=∠【答案】C【解析】【分析】反证法的步骤:1、假设命题反面成立;2、从假设出发,经过推理得出和反面命题矛盾,或者与定义、公理、定理矛盾;3、得出假设命题不成立是错误的,即所求证命题成立.【详解】已知:在ABC V 中,AB AC ≠,求证:.B C ∠≠∠若用反证法来证明这个结论,可以假设B C ∠=∠,由“等角对等边”可得AB=AC,这与已知矛盾,所以.B C ∠≠∠故选C【点睛】本题考核知识点:反证法. 解题关键点:理解反证法的一般步骤.19.下列命题中哪一个是假命题( )A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A 、8的立方根是2,正确,是真命题;B 、在函数3y x 的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D 、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C .【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.20.下列命题中,是真命题的是( )A .将函数y =12x +1向右平移2个单位后所得函数的解析式为y =12x B .若一个数的平方根等于其本身,则这个数是0和1 C .对函数y =2x,其函数值y 随自变量x 的增大而增大 D .直线y =3x +1与直线y =﹣3x +2一定互相平行【答案】A【解析】【分析】 利用一次函数的性质、平方根的定义、反比例函数的性质等知识分别判断后即可确定正确的选项.【详解】解:A 、将函数y =12x +1向右平移2个单位后所得函数的解析式为y =12x ,正确,符合题意;B 、若一个数的平方根等于其本身,则这个数是0,故错误,是假命题,不符合题意;C、对函数y=2x,其函数值在每个象限内y随自变量x的增大而增大,故错误,是假命题,不符合题意;D、直线y=3x+1与直线y=﹣3x+2因比例系数不相等,故一定不互相平行,故错误,是假命题,故选:A.【点睛】本题考查了判断命题真假的问题,掌握一次函数的性质、平方根的定义、反比例函数的性质等知识是解题的关键.。
命题与证明综合一、精心一1.下列句是命的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A.作直AB的垂B.在段AB上取点CC.同旁内角互D.垂段最短?2.命“垂直于同一条直的两条直互相平行” 的是⋯⋯⋯⋯⋯⋯⋯()A.垂直B.两条直C.同一条直D.两条直垂直于同一条直3 .下列命中,属于假命的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A.若a-b =0,a=b=0 B.若a-b>0,a>bC.若a-b<0,a<b D .若a-b ≠0,a≠b4.直角三角形的两角均分所交成的角的度数是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A.45°B.135°C.45°或 135°D.以上答案均不5.适合条件∠A: ∠B: ∠C=1:2:3 的三角形必然是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A.角三角形 B .直角三角形C.角三角形D.任意三角形6.用反法明“ 3 是无理数” ,最恰当的法是先假⋯⋯⋯⋯⋯⋯⋯()A.3是分数B. 3 是整数C. 3 是有理数D. 3 是数7 .如,∠ 1+∠ 2+∠ 3等于⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A.180°B.360°C.270°D.300°8.于命“若是∠1+∠2=90°,那么∠ 1≠∠2”,能明它是假命的反例是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 / 4⋯⋯⋯⋯()条件① AB=DE,② AC=DF,③ CM=FN A.∠ 1=50°,∠ 2=40°中任取两个条件做条件,另一个条件B.∠ 1=50°,∠ 2=50°做,C.∠ 1=∠2=45°能构成一个真命,那么可以D.∠ 1=40°,∠ 2=40°是,是.(只填序号)二、心填一填三、耐心做一做9.一个命由和两部分成.17.如,已知点E、F分在AB、AD 10.依照命正确与否,命可分的延上,∠ 1=∠2,∠ 3=∠4.和.求:(1)∠A=11.把命“三角形内角和等于 180°”∠3改写成若是,那么.(2)AF∥BC12.如,∠ 1,∠ 2,∠ 3 的大小关系18.如,在△ABC中,∠A=70°,BO,是.CO分是∠ABC和∠ ACB的角平13.如,已知BC⊥AC,BD⊥AD,垂足(第 12 题)分,求∠ BOC的度数.(第 13 题)分是 C和 D,19.反例明以下命是假命.若要使△ ABC≌△ ABD,上一条( 1)一个角的角大于个角;件是.( 2)已知直a,b,c,若a⊥b,14.命“同位角相等”的是.b⊥c, a⊥c.15.明命“若x(1- x)=0,x=0”20.已知,如,AB与CD订交于点O,是假命的反例是AC∥BD,且 AO=OC..求: OB=OD.16.在△ABC和△DEF中,∠A=∠D,CM,21.如,AB=DC,AC=DB,FN分是 AB、DE上的中,再从以你能明中∠ 1=∠2 的理下三个由?2 / 422.已知,如图,AD⊥BC于D,EF⊥BC=CE,求证: AE=DE.于 F,EF交 AB于 G,交 CA延长线于 E,且∠1=∠2.25、如图,∠ ABC= 90°, AB= BC, D求证:AD均分∠ BAC,填写“解析”为 AC上一点,分别过 A.C 作 BD的垂线,和“证明”中的空白.垂足分别为 E.F,解析:要证明 AD均分∠ BAC,只要求证: EF=CF-AE.证明∠ =∠,而已知∠ 1=∠2,所以应联想这两个角分别和∠八年级数学(下)素质基础训练1、∠ 2 的关系,由已知BC的两条垂线(五)可推出一、精心选一选∥,这时再观察这两对角的CDACBCBC关系已不难获取结论.二、认真做一做证明:∵ AD⊥BC,EF⊥BC(已知)9. 题设(或条件)、结论∴∥()10.真命题假命题∴=(两直线平行,内错角11.有一个三角形的三个内角它们和等相等.)于 180°=(两直线平行,内错角12.∠2<∠1<∠3相等.)13.开放性题目,答案不唯一∵(已知)14.两个角是同位角这两个角相等∴,即 AD均分∠ BAC()15.x=1 也能使条件为零23、如右图,已知BE⊥AC于E,CF⊥AB16.①② ; ③于 F,BE、CF订交于点 D,若 BD=CD.三、耐心做一做求证: AD均分∠ BAC.17.(1)证明:∵∠ 1=∠2( 已知 ) 24、如图,已知AB=DC,AC=DB,BE∴AE∥DC(内错角相等,两直线平行)3 / 4∴∠ A=∠3(两直线平行,同位角相等)(2)证明:∵∠ 3=∠4( 已知)∵∠ A=∠3( 已证 )∴∠ A=∠4(等量交换)∴AF∥BC(同位角相等,两直线平行)18. ∠BOC=12519. 略20. 略21. 略22. 略4 / 4。
初二数学命题的证明同步练习题及答案初二数学命题的证明同步练习题及答案证明同步练习题及答案如下24.2命题与证明第1题. 已知四个命题:(1)如果一个数的相反数等于它本身,则这个数是0;(2)一个数的倒数等于它本身,则这个数是1;(3)一个数的算术平方根等于它本身,则这个数是1或0;(4)如果一个数的绝对值等于它本身,则这个数是正数.其中真命题有( )A.1个B.2个C.3个D.4个答案:B第2题. 判断下列命题的真假.①大于锐角的角是钝角;②如果一个实数有算术平方根,那么它的算术平方根是整数;③如果,那么点是线段的中点.答案:①②③假命题.第3题. 下列命题称为公理的是( )A.垂线段最短B.同角的补角相等C.邻角的平分线互相垂直D.内错角相等两直线平行答案:A答案:B第9题. 举反例说明一个角的余角大于这个角是假命题,错误的是( )A.设这个角是,它的余角是,B.设这个角是,它的余角是,C.设这个角是,它的余角是,D.设这个角是,它的余角是,答案:C第10题. 下列语句中,不是命题的句子是( )A.过一点作已知直线的垂线B.两点确定一条直线C.钝角大于D.凡平角都相等答案:A第11题. 命题有两条边和一个角对应相等的两个三角形全等的题设是,结论是,它是命题.答案:如果两个三角形中有两条边和一个角对应相等;这两个三角形全等;假.第12题. 把命题不相等的角不是对顶角改为如果那么的形式为 .答案:如果两个角不相等,那么这两个角不是对顶角.第13题. 如图,, .求证: .答案:因为, .所以 .即 .又,所以 .第14题. 已知:如图,,,,,求证: .答案:因为,,所以,所以,因为,所以,所以,因为,所以 .第15题. 如图,,且,那么图中与相等的角(不包括 )的个数是( )A.2B.4C.5D.6答案:C第16题. 如图,在中,,在上取一点,使,是的中点,是的中点,延长交的延长线于,求证: .答案:连结,取中点,连结,,为中点,为中点,为中点,, . ,,上文即是证明同步练习题及答案。
最新初中数学命题与证明的技巧及练习题附答案一、选择题1.以下命题是真命题的是()A.若 x> y,则 x2> y2 B.若 |a|=|b|,则a=b C.若a>|b|,则a2>b2D.若a<1,则a>1a【答案】 C【分析】【剖析】依据实数的乘方,绝对值的性质和倒数的意义等,对各选项举反例剖析判断后利用清除法求解.【详解】 A. x> y,如 x=0, y=-1,02 <(-1)2,此时 x2<y2,故 A 选项错误;B. |a|=|b|,如a=2,b=-2,此时a≠b,故B选项错误;C. 若 a> |b| ,则 a2> b2,正确;D. a< 1,如 a=-1,此时 a= 1,故 D 选项错误,a应选 C.【点睛】本题考察了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,本题主要利用了实数的性质.2.以下命题中正确的选项是().A.全部等腰三角形都相像B.两边成比率的两个等腰三角形相像C.有一个角相等的两个等腰三角形相像【答案】 DD.有一个角是100 °的两个等腰三角形相像【分析】【剖析】依据相像三角形进行判断即可.【详解】解: A、全部等腰三角形不必定都相像,原命题是假命题;B、两边成比率的两个等腰三角形不必定相像,原命题是假命题;C、有一个角相等的两个等腰三角形不必定相像,原命题是假命题;D、有一个角是100 °的两个等腰三角形相像,是真命题;应选: D.【点睛】本题考察了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.3.以下各命题的抗命题是真命题的是A.对顶角相等B.全等三角形的对应角相等C.相等的角是同位角D.等边三角形的三个内角都相等【答案】 D【分析】【剖析】分别写出四个命题的抗命题:相等的角为对顶角;对应角相等的两三角形全等;同位角相等;三个角都相等的三角形为等边三角形;而后再分别依据对顶角的定义对第一个进行判断;依据三角形全等的判断方法对第二个进行判断;依据同位角的性质对第三个进行判断;依据等边三角形的判断方法对第四个进行判断.【详解】A、“对顶角相等”的抗命题为“相等的角为对顶角”,此抗命题为假命题,因此 A 选项错误;B、“全等三角形的对应角相等”的抗命题为“对应角相等的两三角形全等”,此抗命题为假命题,因此 B 选项错误;C、“相等的角是同位角”的抗命题为“同位角相等”,此抗命题为假命题,因此C 选项错误;D、“等边三角形的三个内角都相等”的抗命题为“三个角都相等的三角形为等边三角形”,此抗命题为真命题,因此 D 选项正确.应选 D.【点睛】本题考察了命题与定理:判断事物的语句叫命题;题设与结论交换的两个命题互为抗命题;正确的命题叫真命题,错误的命题叫假命题;经过推论论证获得的真命题称为定理.4.以下命题中是假命题的是().A.同旁内角互补,两直线平行r rB.直线a b,则 a 与b订交所成的角为直角C.假如两个角互补,那么这两个角是一个锐角,一个钝角D.若a∥b,a c ,那么 b c【答案】 C【分析】依据平行线的判断,可知“同旁内角互补,两直线平行”,是真命题;依据垂直的定义,可知“直线 a b ,则a与 b 订交所成的角为直角”,是真命题;依据互补的性质,可知“两个角互补,这两个角能够是两个直角”,是假命题;依据垂直的性质和平行线的性质,可知“若 a Pb ,a c ,那么 b c ”,是真命题.应选 C.5.以下命题:① 两条直线被第三条直线所截,同位角相等;② 两点之间,线段最短;③ 相等的角是对顶角;④ 直角三角形的两个锐角互余;⑤ 同角或等角的补角相等. 此中真命题的个数是( ) A .2 个 B .3 个C .4 个D .5 个【答案】 B【分析】【剖析】【详解】解:命题 ① 两条平行线被第三条直线所截,同位角相等,错误,为假命题;命题 ② 两点之间,线段最短,正确,为真命题;命题 ③ 相等的角是对顶角,错误,为假命题;命题 ④ 直角三角形的两个锐角互余,正确,为真命题;命题 ⑤ 同角或等角的补角相等,正确,为真命题, 故答案选 B .考点:命题与定理.6.用反证法证明 “三角形的三个外角中至多有一个锐角”,应先假定 ( )A .三角形的三个外角都是锐角B .三角形的三个外角中起码有两个锐角C .三角形的三个外角中没有锐角D .三角形的三个外角中起码有一个锐角 【答案】 B【分析】【剖析】反证法的步骤中,第一步是假定结论不建立,反面建立.【详解】解:用反证法证明 “三角形的三个外角中至多有一个锐角”,应先假定三角形的三个外角中起码有两个锐角, 应选 B . 【点睛】考察了反证法,解本题重点要懂得反证法的意义及步骤 .在假定结论不建即刻要注意考虑结论的反面全部可能的状况,假如只有一种,那么否认一种就能够了,假如有多种状况,则一定一一否认.7.以下命题中,是真命题的是( )A .将函数 y =1 1 x+1 向右平移2 个单位后所得函数的分析式为 y = x22B .若一个数的平方根等于其自己,则这个数是0 和 1C .对函数 y =2,其函数值 y 随自变量 x 的增大而增大xD.直线 y=3x+1 与直线 y=﹣ 3x+2 必定相互平行【答案】 A【分析】【剖析】利用一次函数的性质、平方根的定义、反比率函数的性质等知识分别判断后即可确立正确的选项.【详解】解: A、将函数y=1x+1 向右平移 2 个单位后所得函数的分析式为y=1x,正确,切合题22意;B、若一个数的平方根等于其自己,则这个数是0,故错误,是假命题,不切合题意;C、对函数y=2 ,其函数值在每个象限内y 随自变量x 的增大而增大,故错误,是假命x题,不切合题意;D、直线 y=3x+1 与直线 y=﹣ 3x+2 因比率系数不相等,故必定不相互平行,故错误,是假命题,应选: A.【点睛】本题考察了判断命题真假的问题,掌握一次函数的性质、平方根的定义、反比率函数的性质等知识是解题的重点.8.以下命题是真命题的是()A.方程3x22x40 的二次项系数为3,一次项系数为-2B.四个角都是直角的两个四边形必定相像C.某种彩票中奖的概率是1%,买100 张该种彩票必定会中奖D.对角线相等的四边形是矩形【答案】 A【分析】【剖析】依据所学的公义以及定理,一元二次方程的定义,概率等知识,对各小题进行剖析判断,而后再计算真命题的个数.【详解】A、正确.B、错误,对应边不必定成比率.C、错误,不必定中奖.D、错误,对角线相等的四边形不必定是矩形.应选: A.【点睛】本题考察命题与定理,娴熟掌握基础知识是解题重点.9.以下命题是真命题的是()A.中位数就是一组数据中最中间的一个数B.一组数据的众数能够不独一C.一组数据的标准差就是这组数据的方差的平方根D.已知 a、b、 c 是 Rt△ABC的三条边,则a2 +b 2= c2【答案】 B【分析】【剖析】正确的命题是真命题,依据定义判断即可.【详解】解: A、中位数就是一组数据中最中间的一个数或着是中间两个数的均匀数,故错误;B、一组数据的众数能够不独一,故正确;C、一组数据的标准差是这组数据的方差的算术平方根,故此选项错误;D、已知 a、b、 c 是 Rt△ABC的三条边,当∠C= 90°时,则 a2+b2= c2,故此选项错误;应选: B.【点睛】本题考察真命题的定义,掌握定义,正确理解各事件的正确与否是解题的重点.10.以下各命题的抗命题建立的是()A.全等三角形的对应角相等B.假如两个数相等,那么它们的绝对值相等C.两直线平行,同位角相等D.假如两个角都是45°,那么这两个角相等【答案】 C【分析】试题剖析:第一写出各个命题的抗命题,再进一步判断真假.解: A、抗命题是三个角对应相等的两个三角形全等,错误;B、绝对值相等的两个数相等,错误;C、同位角相等,两条直线平行,正确;D、相等的两个角都是45°,错误.应选 C.11.以下命题错误的选项是()A.平行四边形的对角线相互均分B.两直线平行,内错角相等C.等腰三角形的两个底角相等D.若两实数的平方相等,则这两个实数相等【答案】 D【分析】【剖析】依据平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,分别进行判断,即可获得答案 .【详解】解: A、平行四边形的对角线相互均分,正确;B、两直线平行,内错角相等,正确;C、等腰三角形的两个底角相等,正确;D、若两实数的平方相等,则这两个实数相等或互为相反数,故 D 错误;应选: D.【点睛】本题考察了判断命题的真假,以及平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,解题的重点是娴熟掌握所学的性质进行解题.12.用三个不等式a> b,ab> 0,1>1中的两个不等式作为题设,余下的一个不等式作a b为结论构成一个命题,构成真命题的个数为()A.0B. 1C. 2D. 3【答案】 A【分析】【剖析】由题意得出 3 个命题,由不等式的性质再判断真假即可.【详解】解:①若 a> b, ab>0,则1>1;假命题:a b原因:∵ a> b,ab >0,∴a> b> 0,∴1<1;a b②若 ab> 0,1>1,则 a> b,假命题;a b原因:∵ ab> 0,∴a、 b 同号,∵1>1,a b∴a< b;③若 a> b,1>1,则 ab> 0,假命题;a b原因:∵ a> b,1>a∴a、 b 异号,∴a b <0.∴构成真命题的个数为应选: A.【点睛】1,b0个;本题考察了命题与定理、不等式的性质、命题的构成、真命题和假命题的定义;娴熟掌握命题的构成和不等式的性质是解题的重点.13.以下命题中正确的有()个① 均分弦的直径垂直于弦;② 经过半径的外端且与这条半径垂直的直线是圆的切线;③在同圆或等圆中,圆周角等于圆心角的一半;④ 平面内三点确立一个圆;⑤ 三角形的外心到三角形的各个极点的距离相等.A.1B.2C.3D.4【答案】 B【分析】【剖析】依据垂径定理的推论对① 进行判断;依据切线的判断定理对② 进行判断;依据圆周角定理对③ 进行判断;依据确立圆的条件对④ 进行判断;依据三角形外心的性质对⑤ 进行判断.【详解】① 均分弦(非直径)的直径垂直于弦,错误;② 经过半径的外端且与这条半径垂直的直线是圆的切线,正确;③ 在同圆或等圆中,同弧所对的圆周角等于圆心角的一半,错误;④ 平面内不共线的三点确立一个圆,错误;⑤ 三角形的外心到三角形的各个极点的距离相等,正确;故正确的命题有 2 个故答案为: B.【点睛】本题考察了判断命题真假的问题,掌握垂径定理的推论、切线的判断定理、圆周角定理、确立圆的条件、三角形外心的性质是解题的重点.14.以下命题的抗命题是真命题的是().若 a b ,则 a bAB2BC 22,则ABC 是 Rt. ABC 中,若AC AB C.若a0 ,则 ab0D.四边相等的四边形是菱形【答案】 D【分析】【剖析】先依据抗命题的定义分别写出各命题的抗命题,而后依据绝对值的意义和有理数的乘法、菱形的性质及勾股定理进行判断.【详解】解: A、该命题的抗命题为:若|a|=|b|,则a=b,此命题为假命题;B、该命题的抗命题为:若△ABC是Rt△,则AC2+BC2=AB2,此命题为假命题;C、该命题的抗命题为:若ab=0,则a=0,此命题为假命题;D、该命题的抗命题为:菱形的四边相等,此命题为真命题;应选: D.【点睛】本题考察了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考察了抗命题.15. 39.以下命题中,是假命题的是()A.同旁内角互补B.对顶角相等C.直角的补角仍旧是直角D.两点之间,线段最短【答案】 A【分析】同旁内角不必定互补,同旁内角互补的条件是两直线平行,应选 A.16.以下命题是假命题的是()A.有一个角是60°的等腰三角形是等边三角形B.等边三角形有 3 条对称轴C.有两边和一角对应相等的两个三角形全等D.线段垂直均分线上的点到线段两头的距离相等【答案】 C【分析】【剖析】依据等边三角形的判断方法、等边三角形的性质、全等三角形的判断、线段垂直均分线的性质一一判断即可.【详解】A.正确;有一个角是60°的等腰三角形是等边三角形;B.正确.等边三角形有 3 条对称轴;C.错误, SSA没法判断两个三角形全等;D.正确.线段垂直均分线上的点到线段两头的距离相等.应选: C.【点睛】本题考察了命题与定理,等边三角形的判断方法、等边三角形的性质、全等三角形的判定、线段垂直均分线的性质等知识,解题的重点是娴熟掌握基本观点,属于中考常考题型.17.以下命题的抗命题是真命题的是()A.直角都相等B.钝角都小于180 ° C.假如 x2+y2=0,那么 x=y=0D.对顶角相等【答案】 C【分析】【剖析】依据抗命题能否为真命题逐个进行判断即可.【详解】相等的角不都是直角,故 A 选项不切合题意,小于 180°的角不都是钝角,故 B 选项不切合题意,假如x=y=0,那么x2 2+y =0,正确,是真命题,切合题意,相等的角不必定都是对顶角,故 D 选项不切合题意,应选 C【点睛】本题考察了互抗命题的知识,两个命题中,假如第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互抗命题,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假重点是要熟习课本中的性质定理.18.以下五个命题:① 假如两个数的绝对值相等,那么这两个数的平方相等;② 内错角相等;③ 在同一平面内,垂直于同一条直线的两条直线相互平行;④ 两个无理数的和必定是无理数;⑤ 坐标平面内的点与有序数对是一一对应的.此中真命题的个数是()A.2 个B.3 个C.4 个D.5 个【答案】B【分析】【剖析】依据平面直角坐标系的观点,在两直线平行的条件下,内错角相等,两个无理数的和能够是无理数也能够是有理数,进行判断即可 .【详解】① 正确;② 在两直线平行的条件下,内错角相等,② 错误;③ 正确;④反例:两个无理数π和-π,和是0,④ 错误;⑤ 坐标平面内的点与有序数对是一一对应的,正确;应选: B.【点睛】本题考察实数,平面内直线的地点;切记观点和性质,能够灵巧理解观点性质是解题的重点.19.以下命题的抗命题建立的有( )①勾股数是三个正整数② 全等三角形的三条对应边分别相等③假如两个实数相等,那么它们的平方相等④ 平行四边形的两组对角分别相等A.1 个B.2 个C.3 个D.4 个【答案】 B【分析】【剖析】先写出每个命题的抗命题,再分别依据勾股数的定义、三角形全等的判断、平方根的定义、平行四边形的判断逐个判断即可.【详解】① 抗命题:假如三个数是正整数,那么它们是勾股数反例:正整数 1,2,3 ,但12+ 22?32,即它们不是勾股数,则此抗命题不建立② 抗命题:三条对应边分别相等的两个三角形全等由 SSS定理可知,此抗命题建立③ 抗命题:假如两个实数的平方相等,那么这两个实数相等反例: 22( 2) 2 4 ,但2 2 ,则此抗命题不建立④ 抗命题:两组对角分别相等的四边形是平行四边形由平行四边形的判断可知,此抗命题建立综上,抗命题建立的有 2 个应选: B.【点睛】本题考察了命题的有关观点、勾股数的定义、三角形全等的判断、平方根的定义、平行四边形的判断,正确写出各命题的抗命题是解题重点.20.已知命题:等边三角形是等腰三角形.则以下说法正确的选项是()A.该命题为假命题B.该命题为真命题C.该命题的抗命题为真命题D.该命题没有抗命题【答案】 B【分析】剖析:第一判断该命题的正误,而后判断其抗命题的正误后即可确立正确的选项.详解:等边三角形是等腰三角形,正确,为真命题;最新初中数学命题与证明的技巧及练习题附答案其抗命题为等腰三角形是等边三角形,错误,为假命题,应选: B.点睛:本题考察了命题与定理的知识,解题的重点是能够写出该命题的抗命题,难度不大.。
命题与证明的技巧及练习题一、选择题1.下列命题的逆命题是真命题的是( )A .若a b =,则a b =B .ABC ∆中,若222AC BC AB +=,则ABC ∆是Rt ∆C .若0a =,则0ab =D .四边相等的四边形是菱形【答案】D【解析】【分析】先根据逆命题的定义分别写出各命题的逆命题,然后根据绝对值的意义和有理数的乘法、菱形的性质及勾股定理进行判断.【详解】解:A 、该命题的逆命题为:若|a|=|b|,则a=b ,此命题为假命题;B 、该命题的逆命题为:若△ABC 是Rt △,则AC 2+BC 2=AB 2,此命题为假命题; C 、该命题的逆命题为:若ab=0,则a=0,此命题为假命题;D 、该命题的逆命题为:菱形的四边相等,此命题为真命题;故选:D .【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.2.下列各命题的逆命题是真命题的是A .对顶角相等B .全等三角形的对应角相等C .相等的角是同位角D .等边三角形的三个内角都相等【答案】D【解析】【分析】分别写出四个命题的逆命题:相等的角为对顶角;对应角相等的两三角形全等;同位角相等;三个角都相等的三角形为等边三角形;然后再分别根据对顶角的定义对第一个进行判断;根据三角形全等的判定方法对第二个进行判断;根据同位角的性质对第三个进行判断;根据等边三角形的判定方法对第四个进行判断.【详解】A 、“对顶角相等”的逆命题为“相等的角为对顶角”,此逆命题为假命题,所以A 选项错误;B 、“全等三角形的对应角相等”的逆命题为“对应角相等的两三角形全等”,此逆命题为假命题,所以B 选项错误;C 、“相等的角是同位角”的逆命题为“同位角相等”,此逆命题为假命题,所以C 选项错误;D 、“等边三角形的三个内角都相等”的逆命题为“三个角都相等的三角形为等边三角形”,此逆命题为真命题,所以D 选项正确.故选D.【点睛】本题考查了命题与定理:判断事物的语句叫命题;题设与结论互换的两个命题互为逆命题;正确的命题叫真命题,错误的命题叫假命题;经过推论论证得到的真命题称为定理.3.下列命题是真命题的个数是( ).①64的平方根是8±;②22a b =,则a b =;③三角形三条内角平分线交于一点,此点到三角形三边的距离相等;④三角形三边的垂直平分线交于一点.A .1个B .2个C .3个D .4个【答案】C【解析】【分析】分别根据平方根、等式性质、三角形角平分线、线段垂直平分线性质进行分析即可.【详解】①64的平方根是8±,正确,是真命题;②22a b =,则不一定a b =,可能=-a b ;故错误;③根据角平分线性质,三角形三条内角平分线交于一点,此点到三角形三边的距离相等;是真命题;④根据三角形外心定义,三角形三边的垂直平分线交于一点,是真命题;故选:C【点睛】考核知识点:命题的真假.理解平方根、等式性质、三角形角平分线、线段垂直平分线性质是关键.4.下列命题是假命题的是( )A .对顶角相等B .两直线平行,同旁内角相等C .平行于同一条直线的两直线平行D .同位角相等,两直线平行【答案】B【解析】解:A .对顶角相等是真命题,故本选项正确,不符合题意;B .两直线平行,同旁内角互补,故本选项错误,符合题意;C .平行于同一条直线的两条直线平行是真命题,故本选项正确,不符合题意;D .同位角相等,两直线平行是真命题,故本选项正确,不符合题意.故选B .5.下列命题中是假命题的是( ).A .同旁内角互补,两直线平行B .直线a b ⊥r r ,则a 与b 相交所成的角为直角C .如果两个角互补,那么这两个角是一个锐角,一个钝角D .若a b ∥,a c ⊥,那么b c ⊥【答案】C【解析】根据平行线的判定,可知“同旁内角互补,两直线平行”,是真命题;根据垂直的定义,可知“直线a b ⊥,则a 与b 相交所成的角为直角”,是真命题; 根据互补的性质,可知“两个角互补,这两个角可以是两个直角”,是假命题;根据垂直的性质和平行线的性质,可知“若a b P ,a c ⊥,那么b c ⊥”,是真命题. 故选C.6.用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设( )A .三角形的三个外角都是锐角B .三角形的三个外角中至少有两个锐角C .三角形的三个外角中没有锐角D .三角形的三个外角中至少有一个锐角【答案】B【解析】【分析】反证法的步骤中,第一步是假设结论不成立,反面成立.【详解】解:用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设三角形的三个外角中至少有两个锐角,故选B .【点睛】考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.7.下列命题中,是真命题的是( )A .将函数y =12x +1向右平移2个单位后所得函数的解析式为y =12x B .若一个数的平方根等于其本身,则这个数是0和1 C .对函数y =2x,其函数值y 随自变量x 的增大而增大 D .直线y =3x +1与直线y =﹣3x +2一定互相平行【答案】A【分析】利用一次函数的性质、平方根的定义、反比例函数的性质等知识分别判断后即可确定正确的选项.【详解】解:A、将函数y=12x+1向右平移2个单位后所得函数的解析式为y=12x,正确,符合题意;B、若一个数的平方根等于其本身,则这个数是0,故错误,是假命题,不符合题意;C、对函数y=2x,其函数值在每个象限内y随自变量x的增大而增大,故错误,是假命题,不符合题意;D、直线y=3x+1与直线y=﹣3x+2因比例系数不相等,故一定不互相平行,故错误,是假命题,故选:A.【点睛】本题考查了判断命题真假的问题,掌握一次函数的性质、平方根的定义、反比例函数的性质等知识是解题的关键.8.下列命题是真命题的是()A.若x>y,则x2>y2B.若|a|=|b|,则a=b C.若a>|b|,则a2>b2D.若a<1,则a>1a【答案】C【解析】【分析】根据实数的乘方,绝对值的性质和倒数的意义等,对各选项举反例分析判断后利用排除法求解.【详解】A. x>y,如x=0,y=-1,02<(-1)2,此时x2<y2,故A选项错误;B. |a|=|b|,如a=2,b=-2,此时a≠b,故B选项错误;C. 若a>|b|,则a2>b2,正确;D. a<1,如a=-1,此时a=1a,故D选项错误,故选C.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,本题主要利用了实数的性质.9.下列命题中,是假命题的是()A.对顶角相等B.同位角相等C.同角的余角相等D.全等三角形的面积相等【解析】【分析】根据对顶角得性质、平行线得性质、余角得等于及全等三角形得性质逐一判断即可得答案.【详解】A.对顶角相等是真命题,故该选项不合题意,B.两直线平行,同位角相等,故该选项是假命题,符合题意,C.同角的余角相等是真命题,故该选项不合题意,D.全等三角形的面积相等是真命题,故该选项不合题意.故选:B.【点睛】本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.下列命题中,其中真命题的个数是()①平面直角坐标系内的点与实数对一一对应;②内错角相等;③平行于同一条直线的两条直线互相平行;④对顶角相等A.1个B.2个C.3个D.4个【答案】B【解析】【分析】正确的命题是真命题,根据真命题的定义依次进行判断.【详解】①平面直角坐标系内的点与有序实数对一一对应,是假命题;②两直线平行,内错角相等,是假命题;③平行于同一条直线的两条直线不一定相互平行,是真命题;④对顶角相等,是真命题;故选:B.【点睛】此题考查真命题的定义,正确掌握坐标与图形,平行线的性质,平行公理,对顶角性质是解题的关键.11.交换下列命题的题设和结论,得到的新命题是假命题的是()A.两直线平行,内错角相等; B.相等的角是对顶角;C.所有的直角都是相等的;D.若a=b,则a-1=b-1.【答案】C【分析】【详解】分析:写出原命题的逆命题,根据相关的性质、定义判断即可.详解:交换命题A的题设和结论,得到的新命题是内错角相等,两直线平行,是真命题;交换命题B的题设和结论,得到的新命题是对顶角相等,是真命题;交换命题C的题设和结论,得到的新命题是所有的相等的角都是直角,是假命题;交换命题D的题设和结论,得到的新命题是若a﹣1=b﹣1,则a=b,是真命题.故选C.点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.12.下列命题的逆命题是真命题的是()A.直角都相等 B.钝角都小于180° C.如果x2+y2=0,那么x=y=0 D.对顶角相等【答案】C【解析】【分析】根据逆命题是否为真命题逐一进行判断即可.【详解】相等的角不都是直角,故A选项不符合题意,小于180°的角不都是钝角,故B选项不符合题意,如果x=y=0,那么x2+y2=0,正确,是真命题,符合题意,相等的角不一定都是对顶角,故D选项不符合题意,故选C【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.13.下列命题是真命题的是()A.同旁内角相等,两直线平行B.对角线互相平分的四边形是平行四边形C.相等的两个角是对顶角D.圆内接四边形对角相等【答案】B【解析】【分析】由平行线的判定方法得出A是假命题;由平行四边形的判定定理得出B是真命题;由对顶角的定义得出C是假命题;由圆内接四边形的性质得出D是假命题;综上,即可得出答案.A.同旁内角相等,两直线平行;假命题;B.对角线互相平分的四边形是平行四边形;真命题;C.相等的两个角是对顶角;假命题;D.圆内接四边形对角相等;假命题;故选:B.【点睛】本题考查了命题与定理、平行线的判定、平行四边形的判定、对顶角的定义、圆内接四边形的性质;熟练掌握相关性质和定理、定义是解题关键.14.下列命题是真命题的是( )A .一组对边平行且有一组对角相等的四边形是平行四边形B .对角线相等的四边形是矩形C .一组对边平行且另一组对边相等的四边形是平行四边形D .对角线互相垂直且相等的四边形是正方形【答案】A【解析】【分析】根据平行四边形的判定定理以及矩形、正方形的判定即可逐一判断.【详解】解:如下图,若四边形ABCD ,AD ∥BC ,∠A=∠C ,∵AD ∥BC ,∴∠A+∠B=180°,∵∠A=∠C ,∴∠C+∠B=180°,∴AB ∥CD ,∴四边形ABCD 是平行四边形,故A 正确;B 、对角线相等的四边形也可能为等腰梯形,故B 错误;C 、一组对边平行且另一组对边相等的四边形也可能为等腰梯形,故C 错误;D 、对角线互相垂直平分且相等的四边形是正方形,故D 错误.故选:A .【点睛】本题考查了平行四边形、矩形、正方形的判定定理,是基础知识要熟练掌握.15.已知:在ABC V 中,AB AC ≠,求证:.B C ∠≠∠若用反证法来证明这个结论,可以假设( )A .AB ∠=∠B .AB BC = C .B C ∠=∠D .A C ∠=∠【答案】C【解析】【分析】反证法的步骤:1、假设命题反面成立;2、从假设出发,经过推理得出和反面命题矛盾,或者与定义、公理、定理矛盾;3、得出假设命题不成立是错误的,即所求证命题成立.【详解】已知:在ABC V 中,AB AC ≠,求证:.B C ∠≠∠若用反证法来证明这个结论,可以假设B C ∠=∠,由“等角对等边”可得AB=AC,这与已知矛盾,所以.B C ∠≠∠故选C【点睛】本题考核知识点:反证法. 解题关键点:理解反证法的一般步骤.16.交换下列命题的题设和结论,得到的新命题是假命题的是( )A .两直线平行,同位角相等B .相等的角是对顶角C .所有的直角都是相等的D .若a=b ,则a ﹣3=b ﹣3【答案】C【解析】【分析】写出原命题的逆命题,根据相关的性质、定义判断即可.【详解】解:交换命题A 的题设和结论,得到的新命题是同位角相等,两直线平行是真命题; 交换命题B 的题设和结论,得到的新命题是对顶角相等是真命题;交换命题C 的题设和结论,得到的新命题是所有的相等的角都是直角是假命题; 交换命题D 的题设和结论,得到的新命题是若a-3=b-3,则a=b 是真命题,故选C .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.17.下面命题的逆命题正确的是( )A .对顶角相等B .邻补角互补C .矩形的对角线互相平分D .等腰三角形两腰相等【答案】D【解析】【分析】先分别写出四个命题的逆命题,然后利用对顶角的定义、邻补角的定义、矩形的判断和等腰三角形的判定方法对各命题的真假进行判断.解:A.对顶角相等的逆命题为相等的角为对顶角,此逆命题为假命题;B.邻补角互补的逆命题为互补的角为邻补角,此逆命题为假命题;C.矩形的对角线互相平分的逆命题为对角线互相平分的四边形为矩形,此逆命题为假命题;D.等腰三角形两腰相等的逆命题为两边相等的三角形为等腰三角形,此逆命题为真命题. 故答案为D .【点睛】本题考查了命题与定理,掌握举出反例法是判断命题的真假的重要方法.18.下列命题中哪一个是假命题( )A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A 、8的立方根是2,正确,是真命题;B 、在函数3y x =的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D 、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C .【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.19.下面说法正确的个数有( )①方程329x y +=的非负整数解只有13x y ==,;②由三条线段首尾顺次连接所组成的图形叫做三角形;③如果1122A B C ∠=∠=∠,那么ABC V 是直角三角形;④各边都相等的多边形是正多边形;⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形一定是钝角三角形.A .0个B .1个C .2个D .3个【答案】A【解析】根据二元一次方程的解的定义可对①进行判断;根据三角形的定义对②进行判断;根据直角三角形的判定对③进行判断;根据正多边形的定义对④进行判断;根据钝角三角形的定义对⑤进行判断.【详解】解:①二元一次方程329x y +=的非负整数解是x=3,y=0或x=1,y=3,原来的说法错误;②由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形,原来的说法错误;③如果3672=72A B C ∠=︒∠=︒∠︒,,,那么ABC V 不是直角三角形,故错误; ④各边都相等,各角也相等的多边形是正多边形,故错误.⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形是钝角三角形或直角三角形,故错误,故选A.【点睛】此题考查命题与定理的知识,解题的关键是了解二元一次方程的解的定义、三角形的定义、直角三角形的判定、正多边形的定义及钝角三角形的定义等知识,难度不大.20.用三个不等式a >b ,ab >0,1a >1b中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( ) A .0B .1C .2D .3 【答案】A【解析】【分析】由题意得出3个命题,由不等式的性质再判断真假即可.【详解】解:①若a >b ,ab >0,则1a >1b ;假命题: 理由:∵a >b ,ab >0,∴a >b >0, ∴1a <1b; ②若ab >0,1a >1b,则a >b ,假命题; 理由:∵ab >0,∴a 、b 同号, ∵1a >1b ,∴a<b;③若a>b,1a>1b,则ab>0,假命题;理由:∵a>b,1a>1b,∴a、b异号,∴ab<0.∴组成真命题的个数为0个;故选:A.【点睛】本题考查了命题与定理、不等式的性质、命题的组成、真命题和假命题的定义;熟练掌握命题的组成和不等式的性质是解题的关键.。
2023年中考数学二轮复习之命题与证明一.选择题(共10小题)1.(2022秋•鸡泽县期末)下列命题中是真命题的有( )个.①作线段AB∥CD;②正数大于负数;③钝角和锐角之和为180°;④今天的天气好吗?⑤等腰三角形是轴对称图形;⑥若a、b满足a2=b2,则a=b.A.2B.3C.4D.5 2.(2022秋•沧州期末)下列众题中,其逆命题是假命题的是( )A.等腰三角的两个底角相等B.直角三角形中两个锐角互余C.全等三角形的对应角相等D.如果,那么a=b3.(2022秋•未央区期末)下列命题是真命题的是( )A.对角线相等的四边形是矩形B.一组对边平行,另一组对边相等的四边形是平行四边形C.对角线互相垂直的四边形是菱形D.对角线互相垂直的矩形是正方形4.(2022秋•抚州期末)下列命题中,是真命题的有( )个①同旁内角互补;②两条边及一个内角分别对应相等的两个三角形是全等三角形;③的算术平方根是3;④若ab>0,则点(a,b)在第一象限或第三象限.A.1B.2C.3D.4 5.(2022秋•屯留区期末)下列命题中,为真命题的是( )A.﹣9的平方根为±3B.一个数的平方根等于它的算术平方根C.的相反数为D.没有倒数6.(2022秋•桥西区期末)下列命题的逆命题是真命题的是( )A.若a>0,b>0,则a+b>0B.若a=b,则|a|=|b|C.对顶角相等D.两直线平行,同位角相等7.(2022秋•陕西期末)下列命题的逆命题中,属于真命题的是( )A.如果a=0,b=0,则ab=0B.全等三角形的周长相等C.两直线平行,同位角相等D.若a=b,则a2=b28.(2022秋•宝山区期末)下列命题中,假命题是( )A.若点C、D在线段AB的垂直平分线上,则AC=BC,AD=BDB.若AC=BC,AD=BD,则直线CD是线段AB的垂直平分线C.若PA=PB,则点P在线段AB的垂直平分线上D.若PA=PB,则过点P的直线是线段AB的垂直平分线9.(2022秋•南安市期末)下列命题是假命题的是( )A.有一个角是60°的三角形是等边三角形B.有两个角是60°的三角形是等边三角形C.三个角都相等的三角形是等边三角形D.三边相等的三角形是等边三角形10.(2022秋•永安市期末)能说明命题“对于任意实数,.”是假命题,其中a可取的值是( )A.﹣1B.0C.1D.二.填空题(共8小题)11.(2022秋•慈溪市期末)能说明命题:“若两个角α,β互补,则这两个角必为一个锐角一个钝角”是假命题的反例是 .12.(2022秋•盐田区期末)用一个k的值推断命题“一次函数y=kx+1(k≠0)中,y随着x 的增大而增大”为假命题,这个值可以是 .(注:举出一个即可)13.(2022秋•青田县期末)命题“如果ab=1,那么a,b互为倒数”的逆命题为 .14.(2023•金水区开学)“你的作业做完了吗”这句话 命题.(填“是”或者“不是”)15.(2022秋•徐汇区校级期末)在平面内,经过点P且半径等于1的圆的圆心的轨迹是 .16.(2022秋•常德期末)用反证法证明:在一个三角形中不能有两个角是钝角.应先假设: .17.(2022秋•莲池区校级期末)用一组a,b的值说明“若a<b,则a2<b2”是假命题,若小明取a=﹣2,则b= .18.(2022秋•仙居县期末)如图,在△ABC中,∠ABC=115°,AB=BC=6cm,将△ABC 绕点B顺时针旋转得到△DBE,过点C作CF⊥BE于点F,当点E、B、A在同一直线上时停止旋转.在这一旋转过程中,点F所经过的路径长为 .三.解答题(共2小题)19.(2022秋•卧龙区校级期末)学习了三角形全等的判定方法后可知,有两边及其中一边的对角分别相等的两个三角形不一定全等,那么什么时候全等什么时候不全等呢?小聪将命题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.并思考要想解决问题,应把∠B分为“直角、锐角、钝角”三种情况进行探究:(1)第一种情况:当∠B是直角时,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据“HL”定理,可以知道Rt△ABC≌Rt△DEF.(2)第二种情况:当∠B是锐角时,如图,BC=EF,∠B=∠E<90°,在射线EQ上有点D,使DF=AC,在答题卡的图中画出符合条件的点D,根据作图可以判断△ABC 和△DEF的关系 .A、不全等B、不一定全等C、全等(3)第三种情况:当∠B是钝角时,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E>90°,求证:△ABC≌△DEF.20.(2022秋•桐柏县期末)函数图象是研究函数的重要工具.探究函数性质时,我们经历了列表、描点、连线画出函数图象,然后观察分析图象特征,概括函数性质的过程.以下是课外兴趣小组研究函数的图象、性质及其应用的部分过程,请按要求完成下列各题:(1)下表是函数y与自变量x的几组对应值,则a= ,m= ;x…﹣5﹣4﹣3﹣2﹣1﹣0.500.512345…y…﹣0.8﹣0.7﹣0.50 1.5343m0﹣0.5﹣0.7﹣0.8…(2)如图在平面直角坐标系中,已经描出了该函数图象的部分点并绘制了部分图象,请把图象补充完整;(3)观察函数的图象,判断下列命题的真假.(在题后括号内正确的打“√”,错误的打“×”)①该函数图象是轴对称图形,它的对称轴为直线x=0; ;②该函数在自变量的取值范围内有最大值,当x=0时取最大值4; ;③若当x<h时,函数y的值随x的增大而增大,则h的值是0; ;④该函数图象与直线y=﹣1没有公共点. ;(4)结合相关函数的图象,直接写出不等式的解集(近似值保留一位小数,误差不超过0.2);(5)若函数的图象与直线y=k有两个公共点,则常数k的取值范围是 .2023年中考数学二轮复习之命题与证明参考答案与试题解析一.选择题(共10小题)1.(2022秋•鸡泽县期末)下列命题中是真命题的有( )个.①作线段AB∥CD;②正数大于负数;③钝角和锐角之和为180°;④今天的天气好吗?⑤等腰三角形是轴对称图形;⑥若a、b满足a2=b2,则a=b.A.2B.3C.4D.5【考点】命题与定理;轴对称图形;等腰三角形的性质.【专题】线段、角、相交线与平行线;推理能力.【分析】根据真命题的概念以及等腰三角形的性质、平方的特点的知识即可判断.【解答】解:①作线段AB∥CD,不是命题;②正数大于负数;是真命题;③钝角和锐角之和为180°,是假命题;④今天的天气好吗?不是命题;⑤等腰三角形是轴对称图形,是真命题;⑥若a、b满足a2=b2,则a=b,是假命题.故选:A.【点评】本题考查命题的知识,解题的关键是了解有关定义及性质.2.(2022秋•沧州期末)下列众题中,其逆命题是假命题的是( )A.等腰三角的两个底角相等B.直角三角形中两个锐角互余C.全等三角形的对应角相等D.如果,那么a=b【考点】命题与定理;全等三角形的性质.【专题】等腰三角形与直角三角形;推理能力.【分析】写出各命题的逆命题,再根据等腰三角形的判定,三角形内角和定理,全等三角形的判定,逐项判断即可求解.【解答】解:A、逆命题为:有两个角相等的三角形是等腰三角形,是真命题,故本选项不符合题意;B、逆命题为:有两个角互余的三角形是直角三角形,是真命题,故本选项不符合题意;C、逆命题为:对应角相等的三角形全等,是假命题,故本选项符合题意;D、逆命题为:如果a=b,那么,是真命题,故本选项不符合题意.故选:C.【点评】本题考查的是命题与定理,涉及到等腰三角形的判定,三角形内角和定理,全等三角形的判定,判断命题的真假,逆命题等知识,熟练掌握相关知识点是解题的关键.3.(2022秋•未央区期末)下列命题是真命题的是( )A.对角线相等的四边形是矩形B.一组对边平行,另一组对边相等的四边形是平行四边形C.对角线互相垂直的四边形是菱形D.对角线互相垂直的矩形是正方形【考点】命题与定理;平行四边形的判定;菱形的判定;矩形的判定与性质;正方形的判定.【专题】矩形菱形正方形;推理能力.【分析】根据特殊平行四边形的判定定理即可一一判定.【解答】解:A.对角线相等的平行四边形是矩形,故该命题错误,是假命题,不符合题意;B.一组对边平行,另一组对边也平行的四边形是平行四边形,故该命题错误,是假命题,不符合题意;C.对角线互相垂直平分的四边形是菱形,故该命题错误,是假命题,不符合题意;D.对角线互相垂直的矩形是正方形,故该命题正确,是真命题,符合题意.故选:D.【点评】本题考查的是命题与定理及特殊四边形的判定,熟练掌握和运用各特殊四边形的判定方法是解决本题的关键.4.(2022秋•抚州期末)下列命题中,是真命题的有( )个①同旁内角互补;②两条边及一个内角分别对应相等的两个三角形是全等三角形;③的算术平方根是3;④若ab>0,则点(a,b)在第一象限或第三象限.A.1B.2C.3D.4【考点】命题与定理;坐标与图形性质;同位角、内错角、同旁内角;全等三角形的判定.【专题】线段、角、相交线与平行线;推理能力.【分析】依据平行线的性质,全等三角形的判定,算术平方根的定义及象限点的坐标特征分别判断即可.【解答】解:由两直线平行,同旁内角互补,故①错误;依据两边及夹角对应相等的两三角形全等,故②错误;的算术平方根是,故③错误;若ab>0,则点(a,b)在第一象限或第三象限,故④正确,真命题有1个.故选:A.【点评】本题考查了命题与定理,解题的关键是了解有关的定义及性质,难度不大.5.(2022秋•屯留区期末)下列命题中,为真命题的是( )A.﹣9的平方根为±3B.一个数的平方根等于它的算术平方根C.的相反数为D.没有倒数【考点】命题与定理;平方根;算术平方根;实数的性质.【专题】实数;推理能力.【分析】根据平方根,算术平方根,实数的性质进行求解即可.【解答】解:A、9的平方根为±3,﹣9没有平方根,是假命题,不符合题意;B、一个数的平方根不等于它的算术平方根,是假命题,不符合题意;C、的相反数为,是真命题,符合题意;D、有倒数,是假命题,不符合题意.故选:C.【点评】本题主要考查的是命题与定理,平方根,算术平方根,实数的性质,熟知相关知识是解题的关键.6.(2022秋•桥西区期末)下列命题的逆命题是真命题的是( )A.若a>0,b>0,则a+b>0B.若a=b,则|a|=|b|C.对顶角相等D.两直线平行,同位角相等【考点】命题与定理;绝对值;有理数的加法;对顶角、邻补角;平行线的性质.【专题】实数;线段、角、相交线与平行线;推理能力.【分析】首先明确各个命题的逆命题,再分别分析各逆命题的题设是否能推出结论,可以利用排除法得出答案.【解答】解:A、若a>0,b>0,则a+b>0的逆命题是若a+b>0,则a>0,b>0,逆命题是假命题,不符合题意;B、若a=b,则|a|=|b|的逆命题是若|a|=|b|,则a=b,逆命题是假命题,不符合题意;C、对顶角相等的逆命题是相等的角是对顶角,逆命题是假命题,不符合题意;D、两直线平行,同位角相等的逆命题是同位角相等,两直线平行,逆命题是真命题,符合题意;故选:D.【点评】此题主要考查学生对命题与逆命题的理解及真假命题的判断能力,解题的关键是能够正确的得到原命题的逆命题.7.(2022秋•陕西期末)下列命题的逆命题中,属于真命题的是( )A.如果a=0,b=0,则ab=0B.全等三角形的周长相等C.两直线平行,同位角相等D.若a=b,则a2=b2【考点】命题与定理;全等三角形的性质.【专题】线段、角、相交线与平行线;推理能力.【分析】首先明确各个命题的逆命题,再分别分析各逆命题的题设是否能推出结论,可以利用排除法得出答案.【解答】解:A、如果ab=0,则a=0,b=0,是假命题,应该是如果ab=0,则a=0或b=0,此选项错误,不符合题意;B、周长相等的三角形不一定是全等三角形,此选项错误,不符合题意;C、同位角相等,两直线平行,是真命题,此选项正确,符合题意;D、若a2=b2,则a=b,是假命题,应该是若a2=b2,则a=b或a=﹣b,此选项错误,不符合题意.故选:C.【点评】本题主要考查学生对命题与逆命题的理解及真假命题的判断能力,解题的关键是能够正确的得到原命题的逆命题.8.(2022秋•宝山区期末)下列命题中,假命题是( )A.若点C、D在线段AB的垂直平分线上,则AC=BC,AD=BDB.若AC=BC,AD=BD,则直线CD是线段AB的垂直平分线C.若PA=PB,则点P在线段AB的垂直平分线上D.若PA=PB,则过点P的直线是线段AB的垂直平分线【考点】命题与定理;线段垂直平分线的性质.【专题】线段、角、相交线与平行线;推理能力.【分析】利用线段的垂直平分线的性质分别判断即可.【解答】解:A、若点C、D在线段AB的垂直平分线上,则AC=BC,AD=BD,正确,是真命题,不符合题意;B、若AC=BC,AD=BD,则直线CD是线段AB的垂直平分线,正确,是真命题,不符合题意;C、若PA=PB,则点P在线段AB的垂直平分线上,正确,是真命题,不符合题意;D、若PA=PB,则过点P的直线不一定是线段AB的垂直平分线,故错误,是假命题,符合题意.故选:D.【点评】本题考查了命题与定理的知识,解题的关键是了解线段的垂直平分线的性质及判定方法,难度较小.9.(2022秋•南安市期末)下列命题是假命题的是( )A.有一个角是60°的三角形是等边三角形B.有两个角是60°的三角形是等边三角形C.三个角都相等的三角形是等边三角形D.三边相等的三角形是等边三角形【考点】命题与定理;等边三角形的性质.【专题】等腰三角形与直角三角形;推理能力.【分析】利用等边三角形的判定方法分别判断后即可确定正确的选项.【解答】解:A、有一个角是60°的等腰三角形是等边三角形,故原命题错误,是假命题,符合题意;B、有两个角是60°的三角形是等边三角形,正确,是真命题,不符合题意;C、三个角都相等的三角形是等边三角形,正确,是真命题,不符合题意;D、三边相等的三角形是等边三角形,正确,是真命题,不符合题意.故选:A.【点评】本题考查了命题与定理的知识,解题的关键是了解等边三角形的判定方法,难度较小.10.(2022秋•永安市期末)能说明命题“对于任意实数,.”是假命题,其中a可取的值是( )A.﹣1B.0C.1D.【考点】命题与定理;二次根式的性质与化简.【专题】实数;运算能力.【分析】分别把各选项的值代入即可进行判断.【解答】解:A.当a=﹣1时,,符合题意;B.当a=0时,,不符合题意;C.当a=1时,,不符合题意;D.当时,,不符合题意.故选:A.【点评】本题考查的是命题的真假判断,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.二.填空题(共8小题)11.(2022秋•慈溪市期末)能说明命题:“若两个角α,β互补,则这两个角必为一个锐角一个钝角”是假命题的反例是 α=90°,β=90° .【考点】命题与定理;余角和补角.【专题】三角形;推理能力.【分析】举出一个反例即可.【解答】解:若两个角α,β互补,则这两个角不一定一个是锐角一个是钝角,如α=90°,β=90°,故答案为:α=90°,β=90°.【点评】本题考查的是命题与定理,证明一个命题是假命题举出一个反例是解决此类题的关键.12.(2022秋•盐田区期末)用一个k的值推断命题“一次函数y=kx+1(k≠0)中,y随着x 的增大而增大”为假命题,这个值可以是 ﹣1(答案不唯一) .(注:举出一个即可)【考点】命题与定理;一次函数的性质.【专题】一次函数及其应用;应用意识.【分析】根据一次函数的性质:对于一次函数y=kx+b,当k<0时,y随x的增大而减小解答即可.【解答】解:当k=﹣1时,一次函数为y=﹣x+1,y随着x的增大而减小,∴命题“一次函数y=kx+1(k≠0)中,y随着x的增大而增大”.是错误的,故答案为:﹣1(答案不唯一).【点评】本题考查的是命题和定理、一次函数的性质,掌握对于一次函数y=kx+b,当k <0时,y随x的增大而减小是解题的关键.13.(2022秋•青田县期末)命题“如果ab=1,那么a,b互为倒数”的逆命题为 如果a,b互为倒数,那么ab=1 .【考点】命题与定理;倒数.【专题】实数;数感;推理能力.【分析】把一个命题的条件和结论互换就得到它的逆命题.【解答】解:命题“如果ab=1,那么a,b互为倒数”的逆命题为:如果a,b互为倒数,那么ab=1;故答案为:如果a,b互为倒数,那么ab=1.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.14.(2023•金水区开学)“你的作业做完了吗”这句话 不是 命题.(填“是”或者“不是”)【考点】命题与定理.【专题】推理填空题;推理能力.【分析】根据命题的定义进行判断即可.【解答】解:“你的作业做完了吗”这句话不是命题.故答案为:不是.【点评】本题考查了命题的定义,判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.凡是作图语句与疑问句都不是命题.15.(2022秋•徐汇区校级期末)在平面内,经过点P且半径等于1的圆的圆心的轨迹是 以点P为圆心,1为半径的圆 .【考点】轨迹.【专题】圆的有关概念及性质;几何直观.【分析】经过点P且距离等1的圆的圆心的轨迹是以点P为圆心,1为半径的圆.【解答】解:在平面内,经过点P且半径等于1的圆的圆心的轨迹是以点P为圆心,1为半径的圆.故答案为:以点P为圆心,1为半径的圆.【点评】本题考查的是圆的相关概念、根据几何术语正确作出图形是解决此题的关键.16.(2022秋•常德期末)用反证法证明:在一个三角形中不能有两个角是钝角.应先假设: 这个三角形中有两个角是钝角 .【考点】反证法;三角形内角和定理.【专题】反证法;推理能力.【分析】根据反证法的第一步是从结论的反面出发进而假设得出即可.【解答】解:用反证法证明命题“在一个三角形中不能有两个角是钝角”第一步应假设这个三角形中有两个角是钝角.故答案为:这个三角形中有两个角是钝角.【点评】此题主要考查了反证法,正确掌握反证法的第一步是解题关键.17.(2022秋•莲池区校级期末)用一组a,b的值说明“若a<b,则a2<b2”是假命题,若小明取a=﹣2,则b= ﹣1 .【考点】命题与定理.【专题】实数;数感.【分析】找到满足题设但不满足结论的一对数即可.【解答】解:当a=﹣2,b=﹣1时,满足a<b,但是a2>b2,∴命题“若a<b,则a2<b2”是错误的.故答案为:﹣1(答案不唯一).【点评】此题主要考查了命题与定理,要熟练掌握,解答此题的关键是要明确:任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.18.(2022秋•仙居县期末)如图,在△ABC中,∠ABC=115°,AB=BC=6cm,将△ABC 绕点B顺时针旋转得到△DBE,过点C作CF⊥BE于点F,当点E、B、A在同一直线上时停止旋转.在这一旋转过程中,点F所经过的路径长为 cm .【考点】轨迹;旋转的性质;等腰三角形的性质.【专题】等腰三角形与直角三角形;平移、旋转与对称;与圆有关的计算;运算能力;推理能力.【分析】取BC的中点O,连接OF,由∠BFC=90°,得OF=OB=OC=BC,可知点F在以BC为直径的圆上运动,当点E、A、B在同一直线上,则∠EBC=180°﹣∠ABC=65°,所以∠COF=2∠EBC=130°,而OF=BC=3,即可根据弧长公式求得=cm,则点F所经过的路径长为=cm,于是得到问题的答案.【解答】解:如图1,取BC的中点O,连接OF,∵CF⊥BE于点F,∴∠BFC=90°,∴OF=OB=OC=BC,∴点F在以BC为直径的圆上运动,如图2,点E、A、B在同一直线上,∵∠ABC=115°,AB=BC=6cm,∴∠EBC=180°﹣∠ABC=180°﹣115°=65°,∴∠COF=2∠EBC=2×65°=130°,∴OF=BC=×6=3(cm),∴==(cm),∴点F所经过的路径长为=cm,故答案为:cm.【点评】此题重点考查直角三角形斜边上的中线等于斜边的一半、旋转的性质、圆周角定理、弧长公式等知识,正确地作出所需要的辅助线是解题的关键.三.解答题(共2小题)19.(2022秋•卧龙区校级期末)学习了三角形全等的判定方法后可知,有两边及其中一边的对角分别相等的两个三角形不一定全等,那么什么时候全等什么时候不全等呢?小聪将命题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.并思考要想解决问题,应把∠B分为“直角、锐角、钝角”三种情况进行探究:(1)第一种情况:当∠B是直角时,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据“HL”定理,可以知道Rt△ABC≌Rt△DEF.(2)第二种情况:当∠B是锐角时,如图,BC=EF,∠B=∠E<90°,在射线EQ上有点D,使DF=AC,在答题卡的图中画出符合条件的点D,根据作图可以判断△ABC 和△DEF的关系 B .A、不全等B、不一定全等C、全等(3)第三种情况:当∠B是钝角时,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E>90°,求证:△ABC≌△DEF.【考点】命题与定理;全等三角形的性质;全等三角形的判定;直角三角形全等的判定.【专题】分类讨论;图形的全等;几何直观.【分析】(2)按要求画出图形,观察图形可知△ABC和△DEF不一定全等;(3)过点C作AB边的垂线交AB的延长线于点M,过点F作DE边的垂线交DE的延长线于N,由AAS可证△CBM≌△FEN,即得BM=EN,CM=FN,根据HL证明Rt△ACM ≌Rt△DFN,有AM=DN,即得AB=DE,再由SSS可得△ABC≌△DEF.【解答】(2)解:如图:由图可知,满足条件的有D和D',故△ABC和△DEF不一定全等,故答案为:B;(3)证明:过点C作AB边的垂线交AB的延长线于点M,过点F作DE边的垂线交DE 的延长线于N,如图:∵∠ABC=∠DEF,∴∠CBM=∠FEN,∵CM⊥AB,FN⊥DE,∴∠CMB=∠FNE=90°.在△CBM和△FEN中,,∴△CBM≌△FEN(AAS),∴BM=EN,CM=FN,在Rt△ACM和Rt△DFN中,,∴Rt△ACM≌Rt△DFN(HL),∴AM=DN,∴AM﹣BM=DN﹣EN,即AB=DE.又∵BC=EF,AC=DF,∴△ABC≌△DEF(SSS).【点评】本题是三角形综合题,考查全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.20.(2022秋•桐柏县期末)函数图象是研究函数的重要工具.探究函数性质时,我们经历了列表、描点、连线画出函数图象,然后观察分析图象特征,概括函数性质的过程.以下是课外兴趣小组研究函数的图象、性质及其应用的部分过程,请按要求完成下列各题:(1)下表是函数y与自变量x的几组对应值,则a= ﹣1 ,m= 1.5 ;x…﹣5﹣4﹣3﹣2﹣1﹣0.500.512345…y…﹣0.8﹣0.7﹣0.50 1.5343m0﹣0.5﹣0.7﹣0.8…(2)如图在平面直角坐标系中,已经描出了该函数图象的部分点并绘制了部分图象,请把图象补充完整;(3)观察函数的图象,判断下列命题的真假.(在题后括号内正确的打“√”,错误的打“×”)①该函数图象是轴对称图形,它的对称轴为直线x=0; √ ;②该函数在自变量的取值范围内有最大值,当x=0时取最大值4; √ ;③若当x<h时,函数y的值随x的增大而增大,则h的值是0; × ;④该函数图象与直线y=﹣1没有公共点. √ ;(4)结合相关函数的图象,直接写出不等式的解集(近似值保留一位小数,误差不超过0.2);(5)若函数的图象与直线y=k有两个公共点,则常数k的取值范围是 ﹣1<k<4 .【考点】命题与定理;轴对称图形;函数值;一次函数与一元一次不等式.【专题】函数及其图象;几何直观.【分析】(1)把(0,4)代入解析式即可求得a,利用函数解析式,求出x=1对应的函数值即可求得m;(2)利用描点法画出图象即可;(3)观察图象即可判断;(4)利用图象即可求得;(5)利用图象即可解决问题.【解答】解:(1)把(0,4)代入得,4=﹣4a,解得a=﹣1,∴y=﹣,当x=1时,m=﹣=1.5,故答案为:﹣1,1.5;(2)函数的图象补充完整如图所示:(3)观察函数y=﹣的图象,①该函数图象是轴对称图形,它的对称轴为直线x=0;√;②该函数在自变量的取值范围内有最大值,当x=0时取最大值4;√;③若当x<h时,函数y的值随x的增大而增大,则h的值是0;×;④该函数图象与直线y=﹣1没有公共点.√;故答案为:①√②√③×④√;(4)由图象可知,∴不等式﹣>﹣x+3的解集为﹣0.3<x<1或x>2;(5)由图象可知,函数y=﹣的图象与直线y=k有两个公共点,则常数k的取值范围是﹣1<k<4.故答案为:﹣1<k<4.【点评】本题考查函数图象和性质,能够从表格中获取信息,利用描点法画出函数图象,并结合函数图象解题是关键.考点卡片1.绝对值(1)概念:数轴上某个数与原点的距离叫做这个数的绝对值.①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.(2)如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.即|a|={a(a>0)0(a=0)﹣a(a<0)2.倒数(1)倒数:乘积是1的两数互为倒数.一般地,a•=1 (a≠0),就说a(a≠0)的倒数是.(2)方法指引:①倒数是除法运算与乘法运算转化的“桥梁”和“渡船”.正像减法转化为加法及相反数一样,非常重要.倒数是伴随着除法运算而产生的.②正数的倒数是正数,负数的倒数是负数,而0 没有倒数,这与相反数不同.【规律方法】求相反数、倒数的方法求一个数的相反数时,只需在这个数前面加上“﹣”即可求一个数的相反数求一个数的倒数求一个整数的倒数,就是写成这个整数分之一求一个分数的倒数,就是调换分子和分母的位置注意:0没有倒数.。
初中数学命题与证明的基础测试题附答案一、选择题1.用反证法证明命题:“在三角形中,至多有一个内角是直角”,正确的假设是()A.在三角形中,至少有一个内角是直角B.在三角形中,至少有两个内角是直角C.在三角形中,没有一个内角是直角D.在三角形中,至多有两个内角是直角【答案】B【解析】【分析】反证法即假设结论的反面成立,“最多有一个”的反面为“至少有两个”.【详解】解:∵“最多有一个”的反面是“至少有两个”,反证即假设原命题的否命题正确,∴应假设:在三角形中,至少有两个内角是直角.故选:B.【点睛】此题主要考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,不需要一一否定,只需否定其一即可.2.下列语句正确的个数是()①两个五次单项式的和是五次多项式②两点之间,线段最短③两点之间的距离是连接两点的线段④延长射线AB,交直线CD于点P⑤若小明家在小丽家的南偏东35︒方向,则小丽家在小明家的北偏西35︒方向A.1 B.2 C.3 D.4【答案】C【解析】【分析】根据单项式和多项式的性质、线段的定义以及性质、射线的定义、方位角的性质对各项进行分析即可.【详解】①两个五次单项式的和可能为零、五次单项式或五次多项式,错误;②两点之间,线段最短,正确;③两点之间的距离是连接两点的线段的长度,错误;④延长射线AB,交直线CD于点P,正确;⑤若小明家在小丽家的南偏东35︒方向,则小丽家在小明家的北偏西35︒方向,正确;故语句正确的个数有3个故答案为:C.【点睛】本题考查语句是否正确的问题,掌握单项式和多项式的性质、线段的定义以及性质、射线的定义、方位角的性质是解题的关键.3.下列命题中是假命题的是( ).A .同旁内角互补,两直线平行B .直线a b ⊥r r,则a 与b 相交所成的角为直角C .如果两个角互补,那么这两个角是一个锐角,一个钝角D .若a b ∥,a c ⊥,那么b c ⊥【答案】C【解析】根据平行线的判定,可知“同旁内角互补,两直线平行”,是真命题;根据垂直的定义,可知“直线a b ⊥,则a 与b 相交所成的角为直角”,是真命题; 根据互补的性质,可知“两个角互补,这两个角可以是两个直角”,是假命题;根据垂直的性质和平行线的性质,可知“若a b P ,a c ⊥,那么b c ⊥”,是真命题. 故选C.4.下列命题中是假命题的是( )A .一个锐角的补角大于这个角B .凡能被2整除的数,末位数字必是偶数C .两条直线被第三条直线所截,同旁内角互补D .相反数等于它本身的数是0【答案】C【解析】试题分析:利用锐角的性质、偶数的定义、平行线的性质及相反数的定义分别判断后即可确定正确的选项.A 、一个锐角的补角大于这个角,正确,是真命题,不符合题意;B 、凡能被2整除的数,末尾数字必是偶数,正确,是真命题,不符合题意;C 、两条平行直线被第三条直线所截,同旁内角才互补,故错误,是假命题,符合题意;D 、相反数等于他本身的数是0,正确,是真命题,不符合题意考点:命题与定理.5.下列说法中,正确..的是( ) A .图形的平移是指把图形沿水平方向移动.B .平移前后图形的形状和大小都没有发生改变.C .“相等的角是对顶角”是一个真命题D .“直角都相等”是一个假命题【答案】B【解析】图形的平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移,平移前后图形的形状和大小都没有发生改变.而相等的角不一定是对顶角,C 是一个假命题,直角都相等是真命题.故选B6.下列命题中,是假命题的是( )A .若a>b ,则-a<-bB .若a>b ,则a+3>b+3C .若a>b ,则44a b > D .若a>b ,则a 2>b 2【答案】D【解析】【分析】 利用不等式的性质分别判断后即可确定正确的选项.【详解】A 、若a >b ,则-a <-b ,正确,是真命题;B 、若a >b ,则a+3>b+3,正确,是真命题;C 、若a >b ,则44a b >,正确,是真命题; D 、若a >b ,则a 2>b 2,错误,是假命题;故选:D .【点睛】 此题考查命题与定理的知识,解题的关键是了解不等式的性质,难度不大.7.下列命题:①两条直线被第三条直线所截,同位角相等;②两点之间,线段最短;③相等的角是对顶角;④直角三角形的两个锐角互余;⑤同角或等角的补角相等.其中真命题的个数是( )A .2个B .3个C .4个D .5个【答案】B【解析】【分析】【详解】解:命题①两条平行线被第三条直线所截,同位角相等,错误,为假命题;命题②两点之间,线段最短,正确,为真命题;命题③相等的角是对顶角,错误,为假命题;命题④直角三角形的两个锐角互余,正确,为真命题;命题⑤同角或等角的补角相等,正确,为真命题,故答案选B.考点:命题与定理.8.下列命题中,是真命题的是()A.将函数y=12x+1向右平移2个单位后所得函数的解析式为y=12xB.若一个数的平方根等于其本身,则这个数是0和1C.对函数y=2x,其函数值y随自变量x的增大而增大D.直线y=3x+1与直线y=﹣3x+2一定互相平行【答案】A【解析】【分析】利用一次函数的性质、平方根的定义、反比例函数的性质等知识分别判断后即可确定正确的选项.【详解】解:A、将函数y=12x+1向右平移2个单位后所得函数的解析式为y=12x,正确,符合题意;B、若一个数的平方根等于其本身,则这个数是0,故错误,是假命题,不符合题意;C、对函数y=2x,其函数值在每个象限内y随自变量x的增大而增大,故错误,是假命题,不符合题意;D、直线y=3x+1与直线y=﹣3x+2因比例系数不相等,故一定不互相平行,故错误,是假命题,故选:A.【点睛】本题考查了判断命题真假的问题,掌握一次函数的性质、平方根的定义、反比例函数的性质等知识是解题的关键.9.下列命题中①等腰三角形底边的中点到两腰的距离相等②如果两个三角形全等,则它们必是关于直线成轴对称的图形③如果两个三角形关于某直线成轴对称,那么它们是全等三角形④等腰三角形是关于底边中线成轴对称的图形⑤一条线段是关于经过该线段中点的直线成轴对称的图形正确命题的个数是()A.2个B.3个C.4个D.5个【答案】A【解析】【分析】根据等腰三角形的性质、轴对称图形的定义、全等三角形的判定逐个判断即可.【详解】根据等腰三角形的三线合一可知,底边中点在顶角角平分线上,再根据角平分线的性质可知,其到两腰的距离相等,则命题①正确全等的三角形不一定是成轴对称,则命题②错误成轴对称的两个三角形一定全等,则命题③正确等腰三角形是以底边中线所在直线为对称轴的轴对称图形,则命题④错误成轴对称的图形必须是两个,一个图形只能是轴对称图形,则命题⑤错误综上,正确命题的个数是2个故选:A.【点睛】本题考查了等腰三角形的性质、轴对称图形的定义、全等三角形的判定等知识点,掌握理解各定义与性质是解题关键.10.用三个不等式a>b,ab>0,1a>1b中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0 B.1 C.2 D.3【答案】A【解析】【分析】由题意得出3个命题,由不等式的性质再判断真假即可.【详解】解:①若a>b,ab>0,则1a>1b;假命题:理由:∵a>b,ab>0,∴a>b>0,∴1a<1b;②若ab>0,1a>1b,则a>b,假命题;理由:∵ab>0,∴a、b同号,∵1a>1b,∴a<b;③若a>b,1a>1b,则ab>0,假命题;理由:∵a>b,1a>1b,∴a、b异号,∴ab<0.∴组成真命题的个数为0个;故选:A.【点睛】本题考查了命题与定理、不等式的性质、命题的组成、真命题和假命题的定义;熟练掌握命题的组成和不等式的性质是解题的关键.11.下列命题是真命题的是()A.同位角相等B.对顶角互补C.如果两个角的两边互相平行,那么这两个角相等D.如果点P的横坐标和纵坐标互为相反数,那么点P在直线y x=-的图像上.【答案】D【解析】【分析】根据平行线的性质定理对A、C进行判断;利用对顶角的性质对B进行判断;根据直角坐标系下点坐标特点对D进行判断.【详解】A.两直线平行,同位角相等,故A是假命题;B.对顶角相等,故B是假命题;C.如果两个角的两边互相平行,那么这两个角相等或互补,故C是假命题;D.如果点的横坐标和纵坐标互为相反数,那么点P在直线y x=-的图像上,故D是真命题故选:D【点睛】本题考查了真命题与假命题,正确的命题称为真命题,错误的命题称为假命题.利用了平行线性质、对顶角性质、直角坐标系中点坐标特点等知识点.12.39.下列命题中,是假命题的是()A.同旁内角互补B.对顶角相等C.直角的补角仍然是直角D.两点之间,线段最短【答案】A【解析】同旁内角不一定互补,同旁内角互补的条件是两直线平行,故选A.13.下列命题中,是真命题的是()A.同位角相等B.若两直线被第三条直线所截,同旁内角互补C.同旁内角相等,两直线平行D.平行于同一直线的两直线互相平行【答案】D【解析】【分析】根据平行线的判定、平行线的性质判断即可.【详解】A、两直线平行,同位角相等,是假命题;B、若两条平行线被第三条直线所截,同旁内角互补,是假命题;C、同旁内角互补,两直线平行,是假命题;D、平行于同一直线的两条直线互相平行,是真命题;故选:D.【点睛】此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.14.下列命题中是假命题的是( )A.一个三角形中至少有两个锐角B.在同一平面内,垂直于同一直线的两条直线平行C.同角的补角相等aD.如果a为实数,那么0【答案】D【解析】A. 一个三角形中至少有两个锐角,是真命题;B. 在同一平面内,垂直于同一直线的两条直线平行,是真命题;C. 同角的补角相等,是真命题;D. 如果a为实数,那么|a|>0,是假命题;如:0是实数,|0|=0,故D是假命题;故选:D.15.下列命题是假命题的是()A.有一个角是60°的等腰三角形是等边三角形B.等边三角形有3条对称轴C.有两边和一角对应相等的两个三角形全等D.线段垂直平分线上的点到线段两端的距离相等【答案】C【解析】根据等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质一一判断即可.【详解】A.正确;有一个角是60°的等腰三角形是等边三角形;B.正确.等边三角形有3条对称轴;C.错误,SSA无法判断两个三角形全等;D.正确.线段垂直平分线上的点到线段两端的距离相等.故选:C.【点睛】本题考查了命题与定理,等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.16.下列命题的逆命题不正确...的是()A.相等的角是对顶角B.两直线平行,同旁内角互补C.矩形的对角线相等D.平行四边形的对角线互相平分【答案】C【解析】【分析】首先写出各个命题的逆命题,然后进行判断即可.【详解】A、逆命题是:对顶角相等.正确;B、逆命题是:同旁内角互补,两直线平行,正确;C、逆命题是:对角线相等的四边形是矩形,错误;D、逆命题是:对角线互相平分的四边形是平行四边形,正确.故选:C.【点睛】本题主要考查了写一个命题的逆命题的方法,首先要分清命题的条件与结论.17.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是()A.2个B.3个C.4个D.5个【答案】B【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数,进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B.【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.18.下列四个命题中,其正确命题的个数是()①若ac>bc,则a>b;②平分弦的直径垂直于弦;③一组对角相等一组对边平行的四边形是平行四边形;④反比例函数y=kx.当k<0时,y随x的增大而增大A.1 B.2 C.3 D.4【答案】A【解析】【分析】根据不等式性质、垂径定理、平行四边形的判定、反比例函数的性质,分别进行判断,即可得到答案.【详解】解:①若ac>bc,如果c>0,则a>b,故原题说法错误;②平分弦(不是直径)的直径垂直于弦,故原题说法错误;③一组对角相等一组对边平行的四边形是平行四边,故原题说法正确;④反比例函数y=kx.当k<0时,在每个象限内y随x的增大而增大,故原题说法错误;正确命题有1个,故选:A.【点睛】本题考查了判断命题的真假,解题的关键是掌握不等式性质、垂径定理、平行四边形的判定、反比例函数的性质进行判断.19.下列命题是假命题的是()A.三角形的外心到三角形的三个顶点的距离相等B.如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16 C.将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限D.若关于x的一元一次不等式组213x mx-≤⎧⎨+>⎩无解,则m的取值范围是1m£【答案】B【解析】【分析】利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别判断后即可确定正确的选项.【详解】A. 三角形的外心到三角形的三个顶点的距离相等,正确,是真命题;B. 如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题;C. 将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限,正确,是真命题;D. 若关于x的一元一次不等式组213x mx-≤⎧⎨+>⎩无解,则m的取值范围是1m£,正确,是真命题;故答案为:B【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组.20.下列命题是真命题的是()A.方程23240x x--=的二次项系数为3,一次项系数为-2B.四个角都是直角的两个四边形一定相似C.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖D.对角线相等的四边形是矩形【答案】A【解析】【分析】根据所学的公理以及定理,一元二次方程的定义,概率等知识,对各小题进行分析判断,然后再计算真命题的个数.【详解】A、正确.B、错误,对应边不一定成比例.C、错误,不一定中奖.D、错误,对角线相等的四边形不一定是矩形.故选:A.【点睛】此题考查命题与定理,熟练掌握基础知识是解题关键.。
命题与证明一、填空1.把命题“三边对应相等的两个三角形全等”写成“如果……,那么……”的形式是________________________________________________________________________.2.命题“如果22a b = ,那么a b =”的逆命题是________________________________. 3.命题“三个角对应相等的两个三角形全等” 是一个______命题(填“真”或“假”). 4.如图,已知梯形ABCD 中, AD ∥BC, AD =3, AB =CD =4, BC =7,则∠B =_______.5.用反证法证明“b 1∥b 2”时,应先假设_________.6.如图,在ΔABC 中,边AB 的垂直平分线交AC 于E, ΔABC 与ΔBEC 的周长分别为24和14,则AB =________.7.若平行四边形的两邻边的长分别为16和20, 两长边间的距离为8,则两短边的距离为__________.8.如图,在ΔABC 中,∠ABC =∠ACB =72°, BD 、CE 分别是∠ABC 和∠ACB 的平分线,它们的交点为F,则图中等腰三角形有______个. 二、选择题1.下列语句中,不是命题的是( )A.直角都等于90°B.面积相等的两个三角形全等C.互补的两个角不相等D.作线段AB 2.下列命题是真命题的是( )A.两个等腰三角形全等B.等腰三角形底边中点到两腰距离相等C.同位角相等D.两边和一角对应相等的两个三角形全等 3.下列条件中能得到平行线的是( )①邻补角的角平分线;②平行线内错角的角平分线;③平行线同位角的平分线; ④平行线同旁内角的角平分线.A. ①②B. ②④C. ②③D. ④ 4.下列命题的逆命题是真命题的是( ) A.两直线平行同位角相等 B.对顶角相等C.若a b =,则22a b =D.若(1)1a x a +>+,则1x >5.三角形中,到三边距离相等的点是( )A.三条高的交点B.三边的中垂线的交点C.三条角平分线的交点D.三条中线的交点 6.下列条件中,不能判定两个直角三角形全等的是( ) A.两条直角边对应相等 B.斜边和一锐角对应相等C.斜边和一条直角边对应相等D.面积相等7.△ABC 的三边长,,a b c 满足关系式()()()0a b b c c a ---=,则这个三角形一定是( ) A.等腰三角形 B.等边三角形 C.等腰直角三角形 D.无法确定8.如图,点E 在正方形ABCD 的边AB 上,若EB 的长为1, EC 的长为2,那么正方形ABCD 的面积是( ) 35三、解答题(每题8分,共32分)1.判断下列命题是真命题还是假命题,若是假命题,请举一个反例说明. (1)有一个角是60°的等腰三角形是等边三角形. (2)有两个角是锐角的三角形是锐角三角形.2.如图, BD ∥AC,且BD =12AC, E 为AC 中点,求证:BC =DE.ACEDB3.如图.三角形纸片ABC 中,∠A =65°,∠B =75°,将纸片的一角折叠,使点C 落在ΔABC 内,若∠1=20°,求∠2的度数.4.如图,梯形ABCD 中, AD ∥BC, ∠ABC =60°, BD 平分∠ABC, BC =2AB. 求证:AB=CD.5、已知,如图所示,正方形ABCD 的边长为1, G 为CD 边上的一个动点(点G 与C 、D 不重合),以CG 为一边向正方形ABCD 外作正方形GCEF,连接DE 交BG 的延长线于点H. (1)求证:①ΔBCG ≌ΔDCE ②HB ⊥DE(2)试问当G 点运动到什么位置时, BH 垂直平分DE?请说明理由.6、已知:如图,AB∥CD,AB =CD ,BE∥DF;求证:BE =DF ;7.已知:如图,C 为BE 上一点,点A ,D 分别在BE 两侧.AB ∥ED ,AB =CE ,BC =ED .求证:AC =CD .8.如图,AE 是∠BAC 的平分线,AB=AC ,D 是AE 反向延长线的一点,则△ABD 与△ACD 全等吗?为什么?FO DECBA第2章:命题与证明 一、填空题1、略。
命题与证明一.选择题1.下列语句不是命题的是()A.两点之间,线段最短B.不平行的两条直线有一个交点C.x与y的和等于0吗?D.对顶角不相等2.下列命题中的真命题是()A.邻补角是两个互补的角B.同位角相等C.经过一点,有且只有一条直线与已知直线平行D.两条直线相交,有两个角相等,则两条直线互相垂直3.下列命题是假命题的是()A.若|x+2|+(y-5)2=0则x=-2,y=5B.x<y,则x+2008<y+2008C.平移不改变图形的形状和大小D.单项式的系数是4. 在下列真命题中,逆命题也是真命题的是()A.若a>0,b>0,则a+b>0 B.对顶角相等C.相反数的绝对值相等D.等腰三角形的底角相等5.下列命题为假命题的是()A.三角形三个内角的和等于180°B.三角形两边之和大于第三边C.三角形两边的平方和等于第三边的平方D.三角形的面积等于一条边的长与该边上的高的乘积的一半6.如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=()A.150° B.210° C.105° D.75°二.填空题7.命题“同角的余角相等”改写成“如果……那么……”的形式可写成 .8.命题“腰与底相等的等腰三角形是等边三角形”是(真、假)命题.9.①每个命题都有逆命题②每个定理都有逆定理③真命题的逆命题都是真命题,以上说法中正确的有 .10.下列命题中,其逆命题成立的是________.(只填写序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④两条边相等的三角形是等腰三角形.11.“邻补角互补”的逆命题是___________________________.这是一个___(填“真”或“假”)命题.12.如图,在△ABC中,∠B与∠C的平分线交于点E,过点E作MN∥BC,分别交AB、AC于点M、N.若AB=5,AC=4,则△AMN的周长是.三.解答题:13.已知:如图,AB∥CD,直线EF分别交AB、CD于点E、F,∠BEF的平分线与∠DFE的平分线相交于点P.求证:∠P=90°.14.潜望镜中的两个镜子MN和PQ是互相平行的,如图所示,光线AB经镜面反射后,∠1=∠2,∠3=∠4,试说明,进入的光线AB与射出的光线CD平行吗?为什么?15.认真阅读下面关于三角形内外角平分线所夹的角探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+∠A,理由如下:∵BO和CO分别是∠ABC和∠ACB的平分线,∴∠1=∠ABC,∠2=∠ACB∴∠1+∠2=(∠ABC+∠ACB)又∵∠ABC+∠ACB=180°-∠A∴∠1+∠2=(180 °−∠A)=90°−∠A∴∠BOC=180°-(∠1+∠2)=180°-(90°-∠A)=90°+∠A探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论:_______________________________________________ .答案与解析【答案与解析】一.选择题1.【答案】C;【解析】C选项不是判断性语句,其他三项无论正确与否都是对一件事情做出了判断,是命题.2.【答案】A;3.【答案】D;【解析】单项式的系数是,所以是假命题,4.【答案】D;5.【答案】C;【解析】A、三角形三个内角的和等于180°,所以A选项为真命题;B、三角形两边之和大于第三边,所以B选项为真命题;C、直角三角形两直角边的平方和等于斜边的平方,所以C选项为假命题;D、三角形的面积等于一条边的长与该边上的高的乘积的一半,所以D选项为真命题.6.【答案】A ;【解析】翻折必有相等的角即∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=75°,∴∠AED+∠ADE=∠A′ED+∠A′DE=180°-75°=105°,∴∠1+∠2=360°-2×105°=150°.二.填空题7.【答案】如果两个角是同角的余角,那么他们相等8.【答案】真【解析】腰与底相等的等腰三角形也就是三条边都相等了,所以是等边三角形.9.【答案】①;【解析】可以说所有的命题都有逆命题,但不是所有的定理都有逆定理,真命题的逆命题不一定是真命题,如:对顶角相等.10.【答案】①④;【解析】①两直线平行,同旁内角互补,正确;②如果两个角相等,那么它们是直角,错误;③如果两个实数的平方相等,那么这两个实数相等,错误;④等腰三角形的两条边相等,正确.故答案为①④.11.【答案】互补的两个角是邻补角,假;【解析】原题设为:两个角是邻补角,结论为:这两个角互补;所以“邻补角互补”的逆命题是:互补的两个角是邻补角.有一条公共边,另一边互为反向延长线的两个角才叫邻补角,所以得到的逆命题是假命题.12.【答案】9;【解析】由在△ABC中,∠B与∠C的平分线交于点E,过点E作MN∥BC,易证得△MBE与△NCE 是等腰三角形,即ME=MB,NE=NC,继而可得△AMN的周长等于AB+AC=9.三.解答题13. 【解析】证明:∵AB∥CD,∴∠BEF+∠DFE=180°.又∵∠BEF的平分线与∠DFE的平分线相交于点P,∴∠PEF= ∠BEF,∠PFE= ∠DFE,∴∠PEF+∠PFE= (∠BEF+∠DFE)=90°.∵∠PEF+∠PFE+∠P=180°,∴∠P=90°.14.【解析】答:进入的光线AB与射出的光线CD平行.理由如下:∵MN∥PQ,∴∠2=∠3;又∵∠1=∠2,∠3=∠4,∴∠1+∠2=∠3+∠4,∴180°-∠1-∠2=180°-∠3-∠4,即∠5=∠6,∴AB∥CD.15.【解析】(1)探究2结论:∠BOC=∠A,理由如下:∵BO和CO分别是∠ABC和∠ACD的角平分线,∴∠1=∠ABC,∠2=∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠2=(∠A+∠ABC)=∠A+∠1,∵∠2是△BOC的一外角,∴∠BOC=∠2-∠1=∠A+∠1-∠1=∠A;(2)探究3:∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),∠BOC=180°-∠0BC-∠OCB,=180°-(∠A+∠ACB)-(∠A+∠ABC),=180°-∠A-(∠A+∠ABC+∠ACB),结论∠BOC=90°-∠A.。
命题与证明的技巧及练习题附解析一、选择题1.下列命题中是真命题的是( )A .两个锐角的和是锐角B .两条直线被第三条直线所截,同位角相等C .点(3,2)-到x 轴的距离是2D .若a b >,则a b ->-【答案】C【解析】【分析】根据角的定义、平行线的性质、点的坐标及不等式的性质对各选项进行分析判断,即可得解.【详解】A. 两个锐角的和是锐角是假命题,例如80°+80°=160°,是钝角,不是锐角,故本选项错误;B. 两条直线被第三条直线所截,同位角相等是假命题,两条平行线被第三条直线所截,同位角才相等,故本选项错误;C. 点(3,2)-到x 轴的距离是2是真命题,故本选项正确;D. 若a b >,则a b ->-是假命题,正确结果应为a b -<-,故本选项错误. 故选:C .【点睛】本题考查真假命题的判断,解题关键是认真判断由条件是否能推出结论,如果能举出一个反例,或由条件推出的结论与题干结论不一致,则为假命题.2.“两条直线相交只有一个交点”的题设是( )A .两条直线B .相交C .只有一个交点D .两条直线相交【答案】D【解析】【分析】任何一个命题,都由题设和结论两部分组成.题设,是命题中的已知事项,结论,是由已知事项推出的事项.【详解】“两条直线相交只有一个交点”的题设是两条直线相交.故选D .【点睛】本题考查的知识点是命题和定理,解题关键是理解题设和结论的关系.3.下列命题中真命题是( )A 2一定成立B .位似图形不可能全等C .正多边形都是轴对称图形D .圆锥的主视图一定是等边三角形【答案】C【解析】【分析】根据二次根式的性质、位似图形的定义、正多边形的性质及三视图的概念逐一判断即可得.【详解】A )2,当a <0时不成立,假命题;B 、位似图形在位似比为1时全等,假命题;C 、正多边形都是轴对称图形,真命题;D 、圆锥的主视图不一定是等边三角形,假命题,故选C .【点睛】本题考查了真命题与假命题,涉及到二次根式的性质、位似图形、正多边形、视图等知识,熟练掌握相关知识是解题的关键.4.现给出下列四个命题:①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的相似比;③菱形的面积等于两条对角线的积;④三角形的三个内角中至少有一内角不小于60°. 其中不正确的命题的个数是( )A .1个B .2个C .3个D .4个【答案】C【解析】①根据等边三角形的性质知,等边三角形是轴对称图形,不是中心对称图形,错误;②由相似三角形的性质知相似三角形的面积比等于它们的相似比的平方,错误; ③根据菱形的面积公式,错误;④根据三角形内角和定理可知,三角形的三个内角中至少有一内角不小于60°,正确. 综合以上分析,不正确的命题包括①②③.故选C .5.下列命题中是假命题的是( ).A .同旁内角互补,两直线平行B .直线a b ⊥r r,则a 与b 相交所成的角为直角C .如果两个角互补,那么这两个角是一个锐角,一个钝角D .若a b ∥,a c ⊥,那么b c ⊥【答案】C【解析】根据平行线的判定,可知“同旁内角互补,两直线平行”,是真命题;根据垂直的定义,可知“直线a b ⊥,则a 与b 相交所成的角为直角”,是真命题; 根据互补的性质,可知“两个角互补,这两个角可以是两个直角”,是假命题;根据垂直的性质和平行线的性质,可知“若a b P ,a c ⊥,那么b c ⊥”,是真命题. 故选C.6.下列命题中是假命题的是( )A .一个锐角的补角大于这个角B .凡能被2整除的数,末位数字必是偶数C .两条直线被第三条直线所截,同旁内角互补D .相反数等于它本身的数是0【答案】C【解析】试题分析:利用锐角的性质、偶数的定义、平行线的性质及相反数的定义分别判断后即可确定正确的选项.A 、一个锐角的补角大于这个角,正确,是真命题,不符合题意;B 、凡能被2整除的数,末尾数字必是偶数,正确,是真命题,不符合题意;C 、两条平行直线被第三条直线所截,同旁内角才互补,故错误,是假命题,符合题意;D 、相反数等于他本身的数是0,正确,是真命题,不符合题意考点:命题与定理.7.下列命题的逆命题不成立的是( )A .两直线平行,同旁内角互补B .如果两个实数相等,那么它们的平方相等C .平行四边形的对角线互相平分D .全等三角形的对应边相等【答案】B【解析】【分析】把一个命题的条件和结论互换就得到它的逆命题.分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】选项A ,两直线平行,同旁内角互补的逆命题是同旁内角互补,两直线平行,正确,成立;选项B ,如果两个实数相等,那么它们的平方相等的逆命题是平方相等的两个数相等,错误,不成立,如(﹣3)2=32,但﹣3≠3;选项C ,平行四边形的对角线互相平分的逆命题是对角线互相平分的四边形是平行四边形,正确,成立;选项D ,全等三角形的对应边相等的逆命题是对应边相等的三角形全等,正确,成立; 故选B .【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.8.下列语句中真命题有( )①点到直线的垂线段叫做点到直线的距离;②内错角相等;③两点之间线段最短;④过一点有且只有一条直线与已知直线平行;⑤在同一平面内,若两条直线都与第三条直线垂直,则这两条直线互相平行.A.5个B.4个C.3个D.2个【答案】D【解析】【分析】利用点到直线的距离的定义、平行线的性质、线段公理等知识分别判断后即可确定正确的选项.【详解】解:①点到直线的垂线段的长度叫做点到直线的距离,故错误,是假命题;②两直线平行,内错角相等,故错误,是假命题;③两点之间线段最短,正确,是真命题;④过直线外一点有且只有一条直线与已知直线平行,错误,是假命题;⑤在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行,正确,是真命题.真命题有2个,故选D.【点睛】本题主要考查了命题与定理的知识,解决本题的关键是要熟练掌握点到直线的距离的定义、平行线的性质、线段公理等知识.9.下列定理中,逆命题是假命题的是()A.在一个三角形中,等角对等边B.全等三角形对应角相等C.有一个角是60度的等腰三角形是等边三角形D.等腰三角形两个底角相等【答案】B【解析】【分析】先把一个命题的条件和结论互换就得到它的逆命题,再进行判断即可.【详解】解:A、逆命题为:在一个三角形中等边对等角,逆命题正确,是真命题;B、逆命题为:对应角相等的三角形是全等三角形,逆命题错误,是假命题;C、逆命题为:如果一个三角形是等边三角形,那么它是一个等腰三角形而且有一个内角等于60°,逆命题正确,是真命题;D、逆命题为:两个角相等的三角形是等腰三角形,逆命题正确,是真命题;故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是能够正确的写出原命题的逆命题.10.已知命题:等边三角形是等腰三角形.则下列说法正确的是( )A .该命题为假命题B .该命题为真命题C .该命题的逆命题为真命题D .该命题没有逆命题【答案】B【解析】分析:首先判断该命题的正误,然后判断其逆命题的正误后即可确定正确的选项.详解:等边三角形是等腰三角形,正确,为真命题;其逆命题为等腰三角形是等边三角形,错误,为假命题,故选:B .点睛:本题考查了命题与定理的知识,解题的关键是能够写出该命题的逆命题,难度不大.11.下列命题的逆命题成立的有( )①勾股数是三个正整数 ②全等三角形的三条对应边分别相等③如果两个实数相等,那么它们的平方相等 ④平行四边形的两组对角分别相等 A .1个B .2个C .3个D .4个【答案】B【解析】【分析】先写出每个命题的逆命题,再分别根据勾股数的定义、三角形全等的判定、平方根的定义、平行四边形的判定逐个判断即可.【详解】①逆命题:如果三个数是正整数,那么它们是勾股数反例:正整数1,2,3,但222123+?,即它们不是勾股数,则此逆命题不成立 ②逆命题:三条对应边分别相等的两个三角形全等由SSS 定理可知,此逆命题成立③逆命题:如果两个实数的平方相等,那么这两个实数相等反例:222(2)4=-=,但22≠-,则此逆命题不成立④逆命题:两组对角分别相等的四边形是平行四边形由平行四边形的判定可知,此逆命题成立综上,逆命题成立的有2个故选:B .【点睛】本题考查了命题的相关概念、勾股数的定义、三角形全等的判定、平方根的定义、平行四边形的判定,正确写出各命题的逆命题是解题关键.12.下列语句中不正确的是( )A .同一平面内,不相交的两条直线叫做平行线B .在同一平面内,过一点有且只有一条直线与己知直线垂直C .如果两个三角形,两条对应边及其夹角相等,那么这两个三角形全等D .角是轴对称图形,它的角平分线是对称轴【答案】D【解析】【分析】利用平行线的定义、垂直的定义、三角形的全等和轴对称图形分别判断后即可确定正确的选项.【详解】A 、在同一平面内不相交的两条直线叫做平行线,正确;B 、同一平面内,过一点有且只有一条直线与已知直线垂直,故正确;C 、如果两个三角形,两条对应边及其夹角相等,那么这两个三角形全等,正确;D 、角是轴对称图形,它的平分线所在直线是它的对称轴,故错误;故选:D .【点睛】此题考查命题与定理的知识,解题的关键是了解平行线的定义、垂直的定义、三角形的全等和轴对称图形,难度不大.13.下列命题中:①;②在同一平面内,若a ⊥b ,a ⊥c ,则b ∥c ;③若ab =0,则P(a ,b)表示原点;9.是真命题的有( )A .1 个B .2 个C .3 个D .4 个【答案】A【解析】【分析】根据立方根、平行线的判定和算术平方根判断即可.【详解】解:①≥0≤0不一定成立,错误; ②在同一平面内,若a b ⊥r r ,a c ⊥,则//b c ,正确; ③若0ab =,则(,)P a b 表示原点或坐标轴,错误;3,错误;故选:A .【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.14.下列命题中真命题是()A.若a2=b2,则a=b B.4的平方根是±2C.两个锐角之和一定是钝角 D.相等的两个角是对顶角【答案】B【解析】【分析】利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.【详解】A、若a2=b2,则a=±b,错误,是假命题;B、4的平方根是±2,正确,是真命题;C、两个锐角的和不一定是钝角,故错误,是假命题;D、相等的两个角不一定是对顶角,故错误,是假命题.故选B.【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.15.下列说法正确的是()A.若a>b,则a2>b2B.若三条线段的长a、b、c满足a+b>c,则以a、b、c为边一定能组成三角形C.两直线平行,同旁内角相等D.三角形的外角和为360°【答案】D【解析】【分析】利用特例对A进行分析,利用三角形三边关系、平行线的性质、三角形外角的性质分别对B、C、D进行分析判断.【详解】A、若a>b,则不一定有a2>b2,比如a=0,b=﹣1,故本选项错误;B、若三条线段的长a、b、c满足a+b>c,则以a、b、c为边不一定能组成三角形,故本选项错误;C、两直线平行,同旁内角互补,故本选项错误;D、三角形的外角和为360°,故本选项正确;故选:D【点睛】本题考查真假命题的判断,解题的关键是根据相关知识对命题进行分析判断.16.下列四个命题:①两直线平行,内错角相等;②对顶角相等;③等腰三角形的两个底角相等;④菱形的对角线互相垂直,其中逆命题是真命题的是()A.①②③④B.①③④C.①③D.①【答案】C【解析】【分析】首先写出各个命题的逆命题,然后进行判断即可.【详解】①两直线平行,内错角相等;其逆命题:内错角相等,两直线平行,是真命题;②对顶角相等,其逆命题:相等的角是对顶角,是假命题;③等腰三角形的两个底角相等,其逆命题:有两个角相等的三角形是等腰三角形,是真命题;④菱形的对角线互相垂直,其逆命题:对角线互相垂直的四边形是菱形,是假命题;故选C.【点睛】本题考查了写一个命题的逆命题的方法,真假命题的判断,弄清命题的题设与结论,掌握相关的定理是解题的关键.17.下列命题中,是真命题的是()A.同位角相等B.若两直线被第三条直线所截,同旁内角互补C.同旁内角相等,两直线平行D.平行于同一直线的两直线互相平行【答案】D【解析】【分析】根据平行线的判定、平行线的性质判断即可.【详解】A、两直线平行,同位角相等,是假命题;B、若两条平行线被第三条直线所截,同旁内角互补,是假命题;C、同旁内角互补,两直线平行,是假命题;D、平行于同一直线的两条直线互相平行,是真命题;故选:D.【点睛】此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.18.下列命题中,假命题是()A.平行四边形的对角线互相垂直平分B.矩形的对角线相等C.菱形的面积等于两条对角线乘积的一半D.对角线相等的菱形是正方形【答案】A【解析】【分析】不正确的命题是假命题,根据定义依次判断即可.【详解】A. 平行四边形的对角线互相平分,故是假命题;B. 矩形的对角线相等,故是真命题;C. 菱形的面积等于两条对角线乘积的一半,故是真命题;D. 对角线相等的菱形是正方形,故是真命题,故选:A.【点睛】此题考查假命题的定义,正确理解平行四边形的性质是解题的关键.19.下列命题是假命题的是()A.有一个角是60°的等腰三角形是等边三角形B.等边三角形有3条对称轴C.有两边和一角对应相等的两个三角形全等D.线段垂直平分线上的点到线段两端的距离相等【答案】C【解析】【分析】根据等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质一一判断即可.【详解】A.正确;有一个角是60°的等腰三角形是等边三角形;B.正确.等边三角形有3条对称轴;C.错误,SSA无法判断两个三角形全等;D.正确.线段垂直平分线上的点到线段两端的距离相等.故选:C.【点睛】本题考查了命题与定理,等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.20.下列命题中,是真命题的是()A.将函数y=12x+1向右平移2个单位后所得函数的解析式为y=12xB.若一个数的平方根等于其本身,则这个数是0和1C.对函数y=2x,其函数值y随自变量x的增大而增大D.直线y=3x+1与直线y=﹣3x+2一定互相平行【答案】A【解析】【分析】利用一次函数的性质、平方根的定义、反比例函数的性质等知识分别判断后即可确定正确的选项.【详解】解:A、将函数y=12x+1向右平移2个单位后所得函数的解析式为y=12x,正确,符合题意;B、若一个数的平方根等于其本身,则这个数是0,故错误,是假命题,不符合题意;C、对函数y=2x,其函数值在每个象限内y随自变量x的增大而增大,故错误,是假命题,不符合题意;D、直线y=3x+1与直线y=﹣3x+2因比例系数不相等,故一定不互相平行,故错误,是假命题,故选:A.【点睛】本题考查了判断命题真假的问题,掌握一次函数的性质、平方根的定义、反比例函数的性质等知识是解题的关键.。