2013年高考数学押题卷(最后一卷)试题及答案(理科数学)
- 格式:doc
- 大小:606.50 KB
- 文档页数:5
2013年江苏高考数学最后一卷2013.06.01数学(必试部分)注意事项:1.本试卷总分160分,考试用时120分钟。
2.答题前,考生务必将班级、姓名、学号写在答卷纸的密封线内。
选择题答案填涂在........答题卡对应的题号下,主观题答案写在答卷纸上对应的题号下空格内的横线上..................................。
考试结束后,上交答题卡和答卷纸。
一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......1.设复数满足(是虚数单位),则复数的模=___▲____.2.已知,则___▲_____.3.抛物线y2 = 8x的焦点到双曲线x212–y24= 1的渐近线的距离为___▲___.4.阅读下列算法语句:Read S1For I from 1 to 5 step 2 SS+IEnd forPrint SEnd输出的结果是▲.5.设集合,则=____▲_______.6.设等比数列{a n}的公比q = 12,前n项和为S n,则S4a4= ____▲_______.7.在区间内随机地取出一个数,则恰好使1是关于x的不等式的一个解的概率大小为__▲_____.8.已知向量,,则的最大值为▲.9.已知A(2,4),B(–1,2),C(1,0),点P(x,y)在△ABC内部及边界上运动,则z = x–y的最大值与最小值的和为___▲___10.设表示两条直线,表示两个平面,现给出下列命题:①若,则;②若,则;③若,则;④若,则.其中正确的命题是___▲______.(写出所有正确命题的序号)11.设函数,若关于x 的方程恰有三个不同的实数解,则实数的取值范围为___▲_____.12.函数在求导数时,可以运用对数法:在函数解析式两边求对数得,两边求导数,于是 .运用此方法可以探求得知的一个单调增区间为____▲_____.13.已知椭圆的上焦点为,直线和与椭圆相交于点,,,,则 ▲ .14.已知定义在上的函数满足,,则不等式的解集为_▲__.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明或演算步骤.15.(本小题满分14分)如图,点B 在以PA 为直径的圆周上,点C 在线段AB 上,已知,设,均为锐角. (1)求;(2)求两条向量的数量积的值.16. (本小题满分14分)如图,已知AB ⊥平面ACD ,DE //AB ,△ACD 是正三角形,AD = DE = 2AB ,且F 是CD 的中点. ⑴求证:AF //平面BCE ;⑵求证:平面BCE ⊥平面CDE .17.(本大题满分14分)2010年上海世博会组委会为保证游客参观的顺利进行,对每天在各时间段进入园区和离开园区的人数(以百人..为计数单位)作了一个模拟预测.为了方便起见,以10分钟为一个计P A C B A BC D EF算单位,上午9点10分作为第一个计数人数的时间,即;9点20分作为第二个计数人数的时间,即;依此类推,把一天内从上午9点到晚上24点分成了90个计数单位.第个时刻进入园区的人数和时间()满足以下关系: ()()()()()24123612436325363216377207390n n n f n n n n -≤≤⎧⎪⎪⎪⋅≤≤=⎨⎪-+≤≤⎪≤≤⎪⎩, 第个时刻离开园区的人数和时间满足以下关系: .(1)试计算在当天下午3点整(即15点整)时,世博园区内共有游客多少百人?(提示:,结果仅保留整数)(2)问:当天什么时刻世博园区内游客总人数最多?18.(本小题满分16分) 设圆,动圆,(1)求证:圆1C 、圆2C 相交于两个定点;(2)设点P 是椭圆上的点,过点P 作圆1C 的一条切线,切点为1T ,过点P 作圆2C 的一条切线,切点为2T ,问:是否存在点P ,使无穷多个圆2C ,满足?如果存在,求出所有这样的点P ;如果不存在,说明理由.19. (本小题满分16分)已知数列{a n }的通项公式为a n = 2⨯3n + 23n – 1(n ∈N *). ⑴求数列{a n }的最大项;⑵设b n = a n + pa n– 2,试确定实常数p,使得{b n}为等比数列;⑶设,问:数列{a n}中是否存在三项,,,使数列,,是等差数列?如果存在,求出这三项;如果不存在,说明理由.20.(本大题满分16分)已知函数,(1)若,且关于的方程有两个不同的正数解,求实数的取值范围;(2)设函数,满足如下性质:若存在最大(小)值,则最大(小)值与无关.试求的取值范围.2013年江苏高考数学最后一卷2013.06.01数学(加试部分)21.【选做题】在A、B、C、D四小题中只能选做两题....,每小题l0分,共计20分.请在答.题卡指定区域......内作答,解答时应写出文字说明、证明过程或演算步骤.A.选修4 – 1几何证明选讲如图,△ABC的外接圆的切线AE与BC的延长线相交于点E,∠BAC的平分线与BC交于点D.求证:ED2= EB·EC.B.矩阵与变换已知矩阵,,求满足的二阶矩阵.C.选修4 – 4 参数方程与极坐标若两条曲线的极坐标方程分别为ρ = 1与ρ = 2cos(θ + π3),它们相交于A,B两点,求线段ABB C EDA的长.D.选修4 – 5 不等式证明选讲设a ,b ,c 为正实数,求证:a 3 + b 3 + c 3 + 1abc ≥2 3.【必做题】第22题、第23题,每题10分,共20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22. (本小题满分10分)如图,在四棱锥P – ABCD 中,底面ABCD 是边长为1的正方形,PA ⊥底面ABCD ,点M 是棱PC 的中点,AM ⊥平面PBD . ⑴求PA 的长;⑵求棱PC 与平面AMD 所成角的正弦值.23.(本小题满分10分)用四个不同字母组成一个含个字母的字符串,要求由开始,相邻两个字母不同. 例如时,排出的字符串是;时排出的字符串是,,,,,,,,aba abc abd aca acb acd ada adb adc ,……, 如图所示.记这含个字母的所有字符串中,排在最后一个的字母仍是的字符串的种数为. (1)试用数学归纳法证明:;(2)现从四个字母组成的含个字母的所有字符串中随机抽取一个字符串,字符串最后一个的字母恰好是的概率为,求证:.P B CDA M a b c d n=1 a b c d n=2 a c da b d abc2010届江苏省海安高级中学、南京外国语学校、南京市金陵中学高三调研测试数学参考答案及评分标准题号 1 2 3 4 5答案 2 3 1 10题号 6 7 8 9 10答案15 0.7 6 –2 ④题号11 12 13 14答案815.解(1):因为点B在以PA为直径的圆周上,所以,所以.所以,………………………………………2分cos cos()PBCPBPCαβ∠=-===,所以,………………………………………………………………4分,…………………………6分又,所以.………………………………………………………8分(2)…………………………11分……………………………………………14分16. ⑴解:取CE中点P,连结FP,BP,因为F为CD的中点,所以FP//DE,且FP =12DE,…2分又AB //DE ,且AB =12DE ,所以AB //FP ,且AB = FP ,所以四边形ABPF 为平行四边形,所以AF //BP . ……………4分 又因为AF ⊂/平面BCE ,BP ⊂平面BCE , 所以AF //平面BCE . …7分 (该逻辑段缺1个条件扣1分)⑵因为△ACD 为正三角形,所以AF ⊥CD .因为AB ⊥平面ACD ,DE //AB ,所以DE ⊥平面ACD , 又AF ⊂平面ACD ,所以DE ⊥AF . …………………9分 又AF ⊥CD ,CD ∩DE = D ,所以AF ⊥平面CDE .又BP //AF ,所以BP ⊥平面CDE . ……………………………12分 又因为BP ⊂平面BCE ,所以平面BCE ⊥平面CDE . ………………………………………14分17. 解:(1)当且时,,当且时, 所以…××;…………………………2分另一方面,已经离开的游客总人数是: ×5121152⨯+⨯;………………………4分 所以361216563901266S S T =-=-=(百人)故当天下午3点整(即15点整)时,世博园区内共有游客百人. ……………6分 (2)当时园内游客人数递增;当时园内游客人数递减.(i)当时,园区人数越来越多,人数不是最多的时间;………………………8分 (ii)当时,令,得出,即当时,进入园区人数多于离开人数,总人数越来越多;……………10分 (iii)当时,,进入园区人数多于离开人数,总人数越来越多;……………………………………………………………………………12分 (Ⅳ)当时, 令时,,即在下午点整时,园区人数达到最多.此后离开人数越来越多,故园区内人数最多的时间是下午4点整. ……………………14分 答:(1)当天下午3点整(即15点整)时,世博园区内共有游客百人;(2)在下午点整时,园区人数达到最多. 18.解(1)将方程化为,令得或,所以圆2C 过定点和,……………4分将代入,左边=1644012320+--+==右边,故点在圆1C 上,同理可得点也在圆1C 上,所以圆1C 、圆2C 相交于两个定点和;……………6分(2)设,则,…………………………8分, …………………………………10分 即,整理得(*)………………………………………………12分 存在无穷多个圆2C ,满足的充要条件为有解,解此方程组得ABCDEFP或006545x y ⎧=⎪⎪⎨⎪=-⎪⎩,………………………………………………………………………………14分 故存在点P ,使无穷多个圆2C ,满足,点P 的坐标为.………………16分19. 解 ⑴由题意a n = 2 + 43n – 1,随着n 的增大而减小,所以{a n }中的最大项为a 1 = 4.…4分 ⑵b n = 2 + 43n – 1 + p 43n – 1= (2 + p )(3n – 1) + 44 = (2 + p )3n + (2 – p )4,若{b n }为等比数列, 则b 2n +1 – b n b n +2= 0(n ∈N * )所以 [(2 + p )3n +1 + ( 2 – p )]2 – [{2 + p )3n + (2 – p )][(2 + p )3n +2 + (2 – p )] = 0(n ∈N *),化简得(4 – p 2)(2·3n +1 – 3n +2 – 3n ) = 0即– (4 – p 2)·3n ·4 = 0,解得p = ±2. ………………………7分 反之,当p = 2时,b n = 3n ,{b n }是等比数列;当p = – 2时,b n = 1,{b n }也是等比数列.所以,当且仅当p = ±2时{b n }为等比数列. ………………………………………………………………10分 ⑶因为,,,若存在三项,,,使数列,,是等差数列,则,所以=,……………12分 化简得(*),因为,所以,,所以,,(*)的 左边,右边,所以(*)式不可能成立, 故数列{a n }中不存在三项,,,使数列,,是等差数列. ……………16分 20.解:(1)令,,因为,所以,所以关于的方程有两个不同的正数解等价于关于的方程有相异的且均大于1的两根,即 关于的方程有相异的且均大于1的两根,……………………………………………………2分所以,…………………………………………………………………4分 解得,故实数的取值范围为区间.……………………………6分 (2)①当时, a )时,,,所以 , b )时,,所以 ……8分 ⅰ当即时,对,,所以 在上递增,所以 ,综合a ) b )有最小值为与a 有关,不符合……10分 ⅱ当即时,由得,且当时,,当时,,所以 在上递减,在上递增,所以,综合a ) b ) 有最小值为与a 无关,符合要求.………12分 ②当时, a ) 时,,,所以 b ) 时,,,所以 ,在上递减,所以 ,综合a ) b ) 有最大值为与a 有关,不符合………14分综上所述,实数a 的取值范围是.………………………………………………16分数学Ⅱ(附加题)21.【选做题】在A 、B 、C 、D 四小题中只能选.做两题...,每小题l0分,共计20分.请在答.题.卡.指.定.区.域.内作答,解答时应写出文字说明、证明过程或演算步骤. A.选修4 – 1几何证明选讲证明: 因为EA 是圆的切线,AC 为过切点A 的弦,所以 ∠CAE = ∠CBA . 又因为AD 是∠BAC 的平分线,所以∠BAD = ∠CAD 所以∠DAE = ∠DAC + ∠EAC = ∠BAD + ∠CBA = ∠ADE所以,△EAD 是等腰三角形,所以EA = ED . ……………………………………………………6分 又EA 2 = EC ·EB ,所以ED 2 = EB ·EC . ……………………………………………………………………………4分 B .矩阵与变换:解:由题意得,…………………………………………………5分 ,………………………………………10分 C.选修4 – 4 参数方程与极坐标若两条曲线的极坐标方程分别为ρ = 1与ρ = 2cos(θ + π3),它们相交于A ,B 两点,求线段AB 的长.解 首先将两曲线的极坐标方程化为直角坐标方程,得 x 2 + y 2 = 1与x 2 + y 2 – x +3y = 0……………………………………………………6分解方程组⎩⎪⎨⎪⎧x 2 + y 2 = 1x 2 + y 2 – x + 3y = 0 得两交点坐标(1,0),(–12, – 32)所以,线段AB 的长为(1 + 12)2 + (0 + 32)2=3即AB = 3.………………………………………………………………………………10分 D.选修4 – 5 不等式证明选讲设a ,b ,c 为正实数,求证:a 3 + b 3 + c 3 + 1abc ≥2 3.证明 因为a ,b ,c 为正实数,所以a 3 + b 3 + c 3≥33a 3b 3c 3 = 3abc >0…………………………5分 又3abc + 1abc ≥23abc ·1abc = 2 3.所以a 3 + b 3 + c 3 + 1abc ≥2 3.…………………………………………………………………10分B C ED A【必做题】第22题、第23题,每题10分,共20分.请在答题..卡.指.定.区.域.内作答,解答时应写出文字说明、证明过程或演算步骤.22.解 如图,以A 为坐标原点,AB ,AD ,AP 分别为x ,y ,z 轴建立空间直角坐标系,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,1,0),P (0,0,a ).因为M 是PC 中点,所以M 点的坐标为(12,12,a 2),所以AM →= (12,12,a 2),BD → = (–1,1,0),BP →= ( – 1,0,a ).⑴因为AM →⊥平面PBD ,所以AM →·BD → = AM →·BP →= 0.即– 12 + a 22 = 0,所以a = 1,即PA = 1. ………………………………………4分 ⑵由AD → = (0,1,0),M →= (12,12,12),可求得平面AMD 的一个法向量n = ( – 1,0,1).又CP → = ( – 1,–1,1).所以cos<n , CP →> = n ·CP →|n |·|CP →|=22·3= 63. 所以,PC 与平面AMD 所成角的正弦值为63.……………………………10分 23.解(1):证明: (ⅰ)当时,因为,33(1)04+-=,所以等式正确. (ⅱ)假设时,等式正确,即, 那么,时,因为, 这说明时等式仍正确.据(ⅰ),(ⅱ)可知,正确. ……………………………5分 (2)易知,①当为奇数()时,,因为,所以,又,所以;②当为偶数()时,,因为,所以,又,所以.综上所述,.……………………………10分温馨提示-专业文档供参考,请仔细阅读后下载,最好找专业人士审核后使用!。
2013浙江省高考压轴卷 数学理试题本试题卷分第Ⅰ卷和第Ⅱ卷两部分.考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.参考公式:如果事件A ,B 互斥,那么 棱柱的体积公式 ()()()P A B P A P B +=+ V Sh =如果事件A ,B 相互独立,那么 其中S 表示棱柱的底面积,h 表示棱柱的高 ()()()P A B P A P B ⋅=⋅ 棱锥的体积公式如果事件A 在一次试验中发生的概率是p ,那么 13V Sh =n 次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示棱锥的底面积,h 表示棱锥的高()()()1,0,1,2,,n kk kn n P k C p k k n -=-=L 棱台的体积公式球的表面积公式 24S R π= ()112213V h S S S S =++球的体积公式 343V R π= 其中12,S S 分别表示棱台的上底、下底面积,其中R 表示球的半径 h 表示棱台的高选择题部分一. 选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四项中,只有一项是符合题目要求的。
1.复数22()i i+= A .-3 -4iB .-3+4iC .3-4iD .3+4i2.设集合{sin ,}3n M x x n Z π==∈,则满足条件33{,}22P M -=U 的集合P 的个数是A . 1B .3C .4D .83.已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,则该几何体的体积是( )A .8B .203C .173D .1434.等比数列{a n }中,“公比q >1”是“数列{a n }单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称6.设变量x 、y 满足1,0,220,x y x y x y +≥⎧⎪-≥⎨⎪--≥⎩则目标函数z=2x+y 的最小值为A .6B .4C .2D7. 若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为奇数,则不同的取法共有( )A .60种B .63种C .65种D .66种 8. 已知直线l m 、,平面βα、,且βα⊂⊥l m ,,给出下列命题: ①若α∥β,则m ⊥l ; ②若α⊥β,则m ∥l ; ③若m ⊥l ,则α∥β; ④若m ∥l ,则α⊥β 其中正确命题的个数是( ) A .1 B .2C .3D .49.已知数列}{n a 的前n 项和n S 满足:m n m n S S S +=+,且11=a ,那么=10a ( ) A . 1 B . 9 C .10 D .5510. 已知直线1sin cos :=+θθy x l ,且l OP ⊥于P ,O 为坐标原点,则点P 的轨迹方程为( )A .122=+y xB .122=-y xC .1=+y xD .1=-y x非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分。
2013年福建省高考压轴卷 数学理试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分为150分,考试时间120钟.参考公式:锥体体积公式 13V Sh =,其中S 为底面面积,h 为高.第Ⅰ卷(选择题:共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数221z i i=++,其中i 是虚数单位,则复数z 的模为( )D. 22.设a ∈R ,则“4a =”是“直线1:230l ax y +-=与直线2:20l x y a +-=平行”的( )条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要3.设函数()2x f x =,则下列结论中正确的是( )A. (1)(2)(f f f -<<B. ((1)(2)f f f <-<C. (2)((1)f f f <<-D. (1)((2)f f f -<<4.设等差数列{}n a 的前n 项和是n S ,若11m m a a a +-<<-(m ∈N *,且2m ≥),则必定有( ) A. 0m S >,且10m S +< B. 0m S <,且10m S +>C. 0m S >,且10m S +>D. 0m S <,且10m S +<5.若程序框图如图所示,则该程序运行后输出k 的值是( )A. 4B. 5C. 6D. 76.设函数()log (01)a f x x a =<<的定义域为[,](m n m <)n ,值域为[0,1],若n m -的最小值为13,则实数a 的值为( )A. 14B. 14或23C. 23D. 23或347.设双曲线22143x y -=的左,右焦点分别为12,F F ,过1F 的直线l 交双曲线左支于,A B 两点,则22BF AF +的最小值为( ) A. 192B. 11C. 12D. 168.已知集合{}(,)(1)(1)A x y x x y y r =-+-≤,集合{}222(,)B x y x y r =+≤,若B A ⊂,则实数r 可以取的一个值是( )1C. 2D. 19.设函数11,(,2)()1(2),[2,)2x x f x f x x ⎧--∈-∞⎪=⎨-∈+∞⎪⎩,则函数()()1F x xf x =-的零点的个数为( )A. 4B. 5C. 6D. 710.设等差数列{}n a 满足:22222233363645sin cos cos cos sin sin 1sin()a a a a a a a a -+-=+,公差(1,0)d ∈-. 若当且仅当9n =时,数列{}n a 的前n 项和n S 取得最大值,则首项1a 的取值范围是( )A. 74,63ππ⎛⎫ ⎪⎝⎭B. 43,32ππ⎛⎫ ⎪⎝⎭C. 74,63ππ⎡⎤⎢⎥⎣⎦D. 43,32ππ⎡⎤⎢⎥⎣⎦第Ⅱ卷(非选择题:共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.11.从3,2,1,0中任取三个数字,组成无重复数字的三位数中,偶数的个数是 (用数字回答).12.无穷数列1,2,2,3,3,3,4,4,4,4,5, 的首项是1,随后两项都是2,接下来3项都是3,再接下来4项都是4,…,以此类推.记该数列为{}n a ,若120n a -=,21n a =,则n = . 13.若正数,x y 满足230x y +-=,则2x yxy+的最小值为 . 14.在△ABC 中,角A ,B ,C 的对边分别a ,b ,c ,若22212a b c +=.则直线ax by c -+=被圆2x +29y =所截得的弦长为.15.若整数..,x y满足不等式组70y xx yx-≥⎧⎪+-≤⎨⎪≥⎩,则2x y+的最大值为三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤,在答题卷上相应题目的答题区域内作答. 16.设2()6cos 2().f x x x x R =∈.(Ⅰ)求()f x 的最大值及最小正周期;(Ⅱ)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,锐角A 满足()3f A =-12B π=,求ac的值.17.已知甲箱中只放有x 个红球与y 个白球(,0,x y ≥且6)x y +=,乙箱中只放有2个红球、1个白球与1个黑球(球除颜色外,无其它区别). 若甲箱从中任取2个球, 从乙箱中任取1个球. (Ⅰ)记取出的3个球的颜色全不相同的概率为P ,求当P 取得最大值时,x y 的值;(Ⅱ)当2x =时,求取出的3个球中红球个数ξ的期望()E ξ.18.已知数列{}n a 满足1111,14n na a a +==-,其中n ∈N *.(Ⅰ)设221n n b a =-,求证:数列{}n b 是等差数列,并求出{}n a 的通项公式n a ; (Ⅱ)设41nn a c n =+,数列{}2n n c c +的前n 项和为n T ,是否存在正整数m ,使得11n m m T c c +<对于n ∈N *恒成立,若存在,求出m 的最小值,若不存在,请说明理由.19.已知椭圆C :22221(0)x y a b a b +=>>的离心率为12,右焦点到直线1:3l x +40y =的距离为35. (Ⅰ)求椭圆C 的方程;(Ⅱ)若直线2:(0)l y kx m km =+≠ 与椭圆C 交于A 、B 两点,且线段AB 中点恰好在直线1l 上,求△OAB 的面积S 的最大值.(其中O 为坐标原点).20.已知函数()ln ,f x x =若存在函数()g x 使得()()g x f x ≤恒成立,则称()g x 是()f x 的一个“下界函数”.(I ) 如果函数()ln (ag x x a x=-为实数)为()f x 的一个“下界函数”,求a 的取值范围;(Ⅱ)设函数1()(), 2.x mF x f x m e ex=-+> 试问函数()F x 是否存在零点,若存在,求出零点个数;若不存在,请说明理由.21. (1)[选修4 - 2:矩阵与变换]已知矩阵A 的逆矩阵113441122-⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦A ,求矩阵A 的特征值.(2)[选修4 - 4:坐标系与参数方程]在极坐标中,已知圆C 经过点()4Pπ,,圆心为直线sin 3ρθπ⎛⎫-= ⎪⎝⎭与极轴的交点,求圆C 的极坐标方程.(3)[选修45-:不等式选讲]:已知函数()2f x x a x =++- (1)当3a =-时,求不等式()3f x ≥的解集; (2)若()4f x x ≤-的解集包含[1,2],求a 的取值范围.KS5U2013福建省高考压轴卷 数学理试题答案1.B 【解析】由题意,得:22(1)2211(1)(1)i z i i i ii i -=+=+=-++-,复数z的模z ==2.C 【解析】由题意,1122:42304//:240l x y a l l l x y +-=⎧=⇒⇒⎨+-=⎩,即充分。
2013年高三数学最后必考题及答案一一本试卷共4页,分第1卷(选择题)和第Ⅱ卷(非选择题)两部分共150分考试时间120分钟.第Ⅰ卷(选择题共60分)注意事项:1.答第1卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上 2.每题选出答案后,用2B 铅笔把答题卡对应题目的答案标号涂黑如需改动,用橡皮擦干净后,再改涂其它答案标号一、 选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一项是符合题目要求的 A .B .C .D .1·复数31i z i=+复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 2.在△ABC 中,“30A ∠=”是“1sin 2A =”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件3.集合{}{}|13,|4A x x B y y x =+≤==≤≤.则下列关系正确的是A .AB R = B .R A B ⊆餽C .R B A ⊆餽D .R R A B ⊆餽餽 4.已知双曲线22221x y a b-=的实轴长为2,焦距为4,则该双曲线的渐近线方程是A .3y x =±B .3y x =±C .y =D .2y x =± 5.已知m ,n 是两条不同直线,,αβ是两个不同平面,给出四个命题:①若,,m n n m αβα=⊂⊥ ,则αβ⊥ ②若,m m αβ⊥⊥,则//αβ ③若,,m n m n αβ⊥⊥⊥,则αβ⊥ ④若//,////m n m n αβ,则//αβ 其中正确的命题是A .①②B .②③C .①④D .②④6.设0(cos sin )xa x x dx =⎰-3x 项的系数为 A .-20 B .20 C .-160 D .1607.已知函数9()4(1)1f x x x x =-+>-+,当x=a 时,()f x 取得最小值则在直角坐标系 中,函数11()()x g x a+=的大致图象为8.有一平行六面体的三视图如图所示,其中俯视图 和左视图均为矩形,则这个平行六面体的表面积为A .B .6+C .30+D .429.已知1122log (4)log (32)x y x y ++<+-,若x y λ-<恒成立,则λ的取值范围是A .(],10-∞B .(),10-∞C .[)10,+∞D .()10,+∞ A .B .C .D .10.运行如图所示的程序,若结束时输出的结果不小于3,则t 的取值范围为A .14t ≥B .18t ≥ C .14t ≤ D .18t ≤11.定义在R 上的函数()f x 的导函数为'()f x ,已知(1)f x +是偶函数(1)'()0x f x -<. 若12x x <,且122x x +>,则1()f x 与2()f x 的大小关系是A .12()()f x f x <B .12()()f x f x =C .12()()f x f x >D .不确定12.某学校要召开学生代表大会,规定根据班级人数每10人给一个代表名额,当班级人数除以10的余数大于6时,再增加一名代表名额.那么各班代表人数y 与该班人数x 之间的函数关系用取整函数[]y x =([x]表示不大于*的最大整数)可表示为 A .[]10x y = B .3[]10x y += C .4[]10x y += D .5[]10x y +=第Ⅱ卷 (非选择题共90分)注意事项:1.将第Ⅱ卷答案用0 5mm 的黑色签字笔答在答题纸的相应位置上 2.答卷前将密封线内的项目填写清楚,二、填空题:本大题共4小题,每小题4分,共16分13.如图,在△ABC 中,O 为BC 中点,若AB=I ,3AC =,60AB AC =,则OA = ______________。
2013届全国各地高考押题数学(理科)精选试题分类汇编6:不等式一、选择题1 .(2013届海南省高考压轴卷理科数学)设变量x,y 满足约束条件,则目标函数z=2x+3y+1的最大值为( )A .11B .10C .9D .8.5【答案】答案:B考点:二元一次不等式(组)与平面区域. 分析:首先做出可行域,将目标函数转化为,求z 的最大值,只需求直线l:在y 轴上截距最大即可.解答:解:做出可行域如图所示: 将目标函数转化为,求z 的最大值,只需求直线l:在y 轴上截距最大即可.作出直线l 0:,将直线l 0平行移动,当直线l:经过点A 时在y 轴上的截距最大,故z 最大. 由可求得A(3,1),所以z 的最大值为2×3+3×1+1=102 .(2013届湖北省高考压轴卷 数学(理)试题)设实数12,,,x a a y 成等差数列,实数12,,,x b b y 成等比数列,则21212()a a b b +的取值范围是( )A .[4,)+∞B .(,0][4,)-∞+∞C .[0,4]D .(,4)(4,)-∞-+∞【答案】B 【解析】:由于实数12,,,x a a y 成等差数列,则12x y a a +=+;由于实数12,,,x b b y成等比数列,则12xy b b =,所以21212()a a b b +2()x y xy +=2222222x y xy x y x y xy xy y x +++==+=++,利用基本不等式易得,当,x y 同号时,21212()a a b b +2224x yy x=++≥+=;当,x y 异号时,21212()a a b b +2220x y y x=++≤-+=.故选B .3 .(2013届重庆省高考压轴卷数学理试题)若a 是12b +与12b -的等比中项,则22aba b+的最大值为 ( )ABCD【答案】解析:由2122x y x x ==-++可得122,2,12(1),21(2)x y k y y x y x x =-''===+=+=++ 应选( )A .4 .(2013届辽宁省高考压轴卷数学理试题)已知正数x 、y 满足20350{x y x y -≤-+≥,则y x z -∙=4)21(的最小值为)(A 1 )(B 14 )(C 116)(D 132 【答案】D5 .(2013届江西省高考压轴卷数学理试题)设变量,x y 满足约束条件20510080x y x y x y -+⎧⎪-+⎨⎪+-⎩≥≤≤,则目标函数34z x y =-的最大值和最小值分别为( )A .3,11-B .3,11--C .11,3-D .11,3【答案】A【解析】作出满足约束条件的可行域,如右图所示,可知当直线z=3x-4y 平移到点 (5,3)时,目标函数z=3x-4y 取得最大值3;当直线z=3x-4y 平移到点(3,5)时,目标函数z=3x-4y 取得最小值-11,故选( )6 ,x y 满足线性约束条件1020410x y x y x y -+≥⎧⎪+-≤⎨⎪++≥⎩,( )5D .7【答案】C7 .(2013届浙江省高考压轴卷数学理试题)设变量x 、y 满足1,0,220,x y x y x y +≥⎧⎪-≥⎨⎪--≥⎩则目标函数z=2x+y 的最小值为 ( )A .6B .4C .2D .32【答案】C【解析】由题意可得,在点B 处取得最小值,所以z=2,故选C8 .(2013届安徽省高考压轴卷数学理试题)实数满足不等式组2303270210x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩,则x y -的最小值是 ( ) A .-1 B .-2 C .1 D .2【答案】B 【解析】本题考查简单的线性规划问题中的求最值问题.根据题目可得如下的可行域,其中 ,令Z x y =- ,将这条直线平移可以得到在A 点使得x y - 取得最小值,所以min ()112x y -=--=-,故选B9 .(2013届陕西省高考压轴卷数学(理)试题)若y x ,满足条件⎪⎩⎪⎨⎧≥≤-+≥+-,001532,0653y y x y x ,当且仅当3==y x 时,y ax z -=取最小值,则实数a 的取值范围是( )A .32,43⎛⎫- ⎪⎝⎭B .23,34⎛⎫- ⎪⎝⎭C .23,35⎛⎫- ⎪⎝⎭D .33,45⎛⎫ ⎪⎝⎭【答案】C 【解析】画出可行域,得到最优解()3,3,把y ax z -=变为z ax y -=,即研究z -的最大值.当⎪⎭⎫ ⎝⎛-∈53,32a 时,z ax y -=均过()3,3且截距z -最大 . 10.(2013届重庆省高考压轴卷数学理试题)设偶函数()f x 满足3()8(0)f x x x =-≥,则{|(2)0}x f x ->= ks5u( )A . {|24}x x x <->或B .{|04}x x x <>或C .{|0x x x <>或【答案】解析:当0x <时,则0x ->,由偶函数满()f x 足3()8(0)f x x x =-≥可得,3()()8f x f x x =-=--,则338(0)()8(0)x x f x x x ⎧-≥=⎨--<⎩,33(2)8(2)(2)(2)8(2)x x f x x x ⎧--≥-=⎨---<⎩ 令(2)0f x ->,可解得4,0x x ><或.应选B .另解:由偶函数满()f x 足3()8(0)f x x x =-≥可得3()()8f x f x x ==-, 则3(2)(2)28f x f x x -=-=--,要使(2)0f x ->,只需3280,22x x -->->解得4,0x x ><或.应选B .二、填空题11.(2013届福建省高考压轴卷数学理试题)若正数,x y 满足230x y +-=,则2x yxy+的最小值为________.【答案】3【解析】由题意:2230133x yx y +-=⇒+=, 221212252523333333x y x y y x xy x y x y x y ⎛⎫⎛⎫+⎛⎫=+=+⋅+=++≥⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 12.(2013届湖南省高考压轴卷数学(理)试题)已知实数,x y 满足不等式组20302x y x y x y m -≤⎧⎪+-≥⎨⎪+≤⎩,且z x y =-的最小值为3-,则实数m 的值__.【答案】613.(2013届重庆省高考压轴卷数学理试题)若变量,x y 满足约束条件329,69,x y x y ≤+≤⎧⎨≤-≤⎩则2z x y =+的最小值为 ___.【答案】解析:画出区域图知,过239x y x y +=⎧⎨-=⎩的交点(4,-5)时,min 6z =- 14.(2013届上海市高考压轴卷数学(理)试题)设,x y 满足约束条件112210x y x x y ≥⎧⎪⎪≥⎨⎪+≤⎪⎩,向量(2,),(1,1)a y x m b =-=-,且//a b ,则m 的最小值为_________________.【答案】6-【解析】不等式对应的可行域是顶点为)2,4(),21,1(),8,1(C B A 的三角形及其内部,由b a //,得2m x y =-,可知在)8,1(A 处2m x y =-有最小值6-15.(2013届江西省高考压轴卷数学理试题)若不等式211ax bx c -<++<的解集为(1,3)-,则实数a 的取值范围是______.【答案】1122a -<<16.(2013届福建省高考压轴卷数学理试题)若整数..,x y 满足不等式组0700y x x y x -≥⎧⎪+-≤⎨⎪≥⎩,则2x y +的最大值为________【答案】10【解析】由题意,绘出可行性区域如下:设2z x y =+,即求2y x z =-+的截距的最大值.因为,x y Z ∈,不妨找出77,22⎛⎫ ⎪⎝⎭附近的“整点”.有(3, 3)、(3, 4)满足. 显然过(3, 4)时,10z =最大.17当对数函数()10log ≠>=a a x y a 且的图,0x y R ⎫≥⎪∈⎬⎪≥⎭内的一个点时,实数a 的取值范围为,log a y x =的图像分别过点(3,3),(4,4),(5,3)时,a的值分别为, 因为<<,所以a的取值范围是.18.(2013届广东省高考压轴卷数学理试题)设,x y 满足约束条件02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则z x y =-的最大值是_________.【答案】0 线性规划,三角形区域,最优解(1,1)19.(2013届上海市高考压轴卷数学(理)试题)已知定义域为R 上的偶函数()f x 在(,0]-∞上是减函数,且1()22f =,则不等式(2)2xf >的解集为_____________.【答案】()+∞-,1【解析】因为函数为偶函数,所以11()()222f f -==,且函数在(0,)+∞上递增.所以由(2)2x f >得122x >,即1x >-,所以不等式()22>xf 的解集为()+∞-,1. 20.(2013届湖南省高考压轴卷数学(理)试题)已知,x y R +∈,且满足22x y xy +=,那么+4x y的最小值是____________【答案】3+21.(2013届四川省高考压轴卷数学理试题)若实数,x y 满足222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则目标函数1y z x =+的最大值是__________. 【答案】222.(2013新课标高考压轴卷(一)理科数学)已知实数y x ,满足1218y y x x y ≥⎧⎪≤-⎨⎪+≤⎩,则目标函数y x z -=的最小值为_____________【答案】2-【解析】由z x y =-得y x z =-.作出不等式对应的平面区域BCD,平移直线y x z =-,由平移可知,当直线y x z =-经过点C 时,直线的截距最大,此时z 最小.由218y x x y =-⎧⎨+=⎩,解得35x y =⎧⎨=⎩,即(3,5)C ,代入z x y =-得最小值为352z =-=-.ks5u。
2013年湖南省高考压轴卷数学理本试题卷包括选择题、填空题和解答题三部分,共5页。
时量120分钟,满分150分。
注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A后的方框涂黑。
2.选择题的作答:每小题选出答案后,用统一提供的2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试题卷、草稿纸上无效。
3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。
答在试题卷、草稿纸上无效。
4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用统一提供的2B铅笔涂黑。
考生应根据自己选做的题目准确填涂题号,不得多选。
答题答在答题卡上对应的答题区域内,答在试题卷、草稿纸上无效。
5.考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(本大题共8小题,每小题5分,共40分)1.时,A B =( )A.∅2. ( )A.2B.4C.3D.-23.已知函数,则( )A .32B .16 C.D .4.已知等比数列{}n a中,各项都是正数,且,品…中&高*考*网】A5.已知两个非零向量a 与b ,定义,其中θ为a 与b 的夹角.若()3,4-a =, ()0,2b =,则A .8-B .6-C .8D .6 6.在空间给出下面四个命题(其中m 、n 为不同的两条直线,a 、b 为不同的两个平面)①m ^a ,n //a Þm n ^②m //n ,n //a Þm //a③m //n ,n b ^,m //a Þa b ^④m n A =,m //a ,m //b ,n //a ,n//bÞa//b其中正确的命题个数有A.1个 B.2个 C.3个 D.4个7.入的条件是()A.1005i≤ D.1006i>i>C.1006i≤B.10058. 某几何体的三视图如图所示,则该几何体的表面积为A..C.(1)π D.(2)π二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在答题卡...中对应题号后的横线上。
2013年(新课标)高考押题卷数 学 (理) 试 题(30道选择题+20非选择题)一.选择题(30道)1.设集合{}2,ln A x =,{},B x y =,若{}0A B ⋂=,则y 的值为( ) A .0 B .1 C .e D .1e2. 已知R 是实数集,集合3|1M x x ⎧⎫=<⎨⎬⎩⎭,{}|3N y y t t ==-≥,则R N C M ⋂=( )A. []0,2B. [2,)+∞C.(,2]-∞D. []2,33.已知i 为虚数单位,则复数321i i+等于( )A .-1-iB .-1+iC .1+iD .1—i4.复数41(,)22m m i m R i -+-⋅∈其中为虚数单位在复平面上对应的点不可能位于 A .第一象限B .第二象限C .第三象限D .第四象限5. “0m n >>”是“方程221mx ny +=表示焦点在y 轴上的椭圆”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件6.若命题“x ∃∈0R ,使得x mx m ++-<200230”为假命题,则实数m 的取值范围是( ) (A )[,]26 (B )[,]--62 (C )(,)26 (D )(,)--627.一个算法的程序框图如右,则其输出结果是( )A.011+8.下面的程序框图中,若输出S 的值为126,则图中应填上的条件为( )A .5n ≤B .6n ≤C .7n ≤D .8n ≤9.右图是函数sin()()y A x x R ωϕ=+∈在区间5[,]66ππ-上的图象.为了得到这个函数的图象,只需将sin ()y x x R =∈的图象上所有的点( )A .向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 B .向左平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C .向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 D .向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变10.已知,40,tan 12sin sin 22πθθθθ<<=++k 则)4sin(πθ-的值( ) A .随着k 的增大而增大B .有时随着k 的增大而增大,有时随着k 的增大而减小C .随着k 的增大而减小D .是一个与k 无关的常数11.关于函数x x x x f cos )cos (sin 2)(-=的四个结论:P 1:最大值为2; P 2:最小正周期为π; P 3:单调递增区间为∈⎥⎦⎤⎢⎣⎡+-k k k ,83,8ππππZ ; P 4:图象的对称中心为∈-+k k ),1,82(ππZ .其中正确的有( ) A .1 个B .2个C .3个D .4个12.,a b 是两个向量,||a =1 ,||b =2 ,且()a b a +⊥,则a 与b 的夹角为( )(A )︒30(B )︒60(C )︒120(D )︒15013.已知a ,b 是两个互相垂直的单位向量,且c ·a =c ·b =1,,则对任意正实数t ,1c ta b t++的最小值是( )A .2B .C .4D .14.一个几何体的三视图如右图所示,则它的体积为( )A .203B .403C .20D .4015.正方形ABCD 的边长为4,中心为M ,球O 与正方形ABCD 所在平面相切于M 点,过点M 的球的直径的另一端点为N ,线段NA 与球O 的球面的交点为E ,且E 恰为线段NA 的中点,则球O 的体积为( )A .83πB C .43πD16.不等式组1,40,0x x y kx y ≥⎧⎪+-≤⎨⎪-≤⎩表示面积为1的直角三角形区域,则k 的值为( )A.2- B. 1- C. 0 D.1 17.设函数3()f x x x =+,x R ∈. 若当02πθ<<时,不等式0)1()sin (>-+m f m f θ恒成立,则实数m 的取值范围是 ( ). A.(,1]-∞ B.[1,)+∞ C.1(,1)2D.1(,1]218、一个盒子里有3个分别标有号码为1,2,3的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是3的取法有( ) A.12种 B. 15种 C. 17种 D.19种19、二项式8(2x -的展开式中常数项是( )A .28B .-7C .7D .-2820、高三毕业时,甲,乙,丙等五位同学站成一排合影留念,已知甲,乙相邻,则甲丙相邻的概率为( )A.110 B.14 C.310 D.25某苗圃基地为了解基地内甲、乙两块地种植的同一种 树苗的长势情况,从两块地各随机抽取了10株树苗测 量它们的高度,用茎叶图表示上述两组数据,对两块地抽取树苗的高度的平均数x x 甲乙、和中位数y y 甲乙、进行比 较,下面结论正确的是( )A .x x y y >>甲乙甲乙,B .x x y y <<甲乙甲乙,C .x x y y <>甲乙甲乙,D .x x y y ><甲乙甲乙,22、公差不为0的等差数列{n a }的前21项的和等于前8项的和.若80k a a +=,则k =( ) A .20 B .21 C .22 D .2323、已知数列}{n a 为等比数列,274=+a a ,865-=⋅a a ,则101a a +的值为( )A .7B .5-C .5D .7-24. 已知21,F F 分别是双曲线12222=-by a x 的左、右焦点,过1F 且垂直于x 轴的直线与双曲线交于B A ,两点,若2ABF ∆是锐角三角形,则该双曲线离心率的取值范围是( ) A .⎪⎪⎭⎫ ⎝⎛+221,1 B .⎪⎪⎭⎫ ⎝⎛+∞+,221 C .()21,1+ D .()+∞+,2125.圆2x 2+y -2x +my -2=0关于抛物线2x =4y 的准线对称,则m 的值为( ) A.1 B. 2 C. 3 D. 4 26.已知抛物线)0(:2>=a ax y C 的焦点到准线的距离为41, 且C 上的两点()()2211,,,y x B y x A 关于直线m x y +=对称, 并且2121-=x x , 那么m =( )A .23B .25 C .2 D .327.如果函数()y f x =图像上任意一点的坐标(,)x y 都满足方程 lg()lg lg x y x y +=+,那么正确的选项是( )(A)()y f x =是区间(0,+∞)上的减函数,且4x y +≤ (B)()y f x =是区间(1,+∞)上的增函数,且4x y +≥ (C)()y f x =是区间(1,+∞)上的减函数,且4x y +≥ (D)()y f x =是区间(1,+∞)上的减函数,且4x y +≤28.定义在R 上的奇函数()f x ,当x ≥0时, ))12log (1),0,1,()1|3|,1,,x x f x x x ⎧+∈⎡⎣⎪=⎨⎪--∈+∞⎡⎣⎩则关于x 的函数()()F x f x a =-(0<a <1)的所有零点之和为( )(A )1-2a(B )21a-(C )12a--(D )21a--29.5(2)x a +的展开式中,2x 的系数等于40,则(2)ax e x dx +⎰等于( )A .eB .1e -C .1D .1e +30.已知函数2342013()12342013x x x x f x x =+-+-++ , 2342013()12342013x x x x g x x =-+-+-- ,设函数()(3)(4)F x f x g x =+⋅-,且函数()F x 的零点均在区间),,](,[Z ∈<b a b a b a 内,则-b a 的最小值为( )A .8B .9C . 10D . 11二.填空题(8道)31.已知A ,B(0,1)),坐标原点O 在直线AB 上的射影为点C,则OC OA ⋅= . 32.在6)11(x+的展开式中,含1x 项的系数是________.(用数字作答)33.若实数x 、y 满足⎪⎩⎪⎨⎧+-≥≥≥-b x y x y y x 02,且2z x y =+的最小值为3,则实数b 的值为__34.已知四面体ABC P -的外接球的球心O 在AB 上,且⊥PO 平面ABC , AB AC 32=,若四面体ABC P -的体积为23,则该球的体积为_____________ 35.已知{,)|||1,||1}x y x y A Ω=≤≤(,是曲线2y x =与12y x =围成的区域,若向区域Ω上随机投一点P ,则点P 落入区域A 的概率为 . 36.公比为4的等比数列{}n b 中,若n T 是数列{}n b 的前n 项积,则有304020301020,,T T T T T T 也成等比数列,且公比为1004;类比上述结论,相应的在公差为3的等差数列{}n a 中,若n S 是{}n a 的前n 项和,则有一相应的等差数列,该等差数列的公差为_____________. 37.在ABC ∆中,角C B A 、、所对的边分别为c b a 、、,且c A b B a 21cos cos =-,当)tan(B A -取最大值时,角C 的值为_______________38.已知抛物线)0(2:2>=p px y C 的准线为l ,过点)0,1(M 且斜率为3的直线与l 相交于点A ,与C 的一个交点为B ,若MB AM =,则p 等于____________三.解答题(12道)39、ABC ∆中,a ,b ,c 分别是角,,A B C 的对边,向量m (2sin ,2cos 2)B B =-,2(2sin (),1)42Bn π=+- ,n m ⊥.(1)求角B 的大小;(2)若a =1b =,求c 的值.40、已知等差数列{}n a 的首项11a =,公差0d >.且1452a a a ,,分别是等比数列}{n b 的432b b b ,,.(Ⅰ)求数列}{n a 与}{n b 的通项公式; (Ⅱ)设数列{}n c 对任意自然数n 均有1212c c b b ++…1n n n ca b ++=成立,求12c c ++…2013c +的值.41、一次考试中,五名同学的数学、物理成绩如下表所示:(1)请在直角坐标系中作出这些数据的散点图,并求出这些数据的回归方程; (2)要从4名数学成绩在90分以上的同学中选2人参加一项活动,以X 表示选中的同学的物理成绩高于90分的人数,求随机变量X 的分布列及数学期望)(X E 的值. 42、十一黄金周,记者通过随机询问某景区110名游客对景区的服务是否满意,得到如下的列联表:性别与对景区的服务是否满意 单位:名(1)从这50名女游客中按对景区的服务是否满意采取分层抽样,抽取一个容量为5的样本,问样本中满意与不满意的女游客各有多少名?(2)从(1)中的5名女游客样本中随机选取两名作深度访谈,求选到满意与不满意的女游客各一名的概率;(3)根据以上列联表,问有多大把握认为“游客性别与对景区的服务满意”有关 附:()()()()()2n ad bc K a b c d a c b d -=++++ 43、如图在四棱锥P ABCD -中,底面ABCD 是边长为a 的正方形,侧面PAD ⊥底面ABCD ,且PA PD AD ==,设E 、F 分别为PC 、BD 的中点.(Ⅰ) 求证:EF //平面PAD ; (Ⅱ) 求证:面PAB ⊥平面PDC ; (Ⅲ) 求二面角B PD C --的正切值.44、已知椭圆C :22221(0)x y a b a b +=>>的焦距为,,其右焦点为F ,过点(0,)B b 作直线交椭圆于另一点A .(Ⅰ)若6AB BF ⋅=-,求ABF ∆外接圆的方程;(Ⅱ)若过点(2,0)M 的直线与椭圆:N 222213x y a b +=相交于两点G 、H ,设P 为N 上一点,且满足OG OH tOP += (O 为坐标原点),当PG - t 的取值范围.45. 已知定点A(1,0), B 为x 轴负半轴上的动点,以AB 为边作菱形ABCD,使其两对 角线的交点恰好落在y 轴上. (1) 求动点D 的轨迹五的方程.(2) 若四边形MPNQ 的四个顶点都在曲线E 上,M ,N 关于x 轴对称,曲线E 在M 点处的切线为l ,且PQ//l①证明直线PN 与QN 的斜率之和为定值;②当M 的横坐标为43,纵坐标大于O,PQN ∠=60°时,求四边形MPNQ 的面积46. 对于函数f (x )(x ∈D ),若x ∈D 时,恒有()f x '>()f x 成立,则称函数()f x 是D 上的J 函数.(Ⅰ)当函数f (x )=m x e lnx 是J 函数时,求m 的取值范围; (Ⅱ)若函数g (x )为(0,+∞)上的J 函数, ①试比较g (a )与1a e -g (1)的大小;②求证:对于任意大于1的实数x 1,x 2,x 3,…,x n ,均有 g (ln (x 1+x 2+…+x n ))>g (lnx 1)+g (lnx 2)+…+g (lnx n ).47. 设函数()ln a f x x x x=+, 32()3g x x x =--. (Ⅰ)讨论函数()()f x h x x=的单调性;(Ⅱ)如果存在12,[0,2]x x ∈,使得12()()g x g x M -≥成立,求满足上述条件的最大整数M ; (Ⅲ)如果对任意的1,[,2]2s t ∈,都有()()f s g t ≥成立,求实数a 的取值范围.48.选修4-1:几何证明选讲.如图,过圆E 外一点A 作一条直线与圆E 交B,C 两点,且AB=31AC,作直线AF 与圆E 相切于点F ,连接EF 交BC 于点D,己知圆E 的半径为2,EBC ∠ =30. (1)求AF 的长. (2)求证:AD=3ED.49. 在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建坐标系.已知曲线θθρcos 2sin :2a C =)0(>a,已知过点)4,2(--P 的直线l 的参数方程为:⎪⎪⎩⎪⎪⎨⎧+-=+-=t y tx 224222,直线l 与曲线C 分别交于N M ,两点. (1)写出曲线C 和直线l 的普通方程;(2)若|||,||,|PN MN PM 成等比数列,求a 的值. 50. 选修4-5:不等式选讲设.,)(R a a x x f ∈-=(1)当13,()3x f x -≤≤≤时,求a 的取值范围;(2)若对任意x ∈R ,()()12f x a f x a a -++≥-恒成立,求实数a 的最小值.11.【答案】C【点评】根据三角函数的图像确定三角函数的解析式是综合考察三角函数知识的掌握程度的重要手段,再结合三角函数图象的平移问题,使得这种题型常考常新,作为中档题是历年高考考察的重点,如9题;三角函数求值是历年高考的常考点,应用三角函数恒等变换化简式子并引入参数是一种创新题型,知识的综合程度较高,或许这种题型在未来几年的高考中会出现,如10题;结合三角函数的恒等变换,综合分析函数的性质,是对三角函数知识点的综合考察,要求知识的掌握程度为中等,历年高考对三角函数知识点的考察亦以中档容易为主,如11题。
2013届全国各地高考押题数学(理科)精选试题分类汇编1:集合一、选择题1 .(2013届北京市高考压轴卷理科数学)设集合}1,0,1{-=M ,},{2a a N =则使M N N = 成立的a 的值是 ( )A .1B .0C . -1D .1或-1【答案】C 【解析】若M N N = ,则有N M ⊆.若0a =,{0,0}N =,不成立.若1a =,则{1,1}N =不成立.若1a =-,则{1,1}N =-,满足N M ⊆,所以1a =-,选 C . 2 .(2013届陕西省高考压轴卷数学(理)试题)已知集合{1,0,1},{||1|,}A B x x a a A =-==+∈,则A B 中的元素的个数为A .{}0B .{}1C .{}0,1D .{}0,1,2【答案】B 【解析】{}{||1|,}0,1,2,B x x a a A ==+∈=所以{}0,1A B = .3 .(2013届重庆省高考压轴卷数学理试题)已知集合{||2}A x R x =∈≤},{|4}B x Z =∈≤,则A B ⋂= () A .(0,2) B .[0,2] C .{0,2] D .{0,1,2}【答案】解析:{||2,}{22}A x R x x R x =∈≤=∈-≤≤,{4}{016}B x Z x Z x =∈≤=∈≤≤ 故{0,1,2}A B ⋂=.应选 D .4 .(2013届辽宁省高考压轴卷数学理试题)设集合A={}{}|||1,,|||2,.x x a x R B x x b x R -<∈=->∈若A ⊆B,则实数a,b 必满足 () A .||3a b +≤ B .||3a b +≥C .||3a b -≤D .||3a b -≥【答案】D 【解析】本题主要考查绝对值不等式的解法与几何与结合之间的关系,属于中等题.A={x|a-1<x<a+1},B={x|x<b-2或x>b+2}因为A ⊆B,所以a+1≤b-2或a-1≥b+2,即a-b ≤-3或a-b ≥3,即|a-b|≥35 .(2013届安徽省高考压轴卷数学理试题)已知集合{}2|ln(9)A Z B x y x ===-,,则A B 为 () A .{}210--,, B .{}-2-1012,,,, C .{}012,, D .{}-1012,,,【答案】B 【解析】考查集合的概念和交集运算,由()29033x x ->∈-,,,即{}|33B x x =-<<,所以{}-2-1012A B = ,,,,.6 .(2013届四川省高考压轴卷数学理试题)已知集合{|3}M x x =<,{|21}xN x =-,则M N =( )A .∅B .{|3}x x <C .{|13}x x <<D .{|03}x x << 【答案】D7 .(2013届湖南省高考压轴卷数学(理)试题)已知集合,A B =( )A B C D .∅ 【答案】B8 .(2013届广东省高考压轴卷数学理试题)设全集R,{|(2)0},{|ln(1)},A x x x B x y x =-<==- 则A U (CB )= ( )A .(2,1)-B .[1,2)C .(2,1]-D .(1,2) 【答案】B ()()0,2,,1,A B ==-∞[)1,,U C B =+∞9 .(2013届新课标高考压轴卷(二)理科数学)已知全集U R =.集合{}3|<=x x A ,{}0log |2<=x x B ,则U A C B ⋂=( ) A .{}13x x <<B .{}310|<≤≤x x x 或C .{}3x x <D .{}13x x ≤<【答案】B10.(2013届江西省高考压轴卷数学理试题)已知全集U =R ,集合{12}M x x =-≤,则U M =ð( )A .{13}x x -<<B .{13}x x -≤≤C .{13}x x x <-<,或D .{13}x x x -≤≥,或 【答案】C 【解析】因为集合{12}{13}M x x x x =-=-≤≤≤,全集U =R ,所以U M =ð{13}x x x <-<,或. 11.(2013届山东省高考压轴卷理科数学)已知集合2{|03},{|540}M x x N x x x =<<=-+≥,则M N = ( )A .{|01}x x <≤B .{|13}x x ≤<C .{|04}x x <≤D .{|0x x <或4}x ≥【答案】A 【解析】=⋂∴≥≤=≥--=N M x x x x x x N },41|{}0)1)(4(|{或{|01}x x <≤12.(2013届全国大纲版高考压轴卷数学理试题)若{}8222<≤∈=-x Z x A ,{}1log 2>∈=x R x B ,则()B C A R 的元素个数为 ( )A .0B .1C .2D .3【答案】 C . 化简{}()10,1,0,2,2A B ⎛⎫==+∞ ⎪⎝⎭13.(2013届海南省高考压轴卷理科数学)设集合 M={x|(x+3)(x ﹣2)<0},N={x|1≤x≤3},则M∩N=( ) A .[1,2) B .[1,2]C .(2,3]D .[2,3]【答案】答案:A考点:交集及其运算.分析:根据已知条件我们分别计算出集合M,N,并写出其区间表示的形式,然后根据交集运算的定义易得到A ∩B 的值.解答:解:∵M={x|(x+3)(x﹣2)<0}=(﹣3,2)N={x|1≤x≤3}=[1,3],∴M∩N=[1,2)14.(2013届湖北省高考压轴卷 数学(理)试题)集合{3}x M y y =∈=R ,{1,0,1}N =-,则下列结论正确的是( ) A .{0,1}M N = B .(0,)M N =+∞C .()(,0)C M N =-∞ RD .(){1,0}C M N =- R【答案】D 【解析】:由已知条件可得(0,)M =+∞,则(,0]C M =-∞R ,∴(){1,0}C M N =- R .故选 D .15.(2013新课标高考压轴卷(一)理科数学)设集合}{}{{}20,1,2,3,4,5,1,2,540,U A B x Z x x ===∈-+<则()U C A B ⋃() A .{0,1,2,3,} B .{5} C .{1,2,4} D .{0,4,5}【答案】D 【解析】}2{540{14}{2,3}B x Z x x x Z x =∈-+=∈<<=<,所以{1,2,3}A B = ,所以(){0,4,5}U A B = ð,选 D .二、填空题16.(2013届江苏省高考压轴卷数学试题)设全集{}4,3,2,1,0=U ,{}4,3,0=A ,{}3,1=B ,则B A C U ⋃)(=________.【答案】{1,2,3}17.(2013届上海市高考压轴卷数学(理)试题)设集合{|1},{|(2)0}A x x B x x x =>=-<,则A B = _______________.【答案】{|12}x x <<【解析】{|02}B x x =<<,{|1}{02}{|12}A B x x x x x x =><<=<<。
2013高考模拟题第I 卷一.选择题:本大题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设1z i =+(i 是虚数单位)A .1i --B .1i -+ D .1i +2.{|(1,1)(1,2),},{|(1,2)(2,3),},()P m m R Q n n R P Q ααββ==-+∈==-+∈⋂=是两个向量集合则A .{(1,-2)}B .{(-13,-23)}C .{(-12, -7)}D .{(-23,-13)}3.在等差数列}{n a 中,48)(2)(31310753=++++a a a a a ,则等差数列}{n a 的前13项的和为( )A .244 )5.某流程如右图所示,现输入如下四个函数,则可以输出的函数是( )A .2)(x x f =BC .62ln )(-+=x x x fD 6.已知R 上可导函数()f x 的图象如图所示,则不等式2(23)()0x xf x '-->的解集为 A .(,2)(1,)-∞-⋃+∞B .(,2)(1,2)-∞-⋃ C .(,1)(1,0)(2,)-∞-⋃-⋃+∞ D .(,1)(1,1)(3,)-∞-⋃-⋃+∞7.已知几何体M 的正视图是一个面积为2π的半圆,俯视图是正三角形,那么这个几何体的表面积和体积为A.6π和B.6π+4C.6π+4D.4(π+8.如图,过抛物线y2=2px (p>0)的焦点F的直线交抛物线于点A、B,交其准线于点C,若|BC|=2|BF|,且|AF|=3.则此抛物线的方程为( )A.y2B.y2=9x C.y2D.y2=3x9.已知点O是ABC∆外心,3,5==ACAB,则=∙−→−−→−BCAOA B C .8 D.8-10.设函数2()f x x ax b=++。
若(1)2,(1)2,(0)0f f f≤-≤≥,则(2)f的最大值为A.2-B.6 C.7 D.1011.已知球的直径SC=4,A,B是该球球面上的两点,,30=∠=∠BSCASC,则棱锥S—ABC的体积为( )A B C D.112.幂指函数()[()]g xy f x=在求导时,可运用对数法:在函数解析式两边求对数得ln()ln()y g x f x=⋅,两边同时求导得递增区间是()A.(0,2)B.(2,3)C.(,4)e D.(3,8)第II卷二.填空题:本大题共四小题,每小题5分。
2013高考数学押题卷(最后一卷)( 理 科 数 学)一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中, 只有一个选项是符合题目要求的) 1.若ii m -+1是纯m 的值为( )A .1-B .0C .1 D2.已知集合}13|{},1|12||{>=<-=xx N x x M ,则N M ⋂=( )A .φB .}0|{<x xC .}1|{<x xD .}10|{<<x x3.若)10(02log ≠><a a a 且,则函数)1(log )(+=x x f a 的图像大致是( )4.已知等比数列}{n a 的公比为正数,且1,422475==⋅a a a a ,则1a =( )A .21 B .22 C .2 D .2 5.已知变量x 、y 满足的约束条件⎪⎩⎪⎨⎧-≥≤+≤11y y x xy ,则y x z 23+=的最大值为( )A .-3B .25 C .-5 D .46.过点(0,1)且与曲线11-+=x x y 在点(3,2)处的切线垂直的直线的方程为( )A .012=+-y xB .012=-+y xC .022=-+y xD .022=+-y x 7.函数)sin (cos 32sin )(22x x x x f --=的图象为C ,如下结论中正确的是( ) ①图象C 关于直线11π12x =对称; ②图象C 关于点2π03⎛⎫⎪⎝⎭,对称; ③函数()f x 在区间π5π1212⎛⎫- ⎪⎝⎭,内是增函数;④由x y 2sin 2=的图角向右平移π3个单位长度可以得到图象C (A )①②③ (B )②③④ (C )①③④ (D )①②③④8.已知620126(12)xa ax axa x-=+++⋅⋅⋅+,则0126a a a a +++⋅⋅⋅+=( )A .1B .1-C .63 D .629.若函数)(x f 的导函数34)('2+-=x x x f ,则使得函数)1(-x f 单调递减的一个充分不必要条件是x ∈( )A .[0,1]B .[3,5]C .[2,3]D .[2,4]10.设若2lg ,0,()3,0,ax x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰((1))1f f =,则a 的值是( ) A. -1 B. 2 C. 1 D.-211.△ABC 中,∠A=60°,∠A 的平分线AD 交边BC 于D ,已知AB=3,且)(31R ∈+=λλ,则AD 的长为( )A .1B .3C .32D .312.在三棱锥S —ABC 中,AB ⊥BC,AB=BC=2,SA=SC=2,,二面角S —AC —B 的余弦值是33-,若S 、A 、B 、C 都在同一球面上,则该球的表面积是( ) A .68B .π6C .24πD .6π二、填空题:(本大题4小题,每小题5分,共20分) 13.在△ABC 中,B=3π中,且34=⋅BC BA ,则△ABC 的面积是14.若函数1)(2++=mx mx x f 的定义域为R ,则m 的取值范围是15.已知向量,满足:2||,1||==,且6)2()(-=-⋅+b a b a ,则向量a 与b 的夹角是16.某几何体的三视图如图所示,则它的体积是正视图 侧视图 俯视图三、解答题(本大题共6小题,共70分。
解答应写出必要的文字说明,证明过程或演算步骤) 17.(本小题满分12分)设}{n a 是公比大于1的等比数列,S n 为数列}{n a 的前n 项和.已知S 3=7,且a 1+3,3a 2,a 3+4构成等差数列.(Ⅰ)求数列}{n a 的通项公式; (Ⅱ)令 2,1,ln 13==+n a b n n,求数列}{n b 的前n 项和T n .18.(本小题满分12分)甲、乙两袋装有大小相同的红球和白球,其中甲袋装有1个红球,4个白球;乙袋装有2个红球,3个白球。
现从甲、乙两袋中各任取2个球。
(Ⅰ)用ξ表示取到的4个球中红球的个数,求ξ的分布列及ξ的数学期望;(Ⅱ)求取到的4个球中至少有2个红球的概率. 19.(本小题满分12分)如图,四棱锥A B C D P -中,底面A B C D 为平行四边形,22==AD AB ,3=BD ,PD ⊥底面ABCD .(Ⅰ)证明:平面⊥PBC 平面PBD;(Ⅱ)若1=PD ,求AP 与平面PBC 所成角的正弦值。
20.(本小题满分12分)已知双曲线:C 22221x y a b -=(0,0)a b >>与圆22:3O x y +=相切,过C 的一个焦点且斜率为O 相切.(Ⅰ)求双曲线C 的方程;(Ⅱ)P 是圆O 上在第一象限的点,过P 且与圆O 相切的直线l 与C 的右支交于A 、B 两点,AOB ∆的面积为l 的方程.21.(本小题12分)已知函数14341ln )(-+-=xx x x f . (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)设42)(2-+-=bx x x g ,若对任意)2,0(1∈x ,[]2,12∈x ,不等式)()(21x g x f ≥恒成立,求实数b 的取值范围。
请考生在第23~24两题中任选一题作答,如果多做,则按所做的第一题记分.23.(本小题满分10分)选修4-4:坐标系与参数方程以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,已知点P 的直角坐标为(1,5)-,点M 的极坐标为(4,)2π,若直线l 过点P ,且倾斜角为3π,圆C 以M为 圆心、4为半径。
(Ⅰ)写出直线l 的参数方程和圆C 的极坐标方程; (Ⅱ)试判定直线l 和圆C 的位置关系。
24.(本小题满分10分)选修4-5:不等式选讲设函数()1.f x x x a =++-.(Ⅰ)若2a=,解不等式()5f x ≥;(Ⅱ)如果,()3x R f x ∀∈≥,求a 的取值范围。
,∴,又∴ 是以∴ 即:(Ⅰ):223422559(0)50C C P C C ξ===,2111233244222255551225C C C C C C C C C ⋅=⋅+⋅=1112232442222255553(2)10C C C C C C C C C ξ⋅==⋅+⋅= ,1242225513)25C C C C ==ξ的分布列为65E ξ=………………………………………8分Ⅱ)所求的概率31172)(2)(3)10255P P ξξ≥==+==+=………………12分∵222BD AD AB+=∴BD AD ⊥又∵PD ⊥底面ABCD ∴AD PD ⊥又∵D BD PD =⋂ ∴⊥AD 平面PBD又∵AD BC //∴⊥BC 平面PBD∵⊂BC平面PBC∴平面⊥PBC 平面PBD……………………………………………6分(Ⅱ)如图,分别以DA 、DP 、DB 为x 轴、y 轴、z 轴建立空间直角坐标系则)0,0,1(A ,)0,3,0(B ,)1,0,0(P ,)0,3,1(-C)1,0,1(-=,)0,0,1(-=,)1,3,0(-=设平面PBC 的法向量为n ,⎪⎩⎪⎨⎧=∙=∙0BP n 解得)3,1,0(=n46sin ==θ……………………………………………12分20解:(Ⅰ)∵双曲线C 与圆O相切,∴ a = ………………2分过C的一个焦点且斜率为O 相切,得2c =,既而1b =故双曲线C 的方程为2213x y -= ………………………………5分(Ⅱ)设直线l :m kx y +=,)0,0(><m k ,),(11y x A ,),(22y x B圆心O 到直线l 的距离12+=k m d,由d =2233m k =+………6分由2213y kx mx y =+⎧⎪⎨-=⎪⎩ 得222(31)6330k x kmx m -+++=则122631km x x k +=--, 21223331m x x k +=- ……………8分1221x x k AB -⋅+==2121224)(1x x x x k -+⋅+==又AOB∆的面积12S OP AB =⋅==,∴AB = …………10分由231k =- 解得1-=k,m = ∴直线l的方程为y x =-分21解: (I )14341ln )(-+-=xx x x f )0(>x , 22243443411)(xx x x x x f --=--=' ...................2分 由>x 及)(>'x f 得31<<x ;由>x 及)(<'x f 得310><<x x 或,故函数)(x f 的单调递增区间是)3,1(;单调递减区间是),3(,)1,0(∞+。
...................4分(II )若对任意)2,0(1∈x ,[]2,12∈x ,不等式)()(21x g x f ≥恒成立,问题等价于max min )()(x g x f ≥,...................5分 由(I )可知,在(0,2)上,1x =是函数极小值点,这个极小值是唯一的极值点,故也是最小值点,所以min 1()(1)2f x f ==-;...................6分 []2()24,1,2g x x bx x =-+-∈当1b<时,max ()(1)25g x g b ==-; 当12b ≤≤时,2max ()()4g x g b b ==-;当2b>时,max ()(2)48g x g b ==-;...................8分问题等价于11252b b <⎧⎪⎨-≥-⎪⎩ 或212142b b ≤≤⎧⎪⎨-≥-⎪⎩ 或21482b b >⎧⎪⎨-≥-⎪⎩...............11分解得1b <或12b ≤≤ 或 b ∈∅即2b ≤,所以实数b的取值范围是,2⎛-∞ ⎝⎦...................12分 23.解(Ⅰ)直线l的参数方程是11,25x t y ⎧=+⎪⎪⎨⎪=-⎪⎩,(t 为参数) 圆C 的极坐标方程是8sin ρθ=。
………………5分(Ⅱ)圆心的直角坐标是(0,4),直线l50y --,圆心到直线的距离4d ==>,所以直线l 和圆C 相离。
……10分24解:(I )2a =,()1 2.f x x x =++-不等式()5f x ≥即为125x x ++-≥,等价于1121252x x x x x x <-<-⎧⎧⇒⇒≤-⎨⎨--+-≥≤-⎩⎩ ; 或121212535x x x x x -≤≤-≤≤⎧⎧⇒⇒∈∅⎨⎨++-≥≥⎩⎩;或2231253x x x x x x >>⎧⎧⇒⇒≥⎨⎨++-≥≥⎩⎩.综上,不等式的解集为2x ≤-或3x ≥...............5分(II)若1a=-,()21f x x =+,不满足题设条件.若1a <-,21,()1,1,()21,1x a x af x a a x f x a x a x -+-≤⎧⎪=--<<-⎨⎪+-≥-⎩的最小值为-1-;若1a >-,21,1()1,1,()21,x a x f x a x a f x a x a x a -+-≤-⎧⎪=+-<<⎨⎪+-≥⎩的最小值为1+.所以,()3x R f x ∀∈≥的充要条件是13a +≥,从而a 的取值范围是(][),42,-∞-+∞ ..10分。