第二章_模糊控制1
- 格式:ppt
- 大小:1.10 MB
- 文档页数:63
第2章模糊控制2.1 模糊控制自从1965年美国加利福尼亚大学控制论专家L .A .zadeh教授提出模糊数学以来”,吸引了众多的学者对其进行研究,使其理论与方法日臻完善,并且广泛地应用于自然科学和社会科学的各个领域,尤其是在第5代计算机研制和知识工程开发等领域占有特殊重要的地位。
把模糊逻辑应用于控制领域则始于1973年”。
1974年英国的E.H.Mamdani成功地将模糊控制应用于锅炉和蒸汽机控制。
此后20多年来,模糊控制不断发展并在许多领域中得到成功应用。
由于模糊逻辑本身提供了由专家构造语言信息并将其转化为控制策略的一种系统的推理方法,因而能够解决许多复杂而无法建立精确数学模型系统的控制问题,所以它是处理推理系统和控制系统中不精确和不确定性的一种有效方法。
从广义上讲,模糊控制是适于模糊推理,模仿人的思维方式,对难以建立精确数学模型的对象实施的一种控制策略。
它是模糊数学同控制理论相结合的产物,同时也是智能控制的重要组成部分。
模糊控制的突出特点在于:①控制系统的设计不要求知道被控对象的精确数学模型,只需要提供现场操作人员的经验知识及操作数据。
⑦控制系统的鲁棒性强,适应于解决常规控制难以解决的非线性、时变及大纯滞后等问题。
③以语言变量代替常规的数学变量,易于形成专家的“知识”。
④控制推理采用“不精确推理”(Approximatc Reasoning)。
推理过程模仿人的思维过程。
由于介入了人类的经验.因而能够处理复杂甚至“病态”系统。
2.1.1模糊数学模糊数学是基于模糊集理论。
模糊集的概念与古典集非此即彼的概念相对应,描述没有明确、清楚地定义界限的集合。
模糊集的理论叙述为:模糊集A是定义在一个输入ξ之上并由其隶属函数µA(·):ξ→[0,1]表征的集合。
假设ξ是一个普通集合,称为论域。
从ξ到区间[0,1]的映射A称为ξ上的一个模糊集合。
µA(·)表示ξ隶属于模糊集合A的程度,称为隶属度。
第二章模糊控制数学基础模糊控制的应用场合:一.模糊控制的定义对于一个熟练的操作人员,他往往凭借丰富的实践经验,采取适当的对策来巧妙地控制一个复杂过程,得到满意的控制效果。
若能将这些熟练操作员的实践经验加以总结和描述,并用语言表达出来,就会得到一种定性的、不精确的控制规则。
如果用模糊数学将其定量化就转化为模糊控制算法,形成模糊控制理论。
模糊控制是建立在人工经验(定性的、不精确的)基础之上的,模仿人类的思维方式,采用模糊数学对模糊现象进行识别和判决,给出精确的控制量,对被控对象进行控制。
模糊数学是模糊控制的数学基础,二.模糊控制的特点:1.无需知道被控对象的数学模型。
模糊控制是以人对被控系统的控制经验为依据而设计的控制器,故无需知道被控系统的数学模型。
2.是一种反映人类智慧思维的智能控制。
模糊控制采用人类思维中的模糊量,如“高”、“中”、“低”、“大”、“小”等,控制量由模糊推理导出。
这些模糊量和模糊推理是人类智能活动的体现。
3.易被人们所接受。
模糊控制的核心是控制规则。
模糊控制中的知识表示、模糊规则和模糊推理是基于专家知识或熟练操作者的成熟经验。
这些规则是以人类语言表示的。
很明显这些规则易被一般人所接收和理解。
如“衣服较脏,则投入洗涤剂较多,洗涤时间较长”, “今天气温高,则今天天气暖和”.4.构造容易。
用单片机等来构造模糊控制器,其结构与一般的数字控制系统无异,模糊控制算法用软件实现,也可以用专用模糊控制芯片直接构造控制器。
5.鲁棒性好。
模糊控制系统无论被控对象是线性的还是非线性的,都能执行有效的控制,具有良好的鲁棒性和适应性。
模糊控制是基于熟练操作员的实践经验,比如智能洗衣机,能够实现以下功能:“衣服较脏,则投入洗涤剂较多,洗涤时间较长”。
这个控制规律中存在着模糊概念:“衣服较脏”。
三.模糊概念没有明确外延的概念,即没有明确符合某概念的对象的全体,如“天气冷热”、“雨的大小”、“风的强弱”、“人的胖瘦”、“年龄的大小”、“个子高低”。
第一部分模糊控制第2讲模糊控制原理第一节模糊控制(推理)系统的基本结构1.1 模糊控制系统的组成模糊控制器1.2 模糊控制器(推理)的结构1.2 模糊控制器的结构模糊化模糊化的作用是将输入的精确量转换成模糊量。
具体过程为:1)尺度变换尺度变换,将输入变量由基本论域变换到各自的论域范围。
变量作为精确量时,其实际变化范围称为基本论域;作为模糊语言变量时,变量范围称为模糊集论域。
2)模糊处理将变换后的输入量进行模糊化,使精确的输入量变成模糊量,并用相应的模糊集来表示。
知识库1.2 模糊控制器的结构数据库规则库数据库主要包括各语言变量的隶属函数,尺度变换因子及模糊空间的分级数等。
规则库包括了用模糊语言变量表示的一系列控制规则。
它们反映了控制专家的经验和知识。
1.2 模糊控制器的结构◆模糊推理模糊推理是模糊控制器的核心,它具有模拟人的基于模糊概念的推理能力。
◆清晰化作用:将模糊推理得到的模糊控制量变换为实际用于控制的清晰量。
包括:1) 将模糊量经清晰化变换成论域范围的清晰量。
2) 将清晰量经尺度变换变化成实际的控制量。
1.3 模糊控制器的维数模糊控制器输入变量的个数称为模糊控制器的维数。
对于单输入单输出的控制系统,一般有以下三种情况:一维模糊控制器一个输入:误差;输出为控制量或控制量的变化。
二维模糊控制二个输入:误差及误差的变化。
三维模糊控制器三个输入为输入:误差、误差的变化、误差变化的速率。
第二节模糊控制系统的基本原理2.1 模糊化运算(Fuzzification)2.2 清晰化计算(Defuzzification)2.3 数据库(Data base)2.4 规则库(Rule base)2.4 模糊推理(Fuzzy Inference)2.1 模糊化运算(Fuzzification)模糊化运算是将输入空间的观测量映射为输入论域上的模糊集合。
首先需要对输入变量进行尺度变换,将其变化到相应的论域范围,然后将其模糊化,得到相应的模糊集合。
模糊控制——(1)基本原理1、模糊控制的基本原理模糊控制是以模糊集理论、模糊语⾔变量和模糊逻辑推理为基础的⼀种智能控制⽅法,它是从⾏为上模仿⼈的模糊推理和决策过程的⼀种智能控制⽅法。
该⽅法⾸先将操作⼈员或专家经验编成模糊规则,然后将来⾃传感器的实时信号模糊化,将模糊化后的信号作为模糊规则的输⼊,完成模糊推理,将推理后得到的输出量加到执⾏器上。
2、模糊控制器模糊控制器(Fuzzy Controller—FC):也称为模糊逻辑控制器(Fuzzy Logic Controller—FLC),由于所采⽤的模糊控制规则是由模糊理论中模糊条件语句来描述的,因此模糊控制器是⼀种语⾔型控制器,故也称为模糊语⾔控制器(Fuzzy Language Controller—FLC)。
(1)模糊化接⼝(Fuzzy interface)模糊控制器的输⼊必须通过模糊化才能⽤于控制输出的求解,因此它实际上是模糊控制器的输⼊接⼝。
它的主要作⽤是将真实的确定量输⼊转换为⼀个模糊⽮量。
(2)知识库(Knowledge Base—KB)知识库由数据库和规则库两部分构成。
①数据库(Data Base—DB)数据库所存放的是所有输⼊、输出变量的全部模糊⼦集的⾪属度⽮量值(即经过论域等级离散化以后对应值的集合),若论域为连续域则为⾪属度函数。
在规则推理的模糊关系⽅程求解过程中,向推理机提供数据。
②规则库(Rule Base—RB)模糊控制器的规则司基于专家知识或⼿动操作⼈员长期积累的经验,它是按⼈的直觉推理的⼀种语⾔表⽰形式。
模糊规则通常有⼀系列的关系词连接⽽成,如if-then、else、also、end、or等,关系词必须经过“翻译”才能将模糊规则数值化。
最常⽤的关系词为if-then、also,对于多变量模糊控制系统,还有and等。
(3)推理与解模糊接⼝(Inference and Defuzzy-interface)推理是模糊控制器中,根据输⼊模糊量,由模糊控制规则完成模糊推理来求解模糊关系⽅程,并获得模糊控制量的功能部分。