河南省中考数学模拟试卷解析版
- 格式:doc
- 大小:63.00 KB
- 文档页数:17
河南省中招考试数学模拟试卷一、选择题(共8小题,每小题3分,共24分)下列各题均有四个选项,其中只有一个是正确的,将正确答案的代号字母填入题后括号内。
1.5的相反数是()A.B.﹣5 C.±5 D.﹣2.12月30日,晋豫鲁铁路正式开通运营,据了解,晋豫鲁铁路是“晋煤外运”的新通道.线路起自山西兴县瓦塘站,终点是山东日照,全线长1260公里,横跨山西、河南、山东三省.总941亿元,941亿用科学记数法表示为()A.941×108B.94.1×109C.9.41×1010D.9.41×10113.不等式组的解集在数轴上表示为()A.B.C.D.4.如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为()A.68° B.32°C.22°D.16°5.下列运算正确的是()A.(2x2)3=6x6B.3a+2b=5ab C.﹣a5•a5=﹣a10D.(a+b)2=a2+b26.一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为()A.2个B.3个C.5个D.10个7.种植能手李大叔种植了一批新品种黄瓜,为了考察这种黄瓜的生长情况,李大叔抽查了部分黄瓜株上长出的黄瓜根数,得到如图的条形图,则抽查的这部分黄瓜株上所结黄瓜根数的中位数和众数分别是()A.13.5,20 B.15,5 C.13.5,14 D.13,148.如图,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是()A.abc<0 B.2a+b<0 C.a﹣b+c<0 D.4ac﹣b2<0二、填空题(共7小题,每小题3分,共21分)9.分式方程的解是.10.已知直角三角形ABC的一条直角边AB=8cm,另一条直角边BC=6cm.则以AB为轴旋转一周,所得到的圆锥的表面积是.11.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形和圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有图案都是轴对称图形的概率为.12.如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=,则AB的长是.13.把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是.14.如图,在Rt△ABC中,∠C=90°,∠B=60°,点D是BC边上的点,CD=1,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是.15.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2,点E在x轴上,若△ACE为直角三角形,则E的坐标是.三、解答题(本大题共8小题,满分75分)16.先化简÷(a+2)+,再求值,a为整数且﹣2≤a≤2.17.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.(3)在(2)的条件下,△ABC满足条件,矩形AFBD是正方形.18.某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为,并把条形统计图补充完整;(2)扇形统计图中m=,n=,表示“足球”的扇形的圆心角是度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.19.一架空客A320﹣200型客机12月28日从印尼泗水飞往新加坡途中失事.我国政府马上派出舰船搜救,我海一艘潜艇在海面下500米A点处测得仰角为30°正前方的海底有疑似黑匣子信号发出,继续在同一深度直线航行3000米后再次在B点处测得俯角为60°正前方的海底有疑似黑匣子信号发出,求海底疑似黑匣子C点处距离海面的深度?(结果保留根号)20.如图,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA、OC分别在x轴、y 轴上,点B的坐标为(2,2),反比例函数(x>0,k≠0)的图象经过线段BC的中点D.(1)求k的值;(2)若点P(x,y)在该反比例函数的图象上运动(不与点D重合),过点P作PR⊥y轴于点R,作PQ⊥BC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式并写出x的取值范围.21.在圣诞节前夕,几位同学到某文具店调查一种进价为2元的圣诞贺卡的销售情况,每张定价3元,每天能卖出500张,每张售价每上涨0.1元,其每天销售量就减少10个.另外,物价局规定,售价不得超过商品进价的240%.据此,请你解答下面问题:(1)要实现每天800元的利润,应如何定价?(2)800元的利润是否最大?如何定价,才能获得最大利润?22.(1)问题发现如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF、则EF=BE+DF,试说明理由;(2)类比引申如图2,在四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°,若∠B,∠D都不是直角,则当∠B与∠D满足等量关系时,仍有EF=BE+DF;(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,猜想BD、DE、EC满足的等量关系,并写出推理过程.23.如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C(1)求抛物线的函数解析式.(2)设点D在抛物线上,点E在抛物线的对称轴上,且以AO为边的四边形AODE是平行四边形,求点D的坐标.(3)P是抛物线上第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.河南省中招考试数学模拟试卷参考答案与试题解析一、选择题(共8小题,每小题3分,共24分)下列各题均有四个选项,其中只有一个是正确的,将正确答案的代号字母填入题后括号内。
河南省洛阳市东方二中学2024届中考数学四模试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.已知二次函数y=3(x﹣1)2+k的图象上有三点A(2,y1),B(2,y2),C(﹣5,y3),则y1、y2、y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y12.点A(a,3)与点B(4,b)关于y轴对称,则(a+b)2017的值为()A.0 B.﹣1 C.1 D.720173.下列各数中是无理数的是()A.cos60°B.·1.3C.半径为1cm的圆周长D.384.湿地旅游爱好者小明了解到鄂东南市水资源总量为42.4亿立方米,其中42.4亿用科学记数法可表示为()A.42.4×109B.4.24×108C.4.24×109D.0.424×1085.反比例函数是y=2x的图象在()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限6.在实数﹣3.5、、0、﹣4中,最小的数是()A.﹣3.5 B.C.0 D.﹣47.有下列四种说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆.其中,错误的说法有()A.1种B.2种C.3种D.4种8.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′,连接CC′.若∠CC′B′=32°,则∠B的大小是( )A .32°B .64°C .77°D .87°9.函数y =113x x +--自变量x 的取值范围是( ) A .x ≥1B .x ≥1且x ≠3C .x ≠3D .1≤x ≤310.估计5介于( ) A .0与1之间B .1与2之间C .2与3之间D .3与4之间二、填空题(本大题共6个小题,每小题3分,共18分) 11.如图,AB 是圆O 的直径,弦CD ⊥AB ,∠BCD=30°,CD=4,则S 阴影=_____.12.计算:(a 2)2=_____.13.一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球实验,将球搅匀后任意摸出一个球,记下颜色后放回,搅匀,通过多次重复试验,算得摸到红球的频率是0.2,则袋中有________个红球.14.抛物线y=(x+1)2 - 2的顶点坐标是 ______ . 15.若代数式33x -有意义,则x 的取值范围是__. 16.已知抛物线y=2112x -,那么抛物线在y 轴右侧部分是_________(填“上升的”或“下降的”). 三、解答题(共8题,共72分)17.(8分)如图1,将长为10的线段OA 绕点O 旋转90°得到OB ,点A 的运动轨迹为AB ,P 是半径OB 上一动点,Q 是AB 上的一动点,连接PQ .(1)当∠POQ = 时,PQ 有最大值,最大值为 ; (2)如图2,若P 是OB 中点,且QP ⊥OB 于点P ,求BQ 的长;(3)如图3,将扇形AOB 沿折痕AP 折叠,使点B 的对应点B ′恰好落在OA 的延长线上,求阴影部分面积.18.(8分)在大城市,很多上班族选择“低碳出行”,电动车和共享单车成为他们的代步工具.某人去距离家8千米的单位上班,骑共享单车虽然比骑电动车多用20分钟,但却能强身健体,已知他骑电动车的速度是骑共享单车的1.5倍,求骑共享单车从家到单位上班花费的时间.19.(8分)某农场急需铵肥8吨,在该农场南北方向分别有一家化肥公司A、B,A公司有铵肥3吨,每吨售价750元;B公司有铵肥7吨,每吨售价700元,汽车每千米的运输费用b(单位:元/千米)与运输重量a(单位:吨)的关系如图所示.(1)根据图象求出b关于a的函数解析式(包括自变量的取值范围);(2)若农场到B公司的路程是农场到A公司路程的2倍,农场到A公司的路程为m千米,设农场从A公司购买x吨铵肥,购买8吨铵肥的总费用为y元(总费用=购买铵肥费用+运输费用),求出y关于x的函数解析式(m为常数),并向农场建议总费用最低的购买方案.20.(8分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.类别频数(人数)频率小说0.5戏剧 4散文10 0.25其他 6合计 1根据图表提供的信息,解答下列问题:八年级一班有多少名学生?请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.21.(8分)解不等式组3122 324 xx x ⎧-≥⎪⎨⎪+<⎩请结合题意填空,完成本题的解答:(I)解不等式(1),得;(II)解不等式(2),得;(III)把不等式(1)和(2)的解集在数轴上表示出来:(IV)原不等式组的解集为.22.(10分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.根据图中信息求出m=,n=;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?23.(12分)如图,在平面直角坐标系xOy中,已知正比例函数34y x=与一次函数7y x=-+的图像交于点A,(1)求点A的坐标;(2)设x轴上一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交34y x=和7y x=-+的图像于点B、C,连接OC,若BC=75OA,求△OBC的面积.24.如图,AB为⊙O直径,过⊙O外的点D作DE⊥OA于点E,射线DC切⊙O于点C、交AB的延长线于点P,连接AC交DE于点F,作CH⊥AB于点H.(1)求证:∠D=2∠A;(2)若HB=2,cos D=35,请求出AC的长.参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解题分析】试题分析:根据二次函数的解析式y=3(x-1)2+k,可知函数的开口向上,对称轴为x=1,根据函数图像的对称性,可得这三点的函数值的大小为y3>y2>y1.故选D点睛:此题主要考查了二次函数的图像与性质,解题时先根据顶点式求出开口方向,和对称轴,然后根据函数的增减性比较即可,这是中考常考题,难度有点偏大,注意结合图形判断验证.2、B【解题分析】根据关于y 轴对称的点的纵坐标相等,横坐标互为相反数,可得答案. 【题目详解】 解:由题意,得 a=-4,b=1.(a+b )2017=(-1)2017=-1, 故选B . 【题目点拨】本题考查了关于y 轴对称的点的坐标,利用关于y 轴对称的点的纵坐标相等,横坐标互为相反数得出a ,b 是解题关键. 3、C 【解题分析】分析:根据“无理数”的定义进行判断即可. 详解:A 选项中,因为1cos602=,所以A 选项中的数是有理数,不能选A ; B 选项中,因为·1.3是无限循环小数,属于有理数,所以不能选B ;C 选项中,因为半径为1cm 的圆的周长是2πcm ,2π是个无理数,所以可以选C ;D ,2是有理数,所以不能选D. 故选.C.点睛:正确理解无理数的定义:“无限不循环小数叫做无理数”是解答本题的关键. 4、C 【解题分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【题目详解】 42.4亿=4240000000,用科学记数法表示为:4.24×1. 故选C . 【题目点拨】考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键. 5、B【解题分析】解:∵反比例函数是y=2x中,k=2>0,∴此函数图象的两个分支分别位于一、三象限.故选B.6、D【解题分析】根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可【题目详解】在实数﹣3.5、、0、﹣4中,最小的数是﹣4,故选D.【题目点拨】掌握实数比较大小的法则7、B【解题分析】根据弦的定义、弧的定义、以及确定圆的条件即可解决.【题目详解】解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误;直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;④半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确.其中错误说法的是①③两个.故选B.【题目点拨】本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混淆.8、C【解题分析】试题分析:由旋转的性质可知,AC=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故选C.考点:旋转的性质.9、B【解题分析】由题意得,x-1≥0且x-3≠0,∴x≥1且x≠3.故选B.10、C【解题分析】解:∵459,∴459<<,即253<<∴估计5在2~3之间故选C.【题目点拨】本题考查估计无理数的大小.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解题分析】根据垂径定理求得然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线段OD、OE的长度,最后将相关线段的长度代入S阴影=S扇形ODB-S△DOE+S△BEC.【题目详解】如图,假设线段CD、AB交于点E,∵AB是O的直径,弦CD⊥AB,∴又∵∴∴∴S 阴影=S 扇形ODB −S △DOE +S △BEC故答案为:. 【题目点拨】考查圆周角定理,垂径定理,扇形面积的计算,熟练掌握扇形的面积公式是解题的关键. 12、a 1. 【解题分析】根据幂的乘方法则进行计算即可. 【题目详解】()22224.a a a ⨯==故答案为4.a 【题目点拨】考查幂的乘方,掌握运算法则是解题的关键. 13、1 【解题分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设袋中有x 个红球,列出方程30x=20%, 求得x=1. 故答案为1.点睛:此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系. 14、 (-1,-2) 【解题分析】试题分析:因为y=(x+1)2﹣2是抛物线的顶点式, 根据顶点式的坐标特点可知,顶点坐标为(﹣1,﹣2), 故答案为(﹣1,﹣2). 考点:二次函数的性质. 15、x ≠3 【解题分析】由代数式3x 3-有意义,得 x-3≠0,解得x ≠3, 故答案为: x ≠3. 【题目点拨】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义:分母为零;分式有意义:分母不为零;分式值为零:分子为零且分母不为零. 16、上升的 【解题分析】 ∵抛物线y=12x 2-1开口向上,对称轴为x=0 (y 轴), ∴在y 轴右侧部分抛物线呈上升趋势. 故答案为:上升的. 【题目点拨】本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.三、解答题(共8题,共72分)17、(1)90︒;(2)103π;(3)25100π-+ 【解题分析】(1)先判断出当PQ 取最大时,点Q 与点A 重合,点P 与点B 重合,即可得出结论; (2)先判断出∠POQ =60°,最后用弧长用弧长公式即可得出结论;(3)先在Rt △B 'OP 中,OP 2+210) =2( 10 - O P ) ,解得OP =10 ,最后用面积的和差即可得出结论. 【题目详解】解:(1)∵P 是半径OB 上一动点,Q 是AB 上的一动点, ∴当PQ 取最大时,点Q 与点A 重合,点P 与点B 重合,此时,∠POQ =90°,PQ = ,故答案为:90°, ; (2)解:如图,连接OQ , ∵点P 是OB 的中点,∴OP =12OB =12 OQ . ∵QP ⊥OB ,∴∠OPQ =90°在Rt △OPQ 中,cos ∠QOP =OP 12=OQ , ∴∠QOP =60°,∴l BQ 6010101803ππ=⨯= ; (3)由折叠的性质可得,,102''===BP B P AB AB , 在Rt △B 'OP 中,OP 2+2(10210)- =2( 10 - O P ) ,解得OP =10210-,S 阴影=S 扇形AOB ﹣2S △AOP =290110210(10210)2510021003602ππ⨯-⨯⨯⨯-=-+.【题目点拨】此题是圆的综合题,主要考查了圆的性质,弧长公式,扇形的面积公式,熟记公式是解本题的关键.18、骑共享单车从家到单位上班花费的时间是1分钟.【解题分析】试题分析:设骑共享单车从家到单位上班花费x 分钟,找出题目中的等量关系,列出方程,求解即可.试题解析:设骑共享单车从家到单位上班花费x 分钟,依题意得:881.5,20x x ⨯=- 解得x =1.经检验,x =1是原方程的解,且符合题意.答:骑共享单车从家到单位上班花费的时间是1分钟.19、(1)b =3a 0a 45a-84a ≤⎧⎨≤⎩(<)();(2)详见解析. 【解题分析】(1)分别设两段函数图象的解析式,代入图象上点的坐标求解即可;(2)先求出农场从A 、B 公司购买铵肥的费用,再求出农场从A 、B 公司购买铵肥的运输费用,两者之和即为总费用,可以求出总费用关于x 的解析式是一次函数,根据m 的取值范围不同分两类讨论,可得出结论.【题目详解】(1)有图象可得,函数图象分为两部分,设第一段函数图象为y =k 1x ,代入点(4,12),即12=k 1×4,可得k 1=3,设第二段函数图象为y =k 2x +c ,代入点(4,12)、(8,32)可列出二元一次方程组224k +c=128k +c=32⎧⎨⎩,解得:k 2=5,c =-8,所以函数解析式为:b =3a 0a 45a-84a ≤⎧⎨≤⎩(<)(); (2)农场从A 公司购买铵肥的费用为750x 元,因为B 公司有铵肥7吨,1≤x ≤3,故农场从B 公司购买铵肥的重量(8-x )肯定大于5吨,农场从B 公司购买铵肥的费用为700(8-x )元,所以购买铵肥的总费用=750x +700(8-x )=50x +5600(0≤x ≤3);农场从A 公司购买铵肥的运输费用为3xm 元,且满足1≤x ≤3,农场从B 公司购买铵肥的运输费用为[5(8-x )-8]×2m 元,所以购买铵肥的总运输费用为3xm +[5(8-x )-8]×2m =-7mx +64m 元,因此农场购买铵肥的总费用y =50x +5600-7mx +64m =(50-7m )x +5600+64m (1≤x ≤3),分一下两种情况进行讨论; ①当50-7m ≥0即m ≤507时,y 随x 的增加而增加,则x =1使得y 取得最小值即总费用最低,此时农场铵肥的购买方案为:从A 公司购买1吨,从B 公司购买7吨, ②当50-7m <0即m >507时,y 随x 的增加而减少,则x =3使得y 取得最小值即总费用最低,此时农场铵肥的购买方案为:从A 公司购买3吨,从B 公司购买5吨.【题目点拨】本题主要考查了方案比较以及函数解析式的求解,解本题的要点在于根据题意列出相关方程式.20、(1)41(2)15%(3)16【解题分析】(1)用散文的频数除以其频率即可求得样本总数;(2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.【题目详解】(1)∵喜欢散文的有11人,频率为1.25,∴m=11÷1.25=41;(2)在扇形统计图中,“其他”类所占的百分比为 ×111%=15%, 故答案为15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P(丙和乙)=212=16.21、(I)x≥1;(Ⅱ)x>2;(III)见解析;(Ⅳ)x≥1.【解题分析】分别求出每一个不等式的解集,将不等式解集表示在数轴上即可得出两不等式解集的公共部分,从而确定不等式组的解集.【题目详解】(I)解不等式(1),得x≥1;(Ⅱ)解不等式(2),得x>2;(Ⅲ)把不等式(1)和(2)解集在数轴上表示出来,如下图所示:(Ⅳ)原不等式组的解集为x≥1.【题目点拨】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,准确求出每个不等式的解集是解本题的关键.22、(1)100,35;(2)补全图形,如图;(3)800人【解题分析】(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占的百分比可得答案.【题目详解】解:(1)∵被调查总人数为m=10÷10%=100人,∴用支付宝人数所占百分比n%=30100%30% 100⨯=,∴m=100,n=35.(2)网购人数为100×15%=15人,微信人数所占百分比为40100%40% 100⨯=,补全图形如图:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人.【题目点拨】本题考查条形统计图和扇形统计图的信息关联问题,样本估计总体问题,从不同的统计图得到必要的信息是解决问题的关键.23、(1)A(4,3);(2)28.【解题分析】(1)点A是正比例函数34y x=与一次函数y=-x+7图像的交点坐标,把34y x=与y=-x+7联立组成方程组,方程组的解就是点A的横纵坐标;(2)过点A作x轴的垂线,在Rt△OAD中,由勾股定理求得OA的长,再由BC=75OA求得OB的长,用点P的横坐标a表示出点B、C的坐标,利用BC的长求得a值,根据12OBCS BC OP∆=⋅即可求得△OBC的面积.【题目详解】解:(1)由题意得:347y xy x⎧=⎪⎨⎪=-+⎩,解得43xy=⎧⎨=⎩,∴点A的坐标为(4,3).(2)过点A作x轴的垂线,垂足为D,在Rt△OAD中,由勾股定理得,2222435 OA OD AD=+=+=∴775755BC OA==⨯=.∵P (a ,0),∴B (a,34a ),C (a,-a+7),∴BC=37(7)744a a a --+=-, ∴7774a -=,解得a=8. ∴11782822OBC S BC OP ∆=⋅=⨯⨯=. 24、(1)证明见解析;(2)AC=45.【解题分析】(1)连接OC ,根据切线的性质得到90OCP ∠=︒,根据垂直的定义得到90DEP ∠=︒,得到COB D ∠=∠,然后根据圆周角定理证明即可;(2)设O 的半径为r ,根据余弦的定义、勾股定理计算即可.【题目详解】(1)连接OC .∵射线DC 切O 于点C ,90OCP ∴∠=︒.DE AP ⊥,90DEP ∴∠=︒,90P D ∴∠+∠=︒,90P COB ∠+∠=︒,COB D ∴∠=∠,由圆周角定理得:2COB A ∠=∠,2D A ∴∠=∠;(2)由(1)可知:90OCP ∠=︒,COP D ∠=∠,3cos cos 5COP D ∴∠=∠=,CH OP ⊥,90CHO ∴∠=︒,设O 的半径为r ,则2OH r =-,在Rt CHO ∆中,23cos 5OH r HOC OC r -∠===,5r ∴=,523OH ∴=-=,∴由勾股定理可知:4CH =,1028AH AB HB ∴=-=-=.在Rt AHC ∆中,90CHA =︒∠,由勾股定理可知:2245AC AH CH =+=.【题目点拨】本题考查了切线的性质、圆周角定理以及解直角三角形,掌握切线的性质定理、圆周角定理、余弦的定义是解题的关键.。
2024年河南省模拟卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)在﹣3,2,﹣2,0四个数中,最小的数是( )A .﹣3B .2C .﹣2D .02.(3分)“两岸猿声啼不住,轻舟已过万重山”.2023年8月29日,华为搭载自研麒麟芯片的mate 60系列低调开售.据统计,截至2023年10月21日,华为mate 60系列手机共售出约160万台,将数据1600000用科学记数法表示应为( )A .0.16×107B .1.6×106C .1.6×107D .16×1063.(3分)一个长方体被截去一部分后,得到的几何体如图水平放置,其俯视图是( )A .B .C .D .4.(3分)计算mm 2―1―11―m 2的结果为( )A .m ﹣1B .m +1C .1m +1D .1m ―15.(3分)如图,直线AB 、CD 相交于点O ,若∠1=30°,则∠2的度数是( )A .30°B .40°C .60°D .150°6.(3分)已知不等式组{3x -2<1―2x ≤4,其解集在数轴上表示正确的是( )A .B .C .D .7.(3分)一元二次方程(a ﹣2)x 2+ax +1=0(a ≠2)的实数根的情况是( )A .有两个不同实数根B .有两个相同实数根C .没有实数根D .不能确定8.(3分)如图所示的四个点分别描述甲、乙、丙、丁四个电阻在不同电路中通过该电阻的电流I 与该电阻阻值R 的情况,其中描述甲、丙两个电阻的情况的点恰好在同一个反比例函数的图象上,则这四个电阻两端的电压最小的是( )A .甲B .乙C .丙D .丁9.(3分)在同一平面直角坐标系中,二次函数y =ax 2与一次函数y =bx +c 的图象如图所示,则二次函数y =ax 2+bx ﹣c 的图象可能是( )A .B .C .D .10.(3分)如图,已知矩形纸片ABCD ,其中AB =3,BC =4,现将纸片进行如下操作:第一步,如图①将纸片对折,使AB 与DC 重合,折痕为EF ,展开后如图②;第二步,再将图②中的纸片沿对角线BD 折叠,展开后如图③;第三步,将图③中的纸片沿过点E 的直线折叠,使点C 落在对角线BD 上的点H 处,如图④.则DH 的长为( )A .32B .85C .53D .95二.填空题(共5小题,满分15分,每小题3分)11.(3分)若a ,b 都是实数,b =1―2a +2a -1―2,则a b 的值为 .12.(3分)为积极响应“助力旅发大会,唱响美丽郴州”的号召,某校在各年级开展合唱比赛,规定每支参赛队伍的最终成绩按歌曲内容占30%,演唱技巧占50%,精神面貌占20%考评.某参赛队歌曲内容获得90分,演唱技巧获得94分,精神面貌获得95分.则该参赛队的最终成绩是 分.13.(3分)已知方程组{2x +y =3x ―2y =5,则2x +6y 的值是 .14.(3分)如图所示的是90° 的扇形纸片OAB ,半径为2.将这张扇形纸片沿CD 折叠,使点B 与点O 恰好重合,折痕为CD ,则阴影部分的面积为 .15.(3分)如图,在△ABC 中,∠BAC =120°,AB =AC =3,点D 为边AB 的中点,点E 是边BC 上的一个动点,连接DE ,将△BDE 沿DE 翻折得到△B ′DE ,线段B ′D 交边BC 于点F .当△DEF 为直角三角形时,BE 的长为 .三.解答题(共8小题,满分75分)16.(10分)(1)计算:38+|-32|+2﹣1﹣(﹣1)2022.(2)化简:(2a +1)(2a ﹣1)﹣a (4a ﹣2).17.(9分)为响应“带动三亿人参与冰雪运动”的号召,某校七、八年级举行了“冰雪运动知识竞赛”.为了解学生对冰雪运动知识的掌握情况,学校从两个年级分别随机抽取了20名学生的竞赛成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息:a .七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.b .八年级20名学生的测试成绩条形统计图如图所示:c .七、八年级抽取的学生的测试成绩的平均数、众数、中位数如下表所示:年级平均数众数中位数七年级7.5n 7八年级m8p请你根据以上提供的信息,解答下列问题:(1)上表中m = ,n = ,p = ;(2)根据以上数据,你认为该校七、八年级中哪个年级学生对冰雪运动知识掌握较好?请说明理由(写出一条理由即可);(3)该校八年级共400名学生参加了此次测试活动,估计八年级参加此次测试活动成绩合格的学生人数.18.(9分)如图,在平面直角坐标系中,平行四边形OABC 的边OC 在x 轴上,对角线AC ,OB 交于点M ,点B (12,4).若反比例函数y =kx (k ≠0,x >0)的图象经过A ,M 两点,求:(1)点M 的坐标及反比例函数的解析式;(2)△AOM的面积;(3)平行四边形OABC的周长.19.(9分)如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到一定高度D点处时,无人机测得操控者A的俯角为75°,测得小区楼房BC顶端点C处的俯角为45°.已知操控者A和小区楼房BC之间的距离为45米,无人机的高度为(30+153)米.(假定点A,B,C,D都在同一平面内.参考数据:tan75°=2+3,tan15°=2-3.计算结果保留根号)(1)求此时小区楼房BC的高度;(2)在(1)条件下,若无人机保持现有高度沿平行于AB的方向,并以5米/秒的速度继续向右匀速飞行.问:经过多少秒时,无人机刚好离开了操控者的视线?20.(9分)一名生物学家在研究两种不同的物种A和B在同一生态环境中的资源消耗时发现:50个物种A和100个物种B共消耗了200单位资源;100个物种A和50个物种B共消耗了250单位资源.(1)求1个物种A和1个物种B各消耗多少单位资源;(2)已知物种A,B共有200个且A的数量不少于100个.设物种A有a个,物种A,B共消耗的单位资源W.①求W与a的函数关系式;②当物种A的数量为何值时,物种A、B共消耗的单位资源最少,最小值是多少?21.(9分)如图,在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,动点M从点A出发,以2cm/s 的速度沿AB向点B运动,同时动点N从点C出发,以3cm/s的速度沿CA向点A运动,当一点停止运动时,另一点也随即停止运动.以AM为直径作⊙O,连接MN,设运动时间为t(s)(t>0).(1)试用含t的代数式表示出AM及AN的长度,并直接写出t的取值范围;(2)当t为何值时,MN与⊙O相切?(3)若线段MN 与⊙O 有两个交点.求t 的取值范围.22.(10分)如图,在平面直角坐标系中,抛物线y =ax 2+bx +2(a ≠0)与x 轴分别交于A ,B 两点,点A 的坐标是(﹣4,0),点B 的坐标是(1,0),与y 轴交于点C ,P 是抛物线上一动点,且位于第二象限,过点P 作PD ⊥x 轴,垂足为D ,线段PD 与直线AC 相交于点E .(1)求该抛物线的解析式;(2)连接OP ,是否存在点P ,使得∠OPD =2∠CAO ?若存在,求出点P 的横坐标;若不存在,请说明理由.23.(10分)(1)特殊发现如图1,正方形BEFG 与正方形ABCD 的顶点B 重合,BE 、BG 分别在BC 、BA 边上,连接DF ,则有:①DF AG= ; ②直线DF 与直线AG 所夹的锐角等于 度;(2)理解运用将图1中的正方形BEFG 绕点B 逆时针旋转,连接DF 、AG ,①如图2,(1)中的结论是否仍然成立?请说明理由;②如图3,若D 、F 、G 三点在同一直线上,且过AB 边的中点O ,BE =4,直接写出AB 的长 ;(3)拓展延伸如图4,点P 是正方形ABCD 的AB 边上一动点(不与A 、B 重合),连接PC ,沿PC 将△PBC 翻折到△PEC 位置,连接DE 并延长,与CP 的延长线交于点F ,连接AF ,若AB =4PB ,则DE EF的值是否是定值?请说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.A.2.B.3.A.4.D.5.A.6.B.7.A.8.B.9.C.10.D.二.填空题(共5小题,满分15分,每小题3分)11.4.12.93.13.﹣4.143―π3.15.32或334.三.解答题(共8小题,满分75分)16.解:(138+|-32|+2﹣1﹣(﹣1)2022.=2+32+12―1=3.(2)(2a+1)(2a﹣1)﹣a(4a﹣2)=4a2﹣1﹣4a2+2a=2a﹣1.17.解:(1)m=5×2+6×4+7×4+8×5+9×2+10×320=7.5(分),七年级20名学生成绩中出现次数最多的是7分,共出现6次,因此众数是7分,即n=7,将八年级20名学生成绩从小到大排列,处在中间位置的两个数的平均数为7+82=7.5(分),因此中位数是7.5分,即p=7.5,故答案为:7.5,7,7.5;(2)八年级的成绩较好,理由:八年级学生成绩的中位数是7.5分,众数是8分,都比七年级高;(3)400×20―220=360(名),答:该校八年级共400名学生中成绩合格的大约有360名.18.解:(1)∵四边形OABC是平行四边形,对角线AC,OB交于点M,点B(12,4),∴点M(6,2).将点M(6,2)代入y=kx(x>0)中,得k=6×2=12.∴反比例函数解析式为y=12x.(2)如图,过点A作AD⊥x轴于点D,∵四边形OABC是平行四边形,点B(12,4),∴点A的纵坐标为4,即AD=4.将y=4代入y=12x中,得x=3,即点A(3,4).∴AB=OC=12﹣3=9.∴S△OAC=12OC⋅AD=12×9×4=18.∵四边形OABC是平行四边形,∴AM=CM,∴S△AOM=12S△OAC=9.(3)∵点A(3,4),AD⊥OC,∴OD=3,AD=4.在Rt△ODA中,OA=OD2+AD2=32+42=5.∵四边形OABC是平行四边形,OC=9,∴平行四边形OABC的周长为(9+5)×2=28.19.解:(1)过点D作DE⊥AB于点E,过点C作CF⊥DE于点F,如图所示:则四边形BCFE是矩形,由题意得:AB=45米,∠DAE=75°,∠DCF=∠FDC=45°,∵∠DCF=∠FDC=45°,∴CF=DF,∵四边形BCFE是矩形,∴BE=CF=DF,在Rt△ADE中,∠AED=90°,∴tan∠DAE=DEAE=BE45―BE=2+3,∴BE=30,经检验,BE=30是原方程的解,∴EF=DH﹣DF=30+153―30=153(米),答:此时小区楼房BC的高度为153米.(2)∵DE=15(2+3)米,∴AE=DE2+3=15(2+3)2+3=15(米),过D点作DG∥AB,交AC的延长线于G,作GH⊥AB于H,在Rt△ABC中,∠ABC=90°,AB=45米,BC=153米,∴tan∠BAC=BCAB=15345=33,在Rt△AGH中,GH=DE=15(2+3)米,AH=GHtan∠GAH=15(2+3)33=(303+45)米,∴DG=EH=AH﹣AE=(303+45)﹣15=(303+30)米,(303+30)÷5=(63+6)(秒),答:经过(63+6)秒时,无人机刚好离开了操控者的视线.20.解:(1)设1个物种A消耗x单位资源,1个物种B各消耗y单位资源,根据题意得{50x+100y=200100x+50y=250,解得{x=2y=1,答:1个物种A消耗2单位资源,1个物种B各消耗1单位资源;(2)①根据题意得W=2a+(200﹣a)=a+200(100≤a<200),答:W与a的函数关系式为W=a+200(100≤a<200);②∵W=a+200,∴W随a的增大而增大,∵100≤a<200,∴当a=100时,物种A、B共消耗的单位资源最少,最小值是300.21.解:(1)由题意得,AM=2t cm,CN=3t cm,在Rt△ABC中,AC=AB2+BC2=62+82=10cm,∴AN=AC﹣CN=(10﹣3t)cm,∵AB=6cm,动点M的速度为2cm/s,∴动点M的最长运动时间为62=3s,∵AC=10cm,动点N的速度为3cm/s,∴动点N的最长运动时间为103 s,∴t的取值范围为0<t≤3;(2)若MN与⊙O相切,则AB⊥MN,即∠AMN=90°,∵∠ABC=90°,∴∠AMN=∠ABC,∴△AMN∽△ABC,∴MAAB=ANAC,即2t6=10―3t10,解得t=30 19,∴当t=3019时,MN与⊙O相切;(3)由(2)得,当t>3019时,直线MN与⊙O有两个交点,如图,当点N恰好在⊙O上时,线段MN与⊙O的两个交点恰好为M,N,∵AM为⊙O的直径,∴∠ANM=90°=∠B,∵∠MAN=∠CAB,∴△AMN∽△ACB,∴AMAC=ANAB,即2t10=10―3t6,解得t=50 21,∴若线段MN与⊙O有两个交点,则t的取值范围为3019<t≤5021.22.解:(1)设抛物线的表达式为:y=a(x+4)(x﹣1)=a(x2+3x﹣4),则﹣4a=2,解得:a =-12,∴抛物线的解析式为y =-12x 2-32x +2;(2)设存在点P ,使得∠OPD =2∠CAO ,理由如下:延长DP 到H ,设PH =OP ,连接OH ,如图:∵PH =OP ,∴∠H =∠POH ,∴∠OPD =∠H +∠POH =2∠H ,∵∠OPD =2∠CAO ,∴∠H =∠CAO ,∴tan H =tan ∠CAO ,∴OD DH=CO OA=24=12,∴DH =2OD ,设P (t ,-12t 2-32t +2),则OD =﹣t ,PD =-12t 2-32t +2,∴DH =2OD =﹣2t ,∴PH =DH ﹣PD =﹣2t ﹣(-12t 2-32t +2)=12t 2-12t ﹣2,∵PH =OP ,∴12t 2-12t ﹣2=t 2+(12t 2+32t ―2)2,解得t =0(舍去)或―3―734或―3+734(舍去),∴点P 的横坐标为―3―734.23.解:(1)①连接BF ,BD ,如图,∵四边形ABCD和四边形GBEF为正方形,∴∠ABF=∠ABD=45°,∴B,F,D三点在一条直线上.∵GF⊥AB,DA⊥AB,∴△BGF和△BAD为等腰直角三角形,∴BF=2BG,BD=2AB,∴DF=BD﹣BF=2(AB﹣BG)=2AG,∴DFAG=2;②∵B,F,D三点在一条直线上,∠ABF=∠ABD=45°,∴直线DF与直线AG所夹的锐角等于45°.故答案为:2;45;(2)①(1)中的结论仍然成立,理由:连接BF,BD,如图,∵四边形ABCD和四边形GBEF为正方形,∴∠ABD=∠GBF=45°,∠BGF=∠BAD=90°,∴△BGF和△BAD为等腰直角三角形,∴∠ABG+∠ABF=∠ABF+∠FBD=45°,BF=2BG,BD=2AB,∴∠ABG=∠DBF,BFBG =BDAB=2,∴△ABG∽△DBF,∴DFAG=BDAB=2;延长DF,交AB于点N,交AG于点M,∵△ABG∽△DBF,∴∠GAB=∠BDF.∵∠ANM=∠DNB,∴∠BAG+∠AMN=∠BDF+∠ADB.∴∠AMN=∠ABD=45°,即直线DF与直线AG所夹的锐角等于45°,∴(1)中的结论仍然成立;②连接BF,BD,如图,∵四边形GBEF为正方形,∴∠BFG=45°.由①知:∠AGD=45°,∴∠AGD=∠BFG.∵AB边的中点为O,∴AO=BO.在△AGO和△BFO中,{∠AOG=∠BOF∠AGO=∠BFO=45°AO=BO,∴△AGO≌△BFO(AAS),∴GO=FO=12GF=2,∴OB=BG2+OG2=42+22=25,∴AB=2OB=45.故答案为:45;(3)DEEF的值是定值,定值为3,理由:过点C作CQ⊥DF于点Q,连接BD,BE,BF,BE与CF交于点H,如图,∵四边形ABCD为正方形,∴BC=CD,由折叠的性质可得:BC=CE,EF=BF,PB=PE,∠BCF=∠ECF.∴CE=CD,∵CQ⊥DF,∴∠ECQ=∠DCQ.∵∠BCD=90°,∴∠ECF+∠ECQ=12∠BCD=45°.∴∠QFC=90°﹣∠QCF=45°,∴∠BFC=45°,∴∠EFB=∠EFC+∠BFC=90°.∴△BEF为等腰直角三角形,∴FH⊥BE,BH=HE=12BE,BE=2EF,∴∠PHB=90°.在FC截取FM=BE,可知四边形EFBM为正方形,由(2)②的结论可得:DE=2AF,∠AFD=45°,∴∠AFB=∠AFD+∠EFC=90°,∴∠AFP=∠PHB.∵∠APF=∠BPH,∴△APF∽△BPH,∴APPB=AFBH,∵PA=3PB,∴AF=3BH=32BE322EF,∴DE=2AF=2×322EF=3EF.∴DEEF=3,∴DEEF的值是定值,定值为3.。
洛阳市2024年中招模拟考试(二)数学试卷一、选择题(每小题3分,共30分,下列各小题均有四个选项,其中只有一个是正确的)1. 下列各数中最大的数是( )A. B. 0C. D.2. 榫卯是古代中国建筑、家具及其它器械主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,如图是某个部件“卯”的实物图,它的俯视图是( )A. B. C. D.3. 2024年清明节假期,洛阳地铁客流刷新历史最高记录,4月5日地铁日客运量54.32万人次,创历史新高.数据“54.32万”用科学记数法表示为( )A. B. C. D. 4. 如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O 的光线相交于点P ,点F 为焦点.若,,则的度数为( )A B.C. D. 5. 下列计算,结果正确的是( )A. B. C. D. 6. 不等式组的解集是( )A. B. C. D.的.5-1-454.3210⨯45.43210⨯55.43210⨯65.43210⨯1155∠=︒235∠=︒3∠45︒50︒55︒60︒32a a a -=()2239a a =()222a b a b +=+623a a a ÷=23312x x x -<⎧⎨+≥⎩5x <15x ≤<15x -≤<1x ≤-7. 关于x 的一元二次方程有两个实数根,则m 的取值范围是( )A. B. C. D. 8. 如图,在菱形中,,连接、,则的值为( )A.B.C.D.9. 元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x天可追上慢马,由题意得( )A. B. C.D.10.在中,,D 为上一点,动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿匀速运动,到达点A 时停止,以为边作正方形.设点P 的运动时间为,正方形的面积为S ,当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,图象如图2所示,则线段的长是( )A. 6B. 8C. D. 二、填空题(每小题3分,共15分)2220x x m -+-=3m ≥3m >3m ≤3m <ABCD 60ABC ∠=︒AC BD ACBD1224015024012x x -=⨯24015015012x x -=⨯12240150x x +=12240150x x=-Rt ABC △90C ∠=︒AC CD =C B A →→DP DPEF ()s t DPEF AB11.x 的取值范围是_____.12. 计算的结果是________.13. 某班准备从《歌唱祖国》《我的祖国》《走进新时代》《十送红军》四首歌曲中选择两首进行排练,参加即将举办的“建国七十五周年”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是___.14. 如图,在中,是直径,点C 是圆上一点.过点C 作的切线交的延长线于点D ,若,则图中阴影部分的面积为_____.(结果用含π的式子表示)15. 矩形中,,将边绕点A 逆时针旋转得到线段,过点E 作交直线于点F (旋转角为α,),当点F 、E 、D 三点共线时,线段的长为_____.三、解答题(本大题共8小题,共75分)16. (1)计算:;(2)化简:.17. 我市某校为了解九年级学生体育备考情况,对全校九年级240名男生进行了体育测试,并随机抽取甲、乙两个班(两班男生人数相同)各10名男生的跳绳测试成绩并整理、描述、分析.【收集数据】甲、乙两班10名男生的跳绳成绩(单位:次)如下:甲:135 149 198 150 160 123 155 160 137 186乙:100 132 133 146 146 152 164 173 197 210【分析数据】根据以上数据,得到以下统计量.班级平均中位众211a a a -++O AB O AB 120,ACD CD ∠=︒=ABCD 35AB AD ==,AB AE EF AE ⊥BC 0180a ︒<<︒BF ()01320242--+-+()()()223a b a b a a b -+--统计量数数数甲b 乙a146根据以上信息,回答下列问题:(1)表格中的a =,b =;(2)综合上表中的统计量,你认为哪一个班的男生成绩较好,并说明理由;(3)洛阳市2024年中招体育考试九年级终结性评价评分标准规定:跳绳男子满分标准为150次,估计该校本次测试成绩满分的男生人数.18. 已知:点P 是外一点.(1)尺规作图:如图,以直径作交于E ,F 两点,连接,,;(保留作图痕迹,不要求写作法)(2)在(1)的条件下,求证:,是的切线;(3)在(1)(2)的条件下,若点D 在上(点D 不与E ,F 两点重合),且,则的度数为.19. 如图,菱形的边在x 轴正半轴上,点A的坐标,反比例函数的图象经过的中点D .(1)求k 的值;(2)的垂直平分线交反比例函数的图象于点E ,连接、,求的面积.20. 近年来我市大力实施河渠综合治理,水域治理效果显著,不仅有效改善了小环境,提升城市的防洪能力,同时也提升了群众生活的幸福指数和城市美丽指数.为了满足市民健康和休闲的需要,我市某区在一为155.3152.5155.3O OP O ' O OP PE PF PE PF O O 50EPF ∠=︒EDF ∠OABC OC ()34,()0ky x x=>BC AB ()0ky x x=>AE OE AOE △条东西走向的小河AB 的两侧开辟了两条健康步道,如图所示,小河北岸的步道由三个半圆形组成.经数学兴趣小组勘测,点C 在点A 的南偏东方向5千米处,点C 在点B 的南偏西45°方向.该小组成员小聪认为小河北岸健康步道的长度不超过10千米.请通过计算判断小聪的说法是否正确(结果精确到1千米,参考数据:,,,,,,π取3.14).21. 洛邑古城,被誉为“中原渡口”,截止目前景区总接待游客量突破2600万人次,日接待游客量最高突破10万人次.是集游、玩、吃、住、购于一体综合性人文旅游观光区,近期被大数据评为“第一热门汉服打卡地”.洛邑古城内某商铺打算购进A ,B 两种文创饰品对游客销售.若该商铺采购9件A 种和6件B 种共需330元;若采购5件A 种和3件B 种共需175元.两种饰品的售价均为每件30元;(1)求A ,B 饰品每件的进价分别为多少元?(2)该商铺计划采购这两种饰品共400件进行销售,其中A 种饰品的数量不少于150件,且不大于300件.实际销售时,若A 种饰品的数量超过250件时,则超出部分每件降价3元销售.①求该商铺售完这两种饰品获得的利润y (元)与购进A 种饰品的数量x (件)之间的函数关系式,并写出x 的取值范围;②设计能让这次采购的饰品获利最大的方案,并求出最大利润.22. 定义:在平面直角坐标系中,当点N 在图形M 上,且点N 的纵坐标和横坐标相等时,则称这个点为图形M 的“梦之点”.(1)点是反比例函数图象上的一个“梦之点”,则该函数图象上的另一个“梦之点”H 的坐标是;的53︒sin370.60︒≈cos370.80︒≈tan370.75︒≈sin 530.80︒≈cos530.60︒≈tan 53 1.33︒≈xOy ()33G --,1ky x=(2)如图,已知点A ,B 是抛物线上的“梦之点”,点C 是抛物线的顶点,连接,判断的形状,并说明理由:(3)在的范围内,若二次函数的图象上至少存在一个“梦之点”,则m 的取值范围是 .23. 【综合与实践】在一次综合实践活动课上,张老师组织学生开展“如何仅通过折纸的方法来确定特殊平行四边形纸片一边上的三等分点”的探究活动.【操作探究】“求知”小组的同学经过一番思考和讨论交流后,对正方形进行了如下操作:第1步:如图1所示,先将正方形纸片对折,使点A 与点B 重合,然后展开铺平,折痕;第2步:将边沿翻折到的位置;第3步:延长交于点H ,则点H 为边的三等分点.证明过程如下:连接,∵正方形沿折叠,∴① ,又∵,∴,∴.由题意可知E 是的中点,设,则,在中,可列方程:② ,(方程不要求化简)解得:③ ,即H 是边的三等分点.“励志”小组对矩形纸片进行了如下操作:第1步:如图2所示,先将矩形纸片对折,使点A 与点B 重合,然后展开铺平,折痕为;第2步:再将矩形纸片沿对角线翻折,再展开铺平,折痕为,沿翻折得折痕交于点G ;第3步:过点G 折叠矩形纸片,使折痕.为21922y x x =-++AC AB BC ,,ABC 02x <<222y x mx m m =-++ABCD ABCD EF BC CE GC EG AD AD CH ABCD CE 90D B CGH ∠=∠=∠=︒CH CH =CGH CDH ≌△△GH DH =AB 2AB a DH x ==,AE BE EG a ===Rt AEH DH =AD ABCD ABCD EF ABCD BD BD CE CE BD ABCD MN AD ∥【过程思考】(1)“求知”小组的证明过程中,三个空所填的内容分别是①: ,②:,③:;(2)“励志”小组经过上述操作,认为点M 为边的三等分点,请你判断“励志”小组的结论是否正确,并说明理由.【拓展提升】(3)如图3,在菱形中,,E 是上的一个三等分点,记点D 关于的对称点为,射线与菱形的边交于点F ,请直接写出的长.洛阳市2024年中招模拟考试(二)数学试卷一、选择题(每小题3分,共30分,下列各小题均有四个选项,其中只有一个是正确的)1. 下列各数中最大的数是( )A. B. 0C. D.【答案】D 【解析】【分析】此题考查了实数的大小比较法则:正数大于零,零大于负数,两个负数绝对值大的反而小,据此判断.【详解】∵故选:D .2. 榫卯是古代中国建筑、家具及其它器械的主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,如图是某个部件“卯”的实物图,它的俯视图是( )AB ABCD 8,6AC BD ==BD AE D ¢ED 'ABCD D F '5-1-510-<-<<A. B. C. D.【答案】A 【解析】【分析】本题考查三视图,熟练掌握三视图的画法,是解题的关键.根据俯视图是从上向下观察到的图形,进行判断即可,注意,主视图中存在的线段,在俯视图中被遮住或是看不到的线段要用虚线表示.【详解】解:由题意,得:“卯”的俯视图为:.故选A .3. 2024年清明节假期,洛阳地铁客流刷新历史最高记录,4月5日地铁日客运量54.32万人次,创历史新高.数据“54.32万”用科学记数法表示为( )A. B. C. D. 【答案】C 【解析】【分析】本题主要考查科学记数法.科学记数法的表示形式为的形式,其中,n 为整数,据此解答即可.【详解】解:54.32万,故选:C .4. 如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O 的光线相交于点P ,点F 为焦点.若,,则的度数为( )A. B.C. D. 【答案】D454.3210⨯45.43210⨯55.43210⨯65.43210⨯10n a ⨯110a ≤<5543200 5.43210==⨯1155∠=︒235∠=︒3∠45︒50︒55︒60︒【分析】本题考查了平行线的性质,三角形外角的性质等知识,掌握这两个知识点是关键.利用平行线的性质及三角形外角的性质即可求解.【详解】解:∵,∴,∴,∵,∴;故选:D .5. 下列计算,结果正确的是( )A. B. C. D. 【答案】B 【解析】【分析】本题考查了积的乘方,合并同类项,同底数幂的除法,完全平方公式;根据以上运算法则进行计算即可求解.【详解】解:A . 与不是同类项,不能合并,故该选项不正确,不符合题意; B . ,故该选项正确,符合题意;C . ,故该选项不正确,不符合题意;D . ,故该选项不正确,不符合题意;故选:B .6. 不等式组的解集是( )A. B. C.D. AB OF ∥1180BFO ∠+∠=︒18015525BFO ∠=︒-︒=︒235POF ∠=∠=︒3352560POF BFO ∠=∠+∠=︒+︒=︒32a a a -=()2239a a =()222a b a b +=+623a a a ÷=3a 2a -()2222339a a a ==()2222ab a ab b +=++62624a a a a -÷==23312x x x -<⎧⎨+≥⎩5x <15x ≤<15x -≤<1x ≤-【解析】【分析】此题考查了求不等式组的解集,求出每个不等式的解集,取公共部分即可.【详解】解:解不等式①得,解不等式②得,∴原不等式组的解集是故选:C7. 关于x 的一元二次方程有两个实数根,则m 的取值范围是( )A. B. C. D. 【答案】C 【解析】【分析】本题考查了一元二次方程的判别式,根据方程两个实数根得出,代入数值计算,即可作答.【详解】解:∵一元二次方程有两个实数根,∴,解得,故选:C .8. 如图,在菱形中,,连接、,则值为( )A.B.C.D.【答案】D 【解析】的23312x x x -<⎧⎨+≥⎩①②5x <1x ≥-15x -≤<2220x x m -+-=3m ≥3m >3m ≤3m <240b ac ∆=-≥2220x x m -+-=()()22424121240b ac m m ∆=-=--⨯⨯-=-≥3m ≤ABCD 60ABC ∠=︒AC BD ACBD12【分析】设AC 与BD 的交点为O ,由题意易得,,进而可得△ABC 是等边三角形,,然后问题可求解.【详解】解:设AC 与BD 的交点为O ,如图所示:∵四边形是菱形,∴,,∵,∴△ABC 是等边三角形,∴,∴,∴,∴,∴故选D .【点睛】本题主要考查菱形的性质、含30°角的直角三角形的性质及勾股定理,熟练掌握菱形的性质、含30°角的直角三角形的性质及勾股定理是解题的关键.9. 元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x 天可追上慢马,由题意得( )A. B. C. D. 【答案】B1,2ABD CBD ABC AB BC ∠=∠=∠=,,AC BD BO DO AO CO ⊥==BO =ABCD 1,2ABD CBD ABC AB BC ∠=∠=∠=,,AC BD BO DO AO CO ⊥==60ABC ∠=︒30,ABO AB AC ∠=︒=12AO AB =OB ==,2BD AC AO ==AC BD ==24015024012x x -=⨯24015015012x x -=⨯12240150x x +=12240150x x =-【解析】【分析】本题考查了一元一次方程的应用,根据题意列出方程是解题的关键.设快马x 天可追上慢马,根据路程相等,列出方程即可求解.【详解】解:设快马x 天可追上慢马,由题意得.故选:B .10. 在中,,D 为上一点,动点P 以每秒1个单位速度从C 点出发,在三角形边上沿匀速运动,到达点A 时停止,以为边作正方形.设点P 的运动时间为,正方形的面积为S ,当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,图象如图2所示,则线段的长是( )A. 6B. 8C.D. 【答案】A【解析】【分析】本题考查了二次函数图象,求二次函数解析式,在中,则,求得的长,设函数的顶点解析式,用待定系数法,求出函数表达式,即可求解.【详解】解:在中,则,当时,,解得:(负值已舍去),∴,∴抛物线经过点,∵抛物线顶点为:,的24015015012x x -=⨯Rt ABC △90C ∠=︒AC CD =C B A →→DP DPEF ()s t DPEFABRt ABC△CD =,PC t=22222S PD t t ==+=+BC Rt ABC△CD =,PC t=22222S PD t t ==+=+6S =262t =+2t =2BC =()2,6()4,2设抛物线解析式为:,将代入,得:,解得:,∴,当时,(舍)或,∴,故选:A .二、填空题(每小题3分,共15分)11.x 的取值范围是_____.【答案】【解析】【分析】本题考查了分母不为零,二次根式的被开方数是非负数,熟练掌握二次根式和分式有意义的条件是解题的关键.根据分母不为零,二次根式的被开方数是非负数,列出不等式计算即可.有意义,∴且,∴且,故答案为:.12. 计算的结果是________.【答案】【解析】【分析】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出各分母的最简公分母.原式通分并利用同分母分式的减法法则计算,即可得到结果.【详解】解:原式,故答案为:.13. 某班准备从《歌唱祖国》《我的祖国》《走进新时代》《十送红军》四首歌曲中选择两首进行排练,参加即将举办的“建国七十五周年”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是___.()242S a t =-+()2,6()26242a =-+1a =()242S t =-+18y =()218420t t =-+=,8t =826AB =-=5x ≥50x -≥0x ≠5x ≥0x ≠5x ≥211a a a -++11a +2(1)(1)111a a a a a -+-==++11a +【答案】【解析】【分析】本题主要考查等可能事件的概率,画出树状图展示所有等可能的结果,是解题的关键.根据题意画出树状图得出所有等可能情况数和恰好选中前面两首歌曲的情况数,然后根据概率公式即可得出答案.【详解】解:将《歌唱祖国》《我的祖国》《走进新时代》《十送红军》四首歌曲分别用甲,乙,丙,丁表示,根据题意画图如下:共有12种等可能的结果数,其中恰好选中前面两首歌曲的有2种,则恰好选中甲、乙两位选手的概率,故答案为:.14. 如图,在中,是直径,点C 是圆上一点.过点C 作的切线交的延长线于点D ,若,则图中阴影部分的面积为_____.(结果用含π的式子表示)【答案】【解析】【分析】本题主要考查切线的性质以及扇形的面积计算,连接,根据切线的性质得出由得由三角形外角的性质得根据勾股定理得,再根据求解即可【详解】解:连接如图,1621126==16O AB O AB 120,ACD CD ∠=︒=2π3-OC 90,30,OCD OCD ∠=︒∠=︒OC OA =,OAC OCA ∠=∠60,BOC ∠=︒2OC ==OCD BOC S S S - 阴影扇形OC ,∵是的切线,∴∴∵∴∵∴,∴∴∴即∴∴,故答案为:15. 矩形中,,将边绕点A 逆时针旋转得到线段,过点E 作交直线于点F (旋转角为α,),当点F 、E 、D 三点共线时,线段的长为_____.CD O ,OC CD ⊥90,OCD ∠=︒120,ACD ∠=︒1209030,ACO ACD OCD ∠=∠-∠=︒-︒=︒,OC OA ==30ACO OAC ∠=∠︒303060,COD OCA OAC ∴∠=∠+∠=︒+︒=︒30,CDO ∠=︒2,DO CO =222,CD CO DO +=(2224,CO CO +=2,CO ==OCD BOC S S S - 阴影扇形2160222360π⨯=⨯-23π=-2π3-ABCD 35AB AD ==,AB AE EF AE ⊥BC 0180a ︒<<︒BF【答案】1或9【解析】【分析】本题考查了矩形的性质,全等三角形的判定和性质,旋转的性质,勾股定理等知识,分为:当点E 在上时,连接,可证得,从而,设,则,可求得,在中列出,进而求得的值;当点E 在的延长线上时,同样方法求得结果.【详解】解:∵四边形是矩形,∴当点E 在上时,连接,如图,∵,∴∴,∵,∴,∴,设,则,由旋转得:,∵,∴,∴,在中,由勾股定理得,,∴,∴,DF AF Rt Rt ABF AEF ≌ BF EF =BF EF x ==5CF x =-4DE ===Rt DCF ()()222534x x -+=+BF FD ABCD 3,5,90,CD AB BC AD ABC BCD CDA ====∠=∠=∠=︒DF AF EF AE ⊥90,AEF ∠=︒90AEF B ∠=∠=°AE AB AF AF ==,Rt Rt ABF AEF ≌ BF EF =BF EF x ==5CF x =-3AE AB ==EF AE ⊥90AED AEF ∠=∠=︒4DE ===Rt DCF 222CF CD DF +=()()222534x x -+=+1x =∴,如图,当点E 在的延长线上时,同理上可得:,,设,则,,∴,∴,∴,综上所述:或9.故答案为:1或9三、解答题(本大题共8小题,共75分)16. (1)计算:;(2)化简:.【答案】(1);(2)【解析】【分析】本题主要考查了实数混合运算,整式乘法混合运算,解题的关键是熟练掌握运算法则,准确计算.(1)根据算术平方根定义,零指数幂和负整数指数幂运算法则进行计算即可;(2)根据平方差公式和单项式乘多项式运算法则进行计算即可.【详解】解:(1)1BF =FD EFBF =4DE =EF BF a ==4DF a =-5CF a =-()()222534a a -+=-9a =9BF =1BF =()01320242--+-+()()()223a b a b a a b -+--1122233a b ab-+()01320242--+-+13132=+-+;(2).17. 我市某校为了解九年级学生体育备考情况,对全校九年级240名男生进行了体育测试,并随机抽取甲、乙两个班(两班男生人数相同)各10名男生的跳绳测试成绩并整理、描述、分析.【收集数据】甲、乙两班10名男生的跳绳成绩(单位:次)如下:甲:135 149 198 150 160 123 155 160 137 186乙:100 132 133 146 146 152 164 173 197 210【分析数据】根据以上数据,得到以下统计量.班级统计量平均数中位数众数甲b 乙a 146根据以上信息,回答下列问题:(1)表格中的a = ,b = ;(2)综合上表中的统计量,你认为哪一个班的男生成绩较好,并说明理由;(3)洛阳市2024年中招体育考试九年级终结性评价评分标准规定:跳绳男子满分标准为150次,估计该校本次测试成绩满分的男生人数.【答案】(1)149,160(2)甲班成绩较好;甲、乙两班样本平均数相同,但甲班的中位数和众数均高于乙班,所以甲班成绩较好(3)132人【解析】【分析】本题考查条形统计图、中位数、众数、平均数:(1)根据中位数的意义,将乙班的抽查的10人成绩排序找出处在中间位置的两个数的平均数即可为中位的112=()()()223a b a b a a b -+--()22243a b a ab =---22243a b a ab=--+2233a b ab -+=155.3152.5155.3数,从甲班成绩中找出出现次数最多的数即为众数;(2)根据平均数、中位数,众数可以分析得出;(3)根据题意,计算出两班级成绩为满分的学生的百分比,然后乘以总人数即可解答本题.【小问1详解】解:由题意得:乙班10名男生的跳绳成绩按大小顺序排列最中间的两个分数为146,153,故中位数;甲班10名男生的跳绳成绩出现次数最多的是160分,共出现2次,故众数;故答案为:149;160;【小问2详解】解:甲班成绩较好;理由如下:甲、乙两班样本的平均数相同,但甲班的中位数和众数均高于乙班,所以甲班成绩较好;【小问3详解】解:(人),答:估计该校本次测试成绩满分的男生有132人.18. 已知:点P 是外一点.(1)尺规作图:如图,以为直径作交于E ,F 两点,连接,,;(保留作图痕迹,不要求写作法)(2)在(1)的条件下,求证:,是的切线;(3)在(1)(2)的条件下,若点D 在上(点D 不与E ,F 两点重合),且,则的度数为 .【答案】(1)见解析(2)见解析 (3)或【解析】【分析】(1)如图1,连接,作的垂线交于点,以为圆心,为半径画圆,连接,即可;1461521492a +==160c =1124013220⨯=O OP O ' O OP PE PF PE PF O O 50EPF ∠=︒EDF ∠65︒115︒OP OP OP O 'O 'O P 'PE PF(2)如图1,连接,由为直径,可得,即,,进而结论得证;(3)如图1,,由题意知,,由圆周角定理可得;由圆内接四边形可得,;计算求解即可.【小问1详解】解:如图1,连接,作的垂线交于点,以为圆心,为半径画圆,连接,即可;图1【小问2详解】证明:如图1,连接,∵为直径,∴,即,,∵是半径,∴,是的切线;【小问3详解】解:如图1,,由题意知,,∵,∴;由圆内接四边形可得,;综上所述,的度数为或,故答案为:或.【点睛】本题考查了作垂线,直径所对的圆周角为直角,切线的判定.圆周角定理,圆内接四边形的性质等知识.熟练掌握作垂线,直径所对的圆周角为直角,切线的判定.圆周角定理,圆内接四边形的性质是解题的关键.OE OF ,OP 90PEO PFO ∠=∠=︒OE PE ⊥OF PF ⊥D D ',360130EOF EPF PEO PFO ∠=︒-∠-∠-∠=︒12EDF EOF ∠=∠180ED F EDF '∠=︒-∠OP OP OP O 'O 'O P 'PE PF OE OF ,OP 90PEO PFO ∠=∠=︒OE PE ⊥OF PF ⊥OE OF ,PE PF O D D ',360130EOF EPF PEO PFO ∠=︒-∠-∠-∠=︒ EFEF =1652EDF EOF ∠=∠=︒180115ED F EDF '∠=︒-∠=︒EDF ∠65︒115︒65︒115︒19. 如图,菱形的边在x 轴正半轴上,点A 的坐标,反比例函数的图象经过的中点D .(1)求k 的值;(2)的垂直平分线交反比例函数的图象于点E ,连接、,求的面积.【答案】(1)13(2)【解析】【分析】本题考查反比例函数的综合,菱形的性质,垂直平分线的定义,中点坐标公式,三角形的面积求法等知识,运用数形结合思想是解题的关键.(1)先求出的长度,也就是菱形的边长,从而求出点的坐标,再用中点公式求出点D 的坐标,从而得解;(2)根据点的坐标求出点E 的横坐标,继而求出点E 的坐标,再利用割补法求面积即可.【小问1详解】解:∵A 点坐标∴∵四边形是菱形∴, ∴;【小问2详解】∵,∴反比例函数解析式是∵E 在AB 的垂直平分线上,A ,,OABC OC ()34,()0k y x x=>BC AB ()0k y x x =>AE OE AOE △8211OA C B 、A B 、()34,5OA =OABC ()50C ,()84B ,13,22D ⎛⎫∴ ⎪⎝⎭13k xy ==13k =()130y x x=>()34,()84B ,E 点横坐标为把 优人 得: 过A 作⊥ x 轴于 H ,的垂直平分线交x 轴于 F ,则.20. 近年来我市大力实施河渠综合治理,水域治理效果显著,不仅有效改善了小环境,提升城市的防洪能力,同时也提升了群众生活的幸福指数和城市美丽指数.为了满足市民健康和休闲的需要,我市某区在一条东西走向的小河AB 的两侧开辟了两条健康步道,如图所示,小河北岸的步道由三个半圆形组成.经数学兴趣小组勘测,点C 在点A 的南偏东方向5千米处,点C 在点B 的南偏西45°方向.该小组成员小聪认为小河北岸健康步道的长度不超过10千米.请通过计算判断小聪的说法是否正确(结果精确到1千米,参考数据:,,,,,,π取3.14).【答案】小聪的说法不正确,见解析【解析】【分析】本题考查了解直角三角形的应用.过C 作于D ,在中,利用三角函数的定义求得和的长,在中,求得,据此求得北岸健康步道的长度,即可判断.【详解】解:过C 作于D ,垂足为D,112,112x =()130y x x =>2611y =1126,211E ⎛⎫∴ ⎪⎝⎭AH AB AOE AOB FOEAEFH S S S S =+-△△△梯形112611133443221122⎛⎫⎛⎫=⨯⨯+⨯+⨯-- ⎪ ⎪⎝⎭⎝⎭8211=53︒sin370.60︒≈cos370.80︒≈tan370.75︒≈sin 530.80︒≈cos530.60︒≈tan 53 1.33︒≈CD AB ⊥Rt ACD △CD AD Rt BCD BD CD =CD AB ⊥由题意得:,,千米,在中,,千米千米,在中,,∴千米,∴千米,∴北岸健康步道的长度为,因此小聪的说法不正确.21. 洛邑古城,被誉为“中原渡口”,截止目前景区总接待游客量突破2600万人次,日接待游客量最高突破10万人次.是集游、玩、吃、住、购于一体的综合性人文旅游观光区,近期被大数据评为“第一热门汉服打卡地”.洛邑古城内某商铺打算购进A ,B 两种文创饰品对游客销售.若该商铺采购9件A 种和6件B 种共需330元;若采购5件A 种和3件B 种共需175元.两种饰品的售价均为每件30元;(1)求A ,B 饰品每件的进价分别为多少元?(2)该商铺计划采购这两种饰品共400件进行销售,其中A 种饰品的数量不少于150件,且不大于300件.实际销售时,若A 种饰品的数量超过250件时,则超出部分每件降价3元销售.①求该商铺售完这两种饰品获得的利润y (元)与购进A 种饰品的数量x (件)之间的函数关系式,并写出x 的取值范围;②设计能让这次采购的饰品获利最大的方案,并求出最大利润.【答案】(1)A 饰品的进价为20元/件,B 饰品的进价为25元/件 (2)①;②购进A 饰品数量300件,购进B 饰品的数量100件时,获利最大,最大利润为3350元【解析】【分析】本题考查二元一次方程组和一次函数的应用,分段函数等知识,审清题意找出等量关系并正确列的905337CAD ∠=︒-︒=︒45CBD ∠=︒5AC =Rt ACD △37CAD ∠=︒·sin 3750.63CD AC =︒≈⨯=cos3750.84AD AC =⋅︒≈⨯=Rt BCD 45CBD ∠=︒3BD CD ==7AB AD BD =+=77π314111022≈⨯≈>.()()5200015025022750250300x x y x x ⎧+≤≤⎪=⎨+<≤⎪⎩式和方程是解题的关键.(1)设A 饰品每件的进价为a 元,B 饰品每件的进价为b 元,根据题意列出方程组求解即可;(2)①由购进A 饰品的数量为x 件,得购进B 饰品的数量为件,再分当时和当时两种情况,根据总利润的计算公式求出总利润即可;②根据两种情况下的解析式分别求出最大值,再比较即可.【小问1详解】解:设A 饰品每件的进价为a 元,B 饰品每件的进价为b 元,由题意列方程组为: , 解得 答:A 饰品的进价为20元/件,B 饰品的进价为25元/件;【小问2详解】①购进A 饰品的数量为x 件,则购进B 饰品的数量为件,∴当时,;当时,,综上所述:这两种饰品获得的利润y (元)与购进A 种饰品的数量x (件)之间的函数关系式是;②当时, ∴当时,y 取最大值,此时(元).当时, ,当时y 取最大值,此时,∵,∴当,即购进A 饰品的数量为件,则购进B 饰品的数量为件时,y 取最大值元.22. 定义:在平面直角坐标系中,当点N 在图形M 上,且点N 的纵坐标和横坐标相等时,则称这个点为图形M 的“梦之点”.()400x -150250x ≤≤250300x <≤9633053175a b a b +=⎧⎨+=⎩2025a b =⎧⎨=⎩()400x -150250x ≤≤()()()3020302540052000y x x x =-+--=+250300x <≤()()()()()302025030203250302540022750y x x x =-⨯+--⨯-+--=+()()5200015025022750250300x x y x x ⎧+≤≤⎪=⎨+<≤⎪⎩150250x ≤≤52000y x =+250x =525020003250y =⨯+=250300x <≤22750y x =+300x =230027503350y =⨯+=32503350<300x =3001003350xOy(1)点是反比例函数图象上的一个“梦之点”,则该函数图象上的另一个“梦之点”H 的坐标是 ;(2)如图,已知点A ,B 是抛物线上的“梦之点”,点C 是抛物线的顶点,连接,判断的形状,并说明理由:(3)在的范围内,若二次函数的图象上至少存在一个“梦之点”,则m 的取值范围是 .【答案】(1) (2)是直角三角形,理由见解析(3)【解析】【分析】本题主要考查了二次函数与x 轴的交点问题,一次函数与反比例函数的交点问题,勾股定理,二次函数的性质等等:(1)利用待定系数法求出反比例函数解析式,再求出时,自变量的值即可得到答案;(2)先求出时的自变量的值,进而求出点A 和点B 的坐标,再把解析式化为顶点式得到点C 的坐标,最后利用勾股定理和勾股定理的逆定理证明即可得到结论;(3)把解析式化为顶点式得到抛物线的顶点坐标为,分以下几种情况:当时,抛物线的图象上至少存在一个“梦之点”;当时,直线与抛物线在范围内不存在交点;当抛物线恰好经过原点时,则,解得或,当时,联立解得或,符合题意;()33G --,1k y x =21922y x x =-++AC AB BC ,,ABC 02x <<222y x mx m m =-++()33,ABC 12m -<<1y x =21922y x x x =-++=222AC AB BC +=()m m ,02m <<222y x mx m m =-++2m ≥y x =222y x mx m m =-++02x <<222y x mx m m =-++20m m +=0m =1m =-0m =2y x y x⎧=⎨=⎩00x y ==⎧⎨⎩11x y =⎧⎨=⎩。
2023年河南省中考数学模拟试卷(经典三)一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。
1.(3分)﹣的绝对值是()A.﹣3B.3C.D.﹣2.(3分)如图是由4个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.3.(3分)下列运算正确的是()A.3a﹣a=2B.a2•a3=a6C.a6÷2a2=D.(2a2b)3=6a8b24.(3分)2022年11月2日,焦作市山阳区举办“学习二十大出彩组工人”主题演讲比赛.下表是5位评委对某参赛选手的打分情况,则该组数据的中位数是()评委甲乙丙丁戊打分9.59.69.6109.8 A.9.6B.9.7C.9.8D.105.(3分)如图为两直线m、n与△ABC相交的情形,其中m、n分别与BC、AB平行.根据图中标示的角度,∠A的度数为()A.75°B.60°C.55°D.50°6.(3分)若方程kx2﹣2x+1=0没有实数根,则k的值可以是()A.﹣1B.0C.1D.27.(3分)如图,在边长为5的菱形ABCD中,对角线BD=8,点O为菱形的中心,作OE ⊥BC,垂足为E,则sin∠COE的值为()A.B.C.D.8.(3分)在“河南美食简介”竞答活动中,第一题组共设置“河南烩面”“胡辣汤”“洛阳酸浆面条”“开封双麻火烧”四种美食,参赛的甲、乙二人从以上四种美食中随机选取一个进行简介,则两人恰好选中同一种美食的概率是()A.B.C.D.9.(3分)中国古代涌现包括“锝、钧、镒、铢”等在内的质量单位,而现代的质量单位有:吨(t)、千克(kg)、克(g)、毫克(mg)、微克(μg)等.其中1t=103kg,1kg=103g,1g=103mg,则1t等于()A.109mg B.1027mg C.3×103mg D.39mg10.(3分)血药浓度(PlasmaConcentration)指药物吸收后在血浆内的总浓度,已知药物在体内的浓度随着时间而变化.某成人患者在单次口服1单位某药后,体内血药浓度及相关信息如图所示,根据图中提供的信息,下列关于成人患者使用该药血药浓度(mg/L)5a最低中毒浓度(MTC)物的说法中正确的是()A.从t=0开始,随着时间逐渐延长,血药浓度逐渐增大B.当t=1时,血药浓度达到最大为5amg/LC.首次服用该药物1单位3.5小时后,立即再次服用该药物1单位,不会发生药物中毒D.每间隔4h服用该药物1单位,可以使药物持续发挥治疗作用二、填空题(每小题3分,共15分)11.(3分)请写出一个图象经过点(1,2)的函数的关系式.12.(3分)不等式组的解集是.13.(3分)如图,Rt△ABC中∠ACB=90°,线段CO为斜边AB的中线.分别以点A和点O为圆心,大于的长为半径作弧,两弧交于P,Q两点,作过P、Q两点的直线恰过点C,交AB于点D,若AD=1,则BC的长是.14.(3分)如图,在▱ABCD中,E为BC的中点,以E为圆心,CE长为半径画弧交对角线BD于点F,若∠BAD=116°,∠BDC=39°,BC=4,则扇形CEF的面积为.15.(3分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AB=4,E为斜边AB 的中点,点P是射线BC上的一个动点,连接AP、PE,将△AEP沿着边PE折叠,折叠后得到△EPA′,当折叠后△EPA′与△BEP的重叠部分的面积恰好为△ABP面积的四分之一,则此时BP的长为.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:;(2)化简:.17.(9分)中国是世界上最早使用铸币的国家.距今3000年前殷商晚期墓葬出土了不少“无文铜贝”,为最原始的金属货币.下列装在相同的透明密封盒内的古钱币材质相同,其密封盒上分别标有古钱币的尺寸及质量(例如:钱币“状元及第”密封盒上所标“48.1*2.4mm,24.0g”是指该枚古钱币的直径为48.1mm,厚度为2.4mm,质量为24.0g).根据图中信息,解决下列问题.(1)这5枚古钱币,所标直径数据的平均数是,所标厚度数据的众数是;(2)由于古钱币无法从密封盒内取出,为判断密封盒上所标古钱币的质量是否有错,桐桐用电子秤测得每枚古钱币与其密封盒的总质量如下:名称文星高照状元及第鹿鹤同春顺风大吉连中三元总质量/g58.758.155.254.355.8盒标质量24.424.013.020.021.7盒子质量34.334.142.234.334.1请你应用所学的统计知识,判断哪枚古钱币所标的质量与实际质量差异较大,并计算该枚古钱币的实际质量约为多少克.18.(9分)如图,直线y=kx+b与双曲线相交于A(﹣3,1),B两点,与x 轴相交于点C(﹣4,0).(1)分别求一次函数与反比例函数的解析式;(2)连接OA,OB,求△AOB的面积;(3)直接写出当x<0时,关于x的不等式的解集.19.(9分)宝轮寺塔,为供奉舍利由尼姑道秀主持建筑,始建于隋文帝仁寿元年(601年),故又称仁寿建塔,位于河南省三门峡市陕州风景区.数学活动小组欲测量宝轮寺塔DE的高度,如图,在A处测得宝轮寺塔塔基C的仰角为15°,沿水平地面前进23米到达B处,测得宝轮寺塔塔顶E的仰角∠EBD为53°,测得塔基C的仰角∠CBD 为30°(图中各点均在同一平面内).(1)求宝轮寺塔DE的高度;(2)实际测量时会存在误差,请提出一条减小误差的合理化建议.(结果精确到0.1米,参考数据:20.(9分)当前我国约有十分之一的教师因为种种原因患上嗓音疾病.针对于此,某校工会计划为超课时任务的教师配备音频放大器.已知购买2个A型音频放大器和3个B型音频放大器共需352元;购买3个A型音频放大器和4个B型音频放大器共需496元.(1)求A、B两种类型音频放大器的单价;(2)该校准备采购A、B两种类型的音频放大器共30个,且A型音频放大器的数量不少于B型音频放大器数量的2倍,请给出最省钱的购买方案,并说明理由.21.(9分)某跳台滑雪运动员进行比赛,起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,已知标准台的高度OA为66m,当运动员在距标准台水平距离25m处达到最高,最高点距地面76m,建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k.其中x(m)是运动员距标准台的水平距离,y(m)是运动员距地面的高度.(2)已知着陆坡上有一基准点K,且K到标准台的水平距离为75m,高度为21m.判断该运动员的落地点能否超过K点,并说明理由.22.(10分)如图,△ABC为⊙O的内接三角形,其中AB为⊙O的直径,且AC=3,BC=4.(1)尺规作图:分别以B、C为圆心,大于长为半径画弧,在BC的两侧分别相交于P、Q两点,画直线PQ交BC于点D,交劣弧于点E,连接CE;(2)追根溯源:由所学知识可知,点O(填“在”或“在”)直线PQ上;(3)数据运算:在(1)所作的图形中,求点O到BC的距离及∠DCE的余弦值.23.(10分)在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时;PA与DC的数量关系为;∠DCP的度数为;(2)如图2,当α=120°时,请问(1)中PA与DC的数量关系还成立吗?∠DCP的度数呢?说明你的理由.(3)当α=120°时,若,请直接写出点D到CP的距离.2023年河南省中考数学模拟试卷(经典三)参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。
2024年河南省中考数学复习模拟试卷(四)一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.给出下列判断:①在数轴上,原点两旁的两个点所表示的数都互为相反数;②多项式3xy2﹣4x3y+12是三次三项式;③任何正数都大于它的倒数;④+1变为30x=100x+15利用了等式的基本性质.其中正确的说法有( )A.0个B.1个C.2个D.3个2.将圆锥如图放置,现用一个平面截去它的上半部分,则从正面看下半部分的几何体可能的图形是( )A.B.C.D.3.长兴是浙江省的北大门,与苏、皖两省接壤,位于太湖西南岸,全县区域面积1430平方公里,现有户籍人口约64万.将1430用科学记数法表示为( )A.0.143×104B.1.43×103C.14.3×102D.143×10 4.如图,点O在直线AB上,射线OC平分∠AOD,若∠AOC=35°,则∠BOD等于( )A.145°B.110°C.70°D.35°5.化简:﹣,结果正确的是( )A.1B.C.D.x2+y2 6.如图,⊙O是是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为2,则弦BC的长为( )A.1B.C.2D.7.如图,在边长为的正方形中,是边上一动点不含,两点,将沿直线翻折,点落在点处;在上有一点,使得将沿直线翻折后,点落在直线上的点处,直线交于点,连接,则以下结论中正确的是( )线段长度的最小值为;四边形的面积最大值为;当≌时,;当为中点时,是线段的垂直平分线.A.B.C.D.8.一套书共有上、中、下3册,将它们任意摆放到书架的同一层上,这3册书从左向右恰好成上、中、下顺序的概率是( )A.B.C.D.9.函数y=ax+b的图象经过一、二、三象限,则二次函数y=ax2+bx的大致图象是( )A.B.C.D.10.如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是( )A.B.C.D.二、填空题(每小题3分,共15分)11.“地球停电一小时”活动的某地区烛光晚餐中,设座位有x排,每排坐30人,则8人无座位;每排坐31人,则空26个座位,根据题意可列方程 12.方程组的解为 .13.王胖子在扬州某小区经营特色长鱼面,生意火爆,开业前5天销售情况如下:第一天46碗,第二天54碗,第三天69碗,第四天62碗,第五天87碗,如果要清楚地反映王胖子的特色长鱼面在前5天的销售情况,不能选择统计 图.14.在平面直角坐标系中,对于点,如果点的纵坐标满足,那么称点为点的“关联点”.例如点的“关联点”的坐标为点;如果点的关联点的坐标为,则此时 .15.如图,已知在△ABC中,AB=AC,AC的垂直平分线分别交AB于点D,交AC于点E.若∠DCB=30°,则∠DCA= °.三、解答题(本大题共8个小题,共75分)16.计算:17.为了解地铁14号线与7号线的日客运强度,获得了它们2022年1月份工作日(共21天)日客运强度(单位:万人/公里)的数据,并对数据进行整理、描述和分析.下面给出了部分信息:a.地铁14号线2022年1月份工作日日客运强度的数据的频数分布直方图如下(数据分成6组:0.50≤x<0.70,0.70≤x<0.90,0.90≤x<1.10,1.10≤x<1.30,1.30≤x<1.50,1.50≤x≤1.70);b.地铁14号线2022年1月份工作日日客运强度的数据在1.30≤x<1.50这一组是:1.37 1.37 1.37 1.38 1.41 1.47 1.48 1.48 1.49c.地铁14号线与7号线2022年1月份工作日日客运强度的平均数、中位数如下:平均数中位数地铁14号线 1.37m地铁7号线 1.08 1.1根据以上信息,回答下列问题:(1)写出表中m的值;(2)日客运强度反映了地铁的拥挤程度,小明每天上班均需乘坐地铁,可以选择乘坐地铁14号线或乘坐地铁7号线.请帮助小明选择一种乘坐地铁的方式,并说明理由;(3)2022年一共有249个工作日,请估计2022年全年的工作日中,地铁14号线日客运强度不低于1.3万人/公里的天数(直接写出结果).18.如图,四边形是平行四边形.(1)尺规作图不写作法,保留作图痕迹:作出的角平分线,交于点;在线段上截取,连接;(2)在所作图中,经过学习小组讨论发现四边形是菱形,并给出以下证明,请你补充完整.证明:四边形为平行四边形,▲;.平分,▲..▲.,而,▲ .,四边形为菱形.19.已知:如图,,,连结.(1)求证: .(2)若,,求的长.20.如图,小明要测量操场旗杆高度AH .立两根高1米的标杆BC 和DE ,两竿相距BD=15米,D 、B 、H 成一线,小明从BC 退行2米到F ,着地观察A ,A 、C 、F 三点共线;从DE 退行3米步到G ,从G 看A ,A 、E 、G 三点也共线.请你帮小明算出旗杆的高度AH 及HB 的距离.21.A ,B 两种型号的空调,已知购进3台A 型号空调和5台B 型号空调共用14500元;购进4台A 型号空调和10台B 型号空调共用25000元.(1)求A ,B 两种型号空调的进价;(2)若超市准备用不超过54000元的资金再购进这两种型号的空调共30台,求最多能购进A 种型号的空调多少台?22.如图所示,一小球从地面上的点处抛出,球的抛出路线是抛物线的一部分,以过的水平线为轴,以过且垂直于轴的直线为轴建立平面直角坐标系,是一个坡度为的斜坡,若小球到达最高点的坐标为,(坡度:坡角的正切)(2)小球在斜坡上的落点的垂直高度为 米;为2,请判断小球能否飞过这个广告牌?通过计算说明理由.23.【阅读学习】(1)小娟是这样解决的:如图1,在⊙O中,AB是直径,点C在⊙O上,∠BAC=α,所以∠ACB=90°,tanα== .易得∠BOC=2α.设BC=x,则AC=3x,则AB= x.作CD⊥AB于D,求出CD= (用含x的式子表示),可求得sin2α== .(2)【问题解决】值.答案1.B2.A3.B4.B5.B6.D7.A8.D9.B10.D11.30x+8=31x-2612.13.扇形14.或15.4016.解:原式=-1-3-+1=-3.17.(1)解:根据条形统计图可得,1+1+2+3+9=16,14号线的中位数第11个数据在1.30≤x<1.50这一组第4个数据为1.38,故答案为:1.38;(2)解:选择7号线,理由如下:7号线的客运强度的平均数及中位数均小于14号线,说明人流量较小,所以选择7号线;(3)166天18.(1)解:如图,、为所作;(2)证明:四边形为平行四边形,,.平分,,.,,而,四边形为平行四边形,,四边形为菱形.19.(1)证明:∵∴又∵,在和中∴;(2)解:由(1)可知,∴,,又∵,∴,∴是等边三角形,∴,又∵,∴.20.设BH=x,AH=y,根据题意可得:BC∥AH,DE∥AH,则△FCB∽△FAH,△EDG∽△AHG,故,,即,,则,解得:x=30,y=16,答:建筑物的高度AH为16m及HB的长度为30m.21.(1)解:设A种型号空调的进价为x元,B种型号空调的进价为y元,根据题意,可列方程组为解得:答:A种型号空调的进价为2000元,B种型号空调的进价为1700元;(2)设能购进A种型号的空调m台,则购进B种型号的空调30-m台,根据题意,可列不等式为解不等式,得∵m取最大正整数,∴m=10.答:最多能购进A种型号的空调10台22.(1)解:∵最高点的坐标为,∴设抛物线解析式为:,∵抛物线过原点,∴代入点可得:,解得:,即抛物线的函数解析式为:;(2)(3)解:小球不能飞过这个广告牌,理由与如下:∵,原点,∴设直线的解析式为:,代入,可得:,∴,∴直线的解析式为:,∵点的横坐标为2,∴,在抛物线上,当时,,∵,∴小球不能飞过这个广告牌.23.(1)x;(2)解:如图,连接NO,并延长交⊙O于Q,连接MQ,MO,作MH⊥NO于H.在⊙O中,∠NMQ=90°.∵∠Q=∠P=β,OM=ON,∴∠MON=2∠Q=2β.∵tanβ=,∴设MN=k,则MQ=2k,∴NQ= .∴OM= NQ= .∵,∴.∴MH= .在Rt△MHO中,sin2β=sin∠MON= .。
河南省中考数学模拟测试卷-附参考答案与解析一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中选出符合题目的一项)1. −3的绝对值是( )C. 3D. ±3A. −3B. −132. 2023年3月30日郑州市人民公园第二十六届郁金香花展盛大开幕,据了解,本次花展共展出郁金香31个品种10万余株,采取全园分布,让游人闻着浓郁的花香,漫步于花田小径间,体验“人在花中走,如在画中游”的美妙感受.数据“10万”用科学记数法表示为( )A. 10×104B. 10×105C. 1×104D. 1×1053. 郑州是华夏文明的重要发祥地,是三皇五帝活动的腹地,是中华文明的轴心区,市政府开展了“游郑州知华夏”活动.将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中与“郑”字所在面相对的面上的汉字是( )A. 知B. 华C. 夏D. 游4. 某校开展了丰富多彩的学雷锋志愿服务活动,为了了解同学们所做志愿者服务活动的情况,数学兴趣小组的同学在全校范围内随机抽查了部分同学,将收集的数据绘制成了如图所示的扇形统计图,若该校有2000名学生,则参加爱心捐助活动的学生人数为( )A. 200B. 300C. 400D. 5005. 如图,一副三角尺按如图所示的方式放置,若AB//CD,则∠α的度数为( )A. 75°B. 90°C. 105°D. 120°6. 一元二次方程x2−2x+3=0的根的情况为( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 没有实数根D. 只有一个实数根7. 凸透镜成像的原理如图所示,AG//l//HC.若缩小的实像是物体的23,则物体到焦点F1的距离与焦点F2到凸透镜的中心线GH的距离之比为(焦点F1和F2关于O点对称)( )A. 32B. 23C. 2D. 128. 如图,已知点A(2,a)在反比例函数y1=4√ 3x的图象上,过点A作AB⊥x轴,垂足为B,连接OA,将△AOB沿OA翻折,点B的对应点B′恰好落在y2=kx(k≠0)的图象上,则k的值为( )A. √ 3B. −√ 3C. 2√ 3D. −2√ 39. 如图,在平面直角坐标系中边长为2的等边三角形AOP在第二象限,OA与x轴重合,将△AOP绕点O顺时针旋转60°,得到△A1OP1,再作△A1OP1关于原点O的中心对称图形,得到△A2OP2,再将△A2OP2绕点O顺时针旋转60°,得到△A3OP3,再作△A3OP3关于原点O的中心对称图形,得到△A4OP4,以此类推⋯⋯,则点P2023的坐标是( )A. (1,√ 3)B. (−1,−√ 3)C. (2,0)D. (−2,0)10. 已知抛物线y=x2−2mx+m2−9(m为常数)与x轴交于点A,B点P(m+1,y1),Q(m−3,y2)为抛物线上的两点,则下列说法不正确的是( )A. y有最小值为m2−9B. 线段AB的长为6C. 当x<m−1时,则y随x的增大而减小D. y1<y2二、填空题(本大题共5小题,共15.0分)11. 写出一个比0大且比3小的无理数:______ .12. 方程3x+2−1x=0的解为______ .13. 对一批运动鞋进行抽检,统计合格的运动鞋的数量,得到合格运动鞋的频数表如下:抽取双数(双)20406080100200300合格频数1738557596189286合格频率0.850.950.920.940.960.950.95估计出厂的1500双运动鞋中次品大约有______ 双.14. 某校无人机社团的同学用无人机测量学校旗杆的高度,组员操作无人机飞至离地面高度为25米的A处时,则测得旗杆BC的顶端B的俯角为45°,然后操控无人机水平方向飞行20米至旗杆另一侧D处时,则测得旗杆BC的顶端B的俯角为30°,已知A,B、C、D在同一平面内,则旗杆的高度为______ 米.15. 黄金分割比是让无数科学家、数学家、艺术家为之着迷的数字.黄金矩形的长宽之比为黄金分割比,即矩形的短边为长边的√ 5−12倍.黄金分割比能够给画面带来美感,令人愉悦,在很多艺术品以及大自然中都能找到它.比如蜗牛壳的螺旋中就隐藏了黄金分割比.如图,用黄金矩形ABCD框住整个蜗牛壳,之后作正方形ABFE,得到黄金矩形CDEF,再作正方形DEGH,得到黄金矩形CFGH……,这样作下去,我们以每个小正方形边长为半径画弧线,然后连接起来,就是黄金螺旋.已知AB=√ 5+12,则阴影部分的面积为______ .三、解答题(本大题共8小题,共75.0分。
郑州市名校中考模拟数学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个正确的.1.在0、3-、13-、3这四个数中,最小的数是………………………………()A .0B .3-C .13-D .32.如图是由长方体和圆柱体组成的几何体,则它的左视图是……………()A B C D 3.全国深入践行习近平生态文明思想,科学开展大规模国土绿化行动,厚植美丽中国亮丽底色,去年完成造林约3830000公顷、用科学记数法表示3830000是()A .63.8310⨯B .60.38310⨯C .73.8310⨯D .70.38310⨯4.如图,已知AB CD ,将一块直角三角板按如图的位置放置,使直角顶点E 在直线CD 上,若130∠=︒,则2∠的度数为…………………………………………()第4题图第6题图A .60︒B .50︒C .40︒D .30︒5.化简2111m m m -⋅+的结果为…………………………………………………()A .1m m +B .11m m -+C .1m m -D .1m m +6.如图,四边形ABCD 内接于O ,AB 是O 的直径,点E 在O 上,且125ADC ∠=︒,则BEC ∠的度数是……………………………………………………………()A .25︒B .55︒C .45︒D .35︒7.已知关于x 的一元二次方程21202402024x mx --=,则该一元二次方程的根的情况是………………………………………………………………………………()A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根8.“花花牛”和“生生”是河南两大牛奶品牌.现有4盒两种品牌的牛奶,其中2盒“花花牛”,2盒“生生”,随机抽取2盒,至少有一盒是“花花牛”的概率是…()A .12B .23C .34D .569.如图,等边ABC 的边长为2cm ,点P 从点A 出发,以1cm /s 的速度沿AC 向点C 运动,到达点C 停止;同时点Q 从点A 出发,以2cm /s 的速度沿AB BC-向点C 运动,到达点C 停止,设APQ △的面积为()2cm y ,运动时间为()s x ,则下列最能反映y 与x 之间函数关系的图象是……………………………………………………………()A B C D 10.如图,点E 是边长为8的正方形ABCD 的边CD 上一动点,连接AE ,将线段AE 绕点E 逆时针旋转90︒到线段EF ,连接AF ,BF ,AF 交边BC 于点G ,连接EG ,当AF BF+取最小值时,线段EG 的长为…………………………………………………()A .B .7C .9D .203二、填空题(每小题3分,共15分)11.学校购买了一批文具,共a 套,每套有b 本笔记本,将这批文具的一半捐给贫困地区的学生,捐出的笔记本有本.12.已知二元一次方程组325234a b a b +=⎧⎨+=⎩,则a b -=.13.为了调查某校5000名学生对“中国梦”的了解程度,随机抽取部分学生进行调查,并结合数据作出如图的扇形统计图.根据统计图提供的信息,估计该校“不太了解”的学生共有名.第14题图第15题图14.如图所示,点P 为O 外一点,过点P 作O 的切线PA ,PB ,点A ,B 为切点,连接AO 并延长,交PB 的延长线于点C ,过点C 作CD PO ⊥,交PO 的延长线于点.D 已知6PA =,8AC =,则OC 的长为.15.如图,正方形ABCD 的边长为8,点E 为BC 边上一点,且2BE =,点F 为AB 边上的中点,连接EF ,以EF 为一条直角边向右侧作等腰Rt EGF ,且使90EFG ∠=︒,连接CG ,则CG 的长是.三、解答题(本大题共8小题,共75分)16.(1)(5分)计算:1113-⎛⎫--+-- ⎪⎝⎭(2)(5分)化简:211x x x -++17.(9分)在2023年国际数学日当天,甲、乙两所学校联合举办九年级数学知识竞赛.为了解两校学生的答题情况,从中各随机抽取20名学生的得分,并对这些数据进行整理、描述和分析,下面给出部分信息.【信息1】两校学生得分的数据的频数分布直方图如下图所示:(数据分成4组:2040x ≤<,4060x ≤<,6080x ≤<,80100x ≤≤)【信息2】其中乙校学生得分在6080x ≤<这一组的数据如下:6868707373747676777879【信息3】两组样本数据的平均数、中位数如上表所示:根据所给信息,解答下列问题:(1)写出表中m 的值:m =______.(2)一名学生的成绩为70分,在他所在的学校,他的成绩超过了一半以上被抽取的学生,他是哪所学校的学生?请说明理由;(3)在这次数学知识竞赛中,你认为哪所学校的学生表现较好,为什么?18.(9分)如图,在Rt ABC △中,90ACB CD AB ∠=︒⊥,于点D .(1)尺规作图:作ACD ∠的平分线交AB 边于点E .(保留作图痕迹,不写作法,标明字母)(2)试猜想线段BE 与BC 之间的数量关系,并加以证明.19.(9分)如图,已知直线:4l y x =+与反比例函数(0)k y x x =<的图象交于点(1,)A n -,直线l '经过点A ,且与l 关于直线=1x -对称.(1)求反比例函数的解析式;(2)求图中阴影部分的面积.(3)已知直线:4l y x =+与反比例函数(0)k y x x=<的图象交于点另一点B ,P 在在平面内,若以点A ,B ,P ,O 为顶点的四边形是平行四边形,请直接写出所有符合条件点P 的坐标.20.(9分)城市规划期间,欲拆除一电线杆AB ,如图,已知距电线杆AB 的水平距离14m 的D 处有一大坝,背水坡CD 的坡度1:0.5i =,坝高CF 为2m ,在坝顶点C 处测得电线杆顶点A 的仰角为30︒,DE 之间是宽为2m 的行人道,试问在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?(提示:在地面上,以点B 为圆心,以AB 为半径的圆形区域为危险区域)(参考数据:3 1.73≈)学校平均数中位数甲校68.3571乙校68.35m21.(9分)“洛阳地脉花最宜,牡丹尤为天下奇.”河南洛阳被称为牡丹之乡,每年,月份吸引着数万名游客前来观赏.洛阳市政府组织园林科技人员改良栽培技术,开展新品种培育,其中有A ,B 两种新品种牡丹,培育5棵A 品种牡丹,6棵B 品种牡丹需要900元,已知培育一棵A 品种牡丹比培育一棵B 品种牡丹少用40元.(1)培育每棵A 品种牡丹和每棵B 品种牡丹各需要多少元?(2)今年计划培育A ,B 两种牡丹共600棵,A 品种牡丹的数量不超过B 品种牡丹数量的3倍,其中培育A 品种牡丹x 棵,培育A ,B 两品种牡丹的总费用为y 元,求y 与x 的函数关系式及总费用的最值.(3)园林科技人员在培育过程中,A ,B 两种牡丹的成活率分别为80%和90%.今年计划培育A ,B 两种牡丹共600棵;要使这两种牡丹的总成活率不低于85%,至少应投入多少钱?请说明.22.(10分)随着社会的进步,科技的力量已融入到我们生活的方方面面.为提高校学生足球队的技术水平,数学兴趣小组对某一主力球员的射门能力进行了大量的测试,并对采集的数据进行汇总分析,得出如下结论:如图所示,该球员在离球门O 点18米远的B 处时将球踢出,球在离他10米远的A 处上升到最大高度为4米.据实验测算,足球在空中运行的路线是一条抛物线.(1)求该抛物线的解析式;(2)已知球门的高为2.44米(球门的上沿离地面的距离),请你帮忙计算一下,该球员要想一次性射门成功,他应该在离球门多远的范围内将球踢出.(答案精确到0.1米,6.2≈)23.(10分)综合与实践(1)【问题提出】如图1,在Rt ABC △中,90ACB ∠=︒,AC BC =,点D 为斜边AB 上一点,连接CD 并延长到点E ,使得DE DC =,过点E 作EF AB ⊥于点F .则AC 与EF 的数量关系为______.(2)【拓展应用】如图2,在ABC 中,5AC BC k ==,8AB k =,点D 为AB 边上一点,连接CD 并延长到点E ,使得12DE CD =,过点E 作EF AB ⊥,交直线AB 于点F①当点D ,F 位于点A 异侧时,写出AC ,AD ,DF 之间的数量关系,并说明理由;②当点D ,F 位于点A 同侧时,若6AD =,1DF =,请直接写出AC 的长.。
2021年河南省中考数学模拟试卷解析版一.选择题〔共10小题,总分值30分,每题3分〕1.以下关系一定成立的是〔〕A.假设|a|=|b|,那么a=b B.假设|a|=b,那么a=bC.假设|a|=﹣b,那么a=b D.假设a=﹣b,那么|a|=|b|2.根据制定中的通州区总体规划,将通过控制人口总量上限的方式,努力让副中心远离“城市病〞.预计到2035年,副中心的常住人口规模将控制在130万人以内,初步建成国际一流的和谐宜居现代化城区.130万用科学记数法表示为〔〕A.×106B.130×104C.13×105D.×1053.将一个正方体沿图 1所示切开,形成如图2的图形,那么图2的左视图为〔〕A. B. C.D.4.如图,直线a∥b,点C,D分别在直线 b,a上,AC⊥BC,CD平分∠ACB,假设∠1=65°,那么∠2的度数为〔〕A.65°B.70°C.75°D.80°5.为迎接体育中考,九年级〔1〕班八名同学课间练习垫排球,记录成绩〔个数〕如下:40,38,42,35,45,40,42,42,那么这组数据的众数与中位数分别是〔〕A.40,41B.42,41C.41,42D.41,40 6.不等式组的解集在数轴上表示正确的选项是〔〕A.B.C.D.7.如图,菱形ABCD中,对角线AC、BD交于点O,点E为AB的中点,连接OE,假设OE=3,∠ADC=60°,那么BD的长度为〔〕A.6B.6C.3D.38.两个不透明的袋子中分别装有标号1、2、3、4和标号2、3、4的7个小球,7个小球除标号外其余均相同,随机从两个袋子中抽取一个小球,那么其标号数字和大于6的概率为〔〕A.B.C.D.9.如图,在平面直角坐标系中,等边△OBC的边OC在x轴正半轴上,点O为原点,点C坐标为〔12,0〕,D是OB上的动点,过D作DE⊥x轴于点E,过E作EF⊥BC于点F,过F作FG ⊥OB于点G.当G与D重合时,点D的坐标为〔〕A.〔1,〕10.如图1.正△B.〔2,2〕ABC中,E,F,G分别是C.〔4,4〕D.〔8,8〕AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,y关于x的函数图象如图2,那么△EFG的最小面积为〔〕A .B .C .2D .二.填空题〔共 5小题,总分值 15分,每题3分〕11.计算:〔﹣π〕0﹣=.12.如图,在⊙O 中,直径EF ⊥CD ,垂足为M ,EM?MF =12,那么CD 的长度为 .13 .如果函数y =﹣2x 与函数y =ax 2+1有两个不同的交点,那么实数a 的取值范围是 .14 .如图,等腰三角形ABC 中,AB =AC =2,∠B =75°,以C 为旋转中心将△ABC 顺时针旋转,当点B 落在AB 上点D 处时,点A 的对应点为E ,那么阴影局部面积为.15.如图,将三角形纸片 ABC 沿AD 折叠,使点C 落在BD 边上的点E 处.假设BC =10,BE =2,那么AB 2﹣AC 2的值为.三.解答题〔共8小题,总分值75 分〕16.〔8 分〕先化简,再求值:〔x ﹣2﹣〕÷ ,其中x =2﹣4.17.〔9 分〕某超市对今年“元旦〞期间销售A 、B 、C 三种品牌的绿色鸡蛋情况进行了统计,并绘制如下图的扇形统计图和条形统计图.根据图中信息解答以下问题: 〔1〕该超市“元旦〞期间共销售 个绿色鸡蛋,A 品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;〔2〕补全条形统计图;〔3〕如果该超市的另一分店在“元旦〞期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?18.〔9分〕如图,⊙O中,AB为直径,点P为⊙O外一点,且PA=AB,PA、PB交⊙O于D、E两点,∠PAB为锐角,连接DE、OD、OE.1〕求证:∠EDO=∠EBO;2〕填空:假设AB=8,①△AOD的最大面积为;②当DE=时,四边形OBED为菱形.19.〔9分〕济南大明湖畔的“超然楼〞被称作“江北第一楼〞.某校数学社团的同学对超然楼的高度进行了测量.如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m至B处,测得仰角为60°,假设学生的身高忽略不计,那么该楼的高度CD多少米?〔结果保存根号〕20.〔9分〕如图,一次函数y=mx﹣4〔m≠0〕的图象分别交x轴,y轴于A〔﹣4,0〕,B两点,与反比例函数y=〔k≠0〕的图象在第二象限的交点为C〔﹣5,n〕〔1〕分别求一次函数和反比例函数的表达式;〔2〕点P在该反比例函数的图象上,点Q在x轴上,且P,Q两点在直线AB的同侧,假设以B,C,P,Q为顶点的四边形是平行四边形,求满足条件的点P和点Q的坐标.21.〔10分〕开学前夕,某文具店准备购进A、B两种品牌的文具袋进行销售,假设购进A品牌文具袋和B品牌文具袋各5个共花费125元,购进A品牌文具袋3个和B品牌文具袋各4个共花费90元.〔1〕求购进A品牌文具袋和B品牌文具袋的单价;〔2〕假设该文具店购进了A,B两种品牌的文具袋共100个,其中A品牌文具袋售价为12元,B品牌文具袋售价为23元,设购进A品牌文具袋x个,获得总利润为y元.①求y关于x的函数关系式;②要使销售文具袋的利润最大,且所获利润不超过进货价格的40%,请你帮该文具店设计一个进货方案,并求出其所获利润的最大值.22.〔10分〕:AD是△ABC的高,且B D=CD.1〕如图1,求证:∠BAD=∠CAD;2〕如图2,点E在AD上,连接BE,将△ABE沿BE折叠得到△A′BE,A′B与AC相交于点F,假设BE=BC,求∠BFC的大小;〔3〕如图3,在〔2〕的条件下,连接EF,过点C作CG⊥EF,交EF的延长线于点G,假设BF=10,EG=6,求线段CF的长.23.〔11分〕如图1,抛物线y =x 2+〔m ﹣2〕x ﹣2m 〔m >0〕与x 轴交于A 、B 两点〔A 在B 左边〕,与y 轴交于点C .连接AC 、BC ,D 为抛物线上一动点〔D 在B 、C 两点之间〕,OD 交BC 于E 点.〔1〕假设△ABC 的面积为 8,求m 的值;〔2〕在〔1〕的条件下,求的最大值;( 3〕如图2,直线y =kx+b 与抛物线交于M 、N 两点〔M 不与A 重合,M 在N 左边〕,连MA ,作NH ⊥x 轴于H ,过点H 作HP ∥MA 交y 轴于点P ,PH 交MN 于点Q ,求点Q 的横坐标.参考答案与试题解析一.选择题〔共 10小题,总分值 30分,每题 3分〕1.【分析】根据绝对值的定义进行分析即可得出正确结论.【解答】解:选项 A 、B 、C 中,a 与b 的关系还有可能互为相反数.应选D .【点评】绝对值相等的两个数的关系是相等或互为相反数.2.【分析】科学记数法的表示形式为 a ×10n的形式,其中 1≤|a|<10,n 为整数.确定 n的值时,要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:将130万用科学记数法表示为×106.应选:A .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.【分析】由几何体形状直接得出其左视图,正方形上面有一条斜线.【解答】解:如下图:图 2的左视图为:.应选:C .【点评】此题主要考查了简单组合体的三视图,正确注意观察角度是解题关键.4.【分析】由AC ⊥BC ,CD 平分∠ACB 知∠BCD =45°,结合∠1=65°知∠2=∠3=180°﹣∠1 ﹣∠BCD ,据此可得答案.【解答】解:如图,∵ AC ⊥BC ,∵ ∴∠ACB =90°,∵ CD 平分∠ACB ,∴∠BCD=∠ACB=45°,∵∠1=65°,∴∠2=∠3=180°﹣∠1﹣∠BCD=70°,应选:B.【点评】此题主要考查垂线的性质,解题的关键是掌握垂线与角平分线的性质及三角形的内角和定理等知识点.5.【分析】先将数据从大到小从新排列,然后根据众数及中位数的定义求解即可.【解答】解:将数据从小到大排列为:35,38,40,40,42,42,42,65,众数为42;中位数为=41.应选:B.【点评】此题考查了众数及中位数的知识,中位数是将一组数据从小到大〔或从大到小〕重新排列后,最中间的那个数〔最中间两个数的平均数〕,叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就可能会出错.6.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共局部,然后把不等式的解集表示在数轴上即可.【解答】解:解3x﹣2<1,得x<1;解x+1≥0,得x≥﹣1;不等式组的解集是﹣1≤x<1,应选:D.【点评】在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来〔>,≥向右画;<,≤向左画〕,数轴上的点把数轴分成假设干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥〞,“≤〞要用实心圆点表示;“<〞,“>〞要用空心圆点表示.7.【分析】利用三角形中位线定理求出AD,再在Rt△AOD中,解直角三角形求出 OD即可解决问∴题.∴【解答】解:∵四边形ABCD是菱形,∠ADC=60°,∴AC⊥BD,OA=OC,OB=OD,∠ADO=∠CDO=30°,∵AE=EB,BO=OD,AD=2OE=6,在Rt△AOD中,∵AD=6,∠AOD=90°,∠ADO=30°,∴OD=AD cos303,?°=∴BD=2OD=6,应选:A.【点评】此题考查菱形的性质,三角形的中位线定理,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.【分析】利用树状图法列举出所有可能,进而求出概率.【解答】解:画树状图如下:由树状图可知,共有12种等可能结果,其中标号数字和大于6的结果数为3,所以标号数字和大于6的概率为=,应选:C.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.9.【分析】设BG=x,依据∠BFG=∠CEF=∠ODE=30°,可得BF=2x,CF=12﹣2x,CE=2CF=24﹣4x,OE=12﹣CE=4x﹣12,OD=2OE=8x﹣24,再根据当G与D重合时,OD+BG=OB列方程,即可得到x的值,进而得出点D的坐标.【解答】解:如图,设BG=x,∴∵△OBC是等边三角形,∴∴∠BOC=∠B=∠C=60°,∴DE⊥OC于点E,EF⊥BC于点F,FG⊥OB,∴∠BFG=∠CEF=∠ODE=30°,∴∴BF=2x,∴∴CF=12﹣2x,∴CE=2CF=24﹣4x,∴OE=12﹣CE=4x﹣12,∴OD=2OE=8x﹣24,当G与D重合时,OD+BG=OB,∴8x﹣24+x=12,解得x=4,∴OD=8x﹣24=32﹣24=8,∴OE=4,DE=4,∴D〔4,4〕.应选:C.【点评】此题考查了等边三角形的性质,含30°角的直角三角形的性质,熟练掌握等边三角形的性质是解题的关键.10.【分析】此题根据图2判断△EFG的面积y最小时和最大时分别对应的x值,从而确定AB,EG的长度,求出等边三角形EFG的最小面积.【解答】由图2可知,x=2时△EFG的面积y最大,此时E与B重合,所以AB=2∴等边三角形ABC的高为∴等边三角形ABC的面积为由图2可知,x=1时△EFG的面积y最小此时AE=AG=CG=CF=BG=BE显然△EGF是等边三角形且边长为1所以△EGF的面积为应选:A.【点评】此题是运动型综合题,考查了动点问题的函数图象等边三角形等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.15分,每题3分〕二.填空题〔共5小题,总分值11.【分析】此题涉及三次根式化简、零指数幂2个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法那么求得计算结果.【解答】解:〔﹣π〕0﹣1+34.故答案为:4.【点评】此题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握三次根式、零指数幂等考点的运算.12.【分析】连接CE,DF,根据圆周角定理得到∠E=∠D,∠C=∠F,根据相似三角形的性质得到CM?DM=EM?MF=12,根据垂径定理即可得到结论.【解答】解:连接CE,DF,∵∠E=∠D,∠C=∠F,∴△CEM∽△DFM,∴=,CM?DM=EM?MF=12,∵直径EF⊥CD,CM=DM,∴CM==2,∴CD=2CM=4,故答案为:4.【点评】此题考查了相似三角形的判定和性质,垂径定理,圆周角定理,正确的作出辅助线构造相似三角形是解题的关键.13.【分析】当a=0时,两直线y=﹣2x和线的解析式得出关于x的方程,再由直线的取值范围.y=1只有一个交点,那么当a≠0时,先联立抛物线与直y=﹣2x和抛物线有两个不同交点可知△>0,求出a【解答】解:当a=0时,两直线y=﹣2x和y=1只有一个交点,当a ≠0时, ,由题意得,方程ax 2+1=﹣2x 有两个不同的实数根,∴△=4﹣4a >0 , 解得:a <1.故答案为:a <1 .【点评】主要考查的是函数图象的交点问题,两函数有两个不同的交点,那么△>0.14.【分析】作CK ⊥BD 于K .根据S 阴=S △ABC +S 扇形ACE ﹣S △BCD ﹣S △EDC 计算即可.【解答】解:作CK ⊥BD 于K .AB =AC =3,∴∠B =∠ACB =75°,∴∠BAC =180°﹣75°﹣75°=30°,在Rt △ACK 中,CK =AC =1,AK =∴BK =2﹣,,CB =CD ,CK ⊥BD ,∴BD =2BK =4﹣2 ,∠B =∠CDB =75°, ACE =∠BCD =30°,S 阴=S △ABC +S 扇形ACE ﹣S △BCD ﹣S △EDC=﹣ ?〔4﹣2 〕?1=﹣2+ ,故答案为 ﹣2+ .【点评】此题考查旋转变换,扇形的面积,等腰三角形的性质,解直角三角形等知识,解题的关键是学会用分割法求阴影局部面积.15.【分析】由折叠的性质可得∠ADC =∠ADE =90°,DE =CD = CE ,可得 DE =4,BD =6,根据勾股定理可求 AB 2﹣AC 2的值. 【解答】解:∵将三角形纸片 ABC 沿AD 折叠,使点 C 落在BD 边上的点 E 处,∴∠ADC =∠ADE =90°,DE =CD =CE ,BC =10,BE =2 CE =8,CD =DE =4,BD =6, 在Rt △ABD 中,AB 2=AD 2+BD 2,在Rt △ACD 中,AC 2=AD 2+CD 2,∴AB 2﹣AC 2=BD 2﹣CD 2=20, 故答案为:20【点评】此题考查了翻折变换,勾股定理,熟练运用折叠的性质是此题的关键. 三.解答题〔共 8小题,总分值 75分〕16.【分析】原式括号中两项通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分得到最简结果,将 x 的值代入计算即可求出值.【解答】解:〔x ﹣2﹣ 〕÷= ÷= ?=x+4,当x =2 ﹣4时,原式=2﹣4+4=2.【点评】此题考查的是分式的化简求值,熟知分式混合运算的法那么是解答此题的关键.17.【分析】〔1〕用C 品牌的数量除以所占的百分比,计算机求出鸡蛋的总量,再用A 品牌的百分比乘以360°计算即可求出圆心角的度数;〔2〕求出B 品牌鸡蛋的数量,然后条形补全统计图即可; 〔3〕用B 品牌所占的百分比乘以1500,计算即可得解.【解答】解:〔1〕共销售绿色鸡蛋:1200÷50%=2400个,A 品牌所占的圆心角: × 360°=60°;故答案为:2400,60 ;〔2〕B 品牌鸡蛋的数量为: 2400﹣400﹣1200=800个,补全统计图如图;〔3〕分店销售的B种品牌的绿色鸡蛋为:×1500=500个.【点评】此题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个工程的数据;扇形统计图直接反映局部占总体的百分比大小.18.【分析】〔1〕如图1,连AE,由等腰三角形的性质可知E为PB中点,那么OE是△PAB的中位线,OE∥PA,可证得∠DOE=∠EOB,那么∠EDO=∠EBO可证;〔2〕如图2,由条件知OA=4,当OA边上的高最大时,△AOD的面积最大,可知点D是的中点时满足题意,此时最大面积为8;3〕如图3,当DE=4时,四边形ODEB是菱形.只要证明△ODE是等边三角形即可解决问题.【解答】证明:〔1〕如图1,连AE,∴AB为⊙O的直径,∴∠AEB=90°,∴PA=AB,∴E为PB的中点,∵AO=OB,OE∥PA,∴∠ADO=∠DOE,∠A=∠EOBOD=OA,∴∠A=∠ADO,∴∠EOB=∠DOE,OD=OE=OB,∴∠EDO=∠EBO;〔2〕①∵AB=8,∴OA=4,当OA边上的高最大时,△A OD的面积最大〔如图2〕,此时点D是的中点,OD⊥AB,∴;②如图3,当DE=4时,四边形OBED为菱形,理由如下:OD=DE=OE=4,∴△ODE是等边三角形,∴∠EDO=60°,由〔1〕知∠EBO=∠EDO=60°,OB=BE=OE,∴四边形OBED为菱形,故答案为:8;4.【点评】此题考查了圆周角定理、等腰三角形的性质、中位线定理、菱形的判定等知识,解题的关键是找准动点D在圆上的位置,灵活运用所学知识解决问题,19.【分析】由题意易得:∠A=30°,∠DBC=60°,DC⊥AC,即可证得△ABD是等腰三角形,然后利用三角函数,求得答案.【解答】解:根据题意得:∠A=30°,∠DBC=60°,DC⊥AC,∴∠ADB=∠DBC﹣∠A=30°,∴∠ADB=∠A=30°,BD=AB=60m,∴CD=BD sin60°=60×=30m ?〔〕【点评】此题考查了解直角三角形的应用﹣仰角俯角问题.注意证得△ABD是等腰三角形,利用特殊角的三角函数值求解是关键.20.【分析】〔1〕将点A坐标代入y=mx﹣4〔m≠0〕,求出 m,得出直线AB的解析式,进而求出点C坐标,再代入反比例函数解析式中,求出k,即可得出结论;2〕先求出点B坐标,设出点P,Q坐标,分两种情况,利用平行四边形的对角线互相平分建立方程组求解即可得出结论.【解答】解:〔1〕∵点A是一次函数y=mx﹣4的图象上,∴﹣4m﹣4=0,∴m=﹣1,∴一次函数的解析式为y=﹣x﹣4,∵点C〔﹣5,n〕是直线y=﹣x﹣4上,n=﹣〔﹣5〕﹣4=1,C〔﹣5,1〕,∵点C〔﹣5,1〕是反比例函数 y=〔k≠0〕的图象上,∴k=﹣5×1=﹣5,∴反比例函数的解析式为y=﹣;(((((2〕由〔1〕知,C〔﹣5,1〕,直线AB的解析式为y=﹣x﹣4,∴B〔0,﹣4〕,设点Q〔q,0〕,P〔p,﹣〕,∵以B,C,P,Q为顶点的四边形是平行四边形,且P,Q两点在直线AB的同侧,∴①当BP与CQ是对角线时,∴BP与CQ互相平分,∴,∴,P〔﹣1,5〕,Q〔4,0〕②当BQ与CP是对角线时,BQ与CP互相平分,∴,∴,∴P〔﹣1,5〕,Q〔﹣4,0〕,此时,点C,Q,B,P在同一条线上,不符合题意,舍去,即以B,C,P,Q为顶点的四边形是平行四边形,点P〔﹣1,5〕,点Q〔4,0〕.【点评】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的性质,用方程组的思想解决问题是解此题的关键.21.【分析】〔1〕设购进A品牌文具袋的单价为x元,购进B品牌文具袋的单价为y元,列出方程组求解即可;〔2〕①把〔1〕得出的数据代入即可解答;②根据题意可以得到x的取值范围,然后根据一次函数的性质即可求得w的最大值和相应的进货方案.y元,根据【解答】解:〔1〕设购进A品牌文具袋的单价为x元,购进B品牌文具袋的单价为题意得,,解得,所以购进A品牌文具袋的单价为10元,购进B品牌文具袋的单价为15元;〔2〕①由题意可得,y=〔12﹣10〕x+〔23﹣15〕〔100﹣x〕=800﹣6x;②由题意可得,﹣6x+800≤40%[10x+15〔100﹣x〕],解得:x≥50,又由〔1〕得:w=﹣6x+800,k=﹣6<0,∴w随x的增大而减小,∴当x=50时,w到达最大值,即最大利润此时100﹣x=100﹣50=50个,w=﹣50×6+800=500元,答:购进A品牌文具袋50个,B品牌文具袋50个时所获利润最大,利润最大为500元.【点评】此题综合考察了一次函数的应用及一元一次不等式的相关知识,找出函数的等量关系及掌握解不等式得相关知识是解决此题的关键.22.【分析】〔1〕利用线段的垂直平分线的性质证明AB=AC,再利用等腰三角形的性质即可解决问题;〔2〕如图2中,连接EC.首先证明△EBC是等边三角形,推出∠BED=30°,再由∠BFC=∠FAB+∠FBA=2〔∠BAE+∠ABE〕=2∠BED=60°解决问题;〔3〕如图3中,连接EC,作EH⊥AB于H,EN⊥AC于N,EM⊥BA′于M.首先证明∠AFE=∠BFE=60°,在Rt△EFM中,∠FEM=90°﹣60°=30°,推出EF=2FM,设FM=m,那么EF=2m,推出FG=EG﹣EF=6﹣2m,FN=EF=m,CF=2FG=12﹣4m,再证明Rt△EMB≌Rt△ENC〔HL〕,推出BM=CN,由此构建方程即可解决问题;【解答】〔1〕证明:如图1中,BD=CD,AD⊥BC,∴AB=AC,∴∠BAD=∠CAD.〔2〕解:如图2中,连接E C.BD⊥BC,BD=CD,∴EB=EC,又∵EB=BC,∴BE=EC=BC,∴△BCE是等边三角形,∴∠BEC=60°,∴∠BED=30°,由翻折的性质可知:∠ABE=∠A′BE=∠ABF,∴∠ABF=2∠ABE,由〔1〕可知∠FAB=2∠BAE,∴∠BFC=∠FAB+∠FBA=2〔∠BAE+∠ABE〕=2∠BED=60°.〔3〕解:如图3中,连接E C,作EH⊥AB于H,EN⊥AC于N,EM⊥BA′于M.∵∠BAD=∠CAD,∠ABE=∠A′BE,EH=EN=EM,∴∠AFE=∠EFB,∵∠BFC=60°,∴∠AFE=∠BFE=60°,在Rt△EFM中,∵∠FEM=90°﹣60°=30°,EF=2FM,设FM=m,那么EF=2m,FG=EG﹣EF=6﹣2m,易知:FN=EF=m,CF=2FG=12﹣4m,∵∠EMB=∠ENC=90°,EB=EC,EM=EN,Rt△EMB≌Rt△ENC〔HL〕,BM=CN,BF﹣FM=CF+FN,10﹣m=12﹣4m+m,m=1,CF=12﹣4=8.【点评】此题属于几何变换综合题,考查了等腰三角形的判定和性质,线段的垂直平分线的性质,全等三角形的判定和性质,勾股定理,角平分线的判定和性质,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.23.【分析】〔1〕将A、B、C三点坐标表示为线段长,OA=m,OB=2,OC=2m,然后根据面积公式建立关于m的方程,解方程即可;〔2〕过点D作DF∥OC,可以通过平行构造八字型的相似关系,将DE与OE的比转换为DF与OC 的比,OC 为定值,所以设点D 坐标,表示 DF 线段长度,从而得到表示线段长度之比的二次 函数关系式,转换成顶点式,那么的最大值可求;〔3〕分析条件 AM ∥PH 可知应有等角,所以从 M 、Q 向x 轴作垂直,构造相似,利用直线解析 式设M 、N 、Q 三点坐标,将直线与抛物线解析式联立,用韦达定理表示 x 1+x 2,x 1x 2,根据相似关系建立参数方程,因式分解讨论取值.【解答】解:〔1〕y =x 2+〔m ﹣2〕x ﹣2m =〔x+m 〕〔x ﹣2〕 令y =0,那么〔x+m 〕〔x ﹣2〕=0,解得x 1=﹣m ,x 2=2 A 〔﹣m ,0〕、B 〔2,0〕令x =0,那么y =﹣2m C 〔0,﹣2m 〕AB =2+m ,OC =2mS △ABC =×〔2+m 〕×2m =8,解得m 1=2,m 2=﹣4m >0 m =2〔2〕如图1,过点D 作DF ∥y 轴交BC 于F 由〔1〕可知:m =2∴抛物线的解析式为 y =x 2﹣4 ∴B 〔2,0〕、C 〔0,﹣4〕 ∴直线BC 的解析式为 y =2x ﹣4设D 〔t ,t 2﹣4〕,那么F 〔t ,2t ﹣4〕DF =2t ﹣4﹣〔t 2﹣4〕=﹣t 2+2t ,OC =4 DF ∥y 轴∴= = =当t =1时,∵,∴,此时D 〔1,﹣3〕.〔3〕设M 〔x 1,kx 1+b 〕、N 〔x 2,kx 2+b 〕联立 ,整理得x 2+〔m ﹣2﹣k 〕x ﹣2m ﹣b =0x 1+x 2=2+k ﹣m ,x 1x 2=﹣2m ﹣b设点Q 的横坐标为 n ,那么Q 〔n ,kn+b 〕 MA ∥PH如图2,过点M 作MK ⊥x 轴于K ,过点Q 作QL ⊥x 轴于L ∵△MKA ∽△QLH∴ = 即 ,整理得 kx 1x 2+b 〔x 1+x 2〕+kmn+bm ﹣bn =0k 〔﹣2m ﹣b 〕+b 〔2+k ﹣m 〕+kmn+bm ﹣bn =0 ∴〔km ﹣b 〕〔n ﹣2〕=0①当km ﹣b =0,此时直线为y =k 〔x+m 〕,过点 A 〔﹣m ,0〕,不符合题意 ②当n ﹣2=0,此时n =2,Q 点的横坐标为2.【点评】此题考查了因式分解,相似构造,一元二次方程根与系数之间的关系,二次函数的极值求法以及一次函数与二次函数的关系,前两问属于常规问题,难度不大,解法比拟常见,第三问难度较大,条件中没有数值,需要学生设多个参数,用韦达定理和因式分解的方法来解决问题,难度较大.。
2024年河南省中考数学复习模拟试卷(一)一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.(共10题;共30分)1.(3分)绝对值小于4的所有整数的和是( )A.4B.8C.0D.17 2.(3分)将一个棱长为1的正方体水平放于桌面(始终保持正方体的一个面落在桌面上),则该正方体正视图面积的最大值为( )A.2B.C.D.1 3.(3分)根据最新数据统计,2018 年中山市常住人口已达到3260000 人.将3260000用科学记数法表示,下列选项正确的是( )A.3.26×105B.3.26×106C.32.6×105D.0.326×1074.(3分)如图,为的直径,弦于点E,于点F,,则为( )A.B.C.D.5.(3分)已知分式,,其中,则与的关系是( )A.B.C.D.6.(3分)如图,AC,BD是⊙O直径,且AC⊥BD,动点P从圆心O出发,沿O→C→D→O路线作匀速运动,设运动时间为t(秒),∠APB=y(度),则下列图象中表示y与t之间的函数关系最恰当的是( )A.B.C.D.7.(3分)关于的一元二次方程的根的情况,下列说法正确的是( )A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.与的值有关,无法确定8.(3分)一个不透明的袋子中放入三个除标号外其余均相同的小球,三个小球的标号分别是2,1,-1,随机从这个袋子中一次取出两个小球,取出的两个小球上数BK字之积为负数的概率是( )A.B.C.D.9.(3分)一次函数y=kx+b(k≠0)的图象如图,则下列结论正确的是( )A.k=2B.k=3C.b=2D.b=3 10.(3分)如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P 不与点B,C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是( )A.B.C.D.二、填空题(每小题3分,共15分)(共5题;共15分)11.(3分)下表是2002年12月份的日历,现在用一个长方形在日历中任意框出4个数,请你用一个等式表示之间的关系 .12.(3分)已知关于x,y的方程组给出下列结论:①是方程组的一个解;②当时,x,y的值互为相反数③a=1时,方程组的解也是方程的解;④和之间的数量关系是.其中正确的是 (填序号)13.(3分)某班女学生人数与男生人数之比是4:5,把男女学生人数分布情况制成扇形统计图,则表示女生人数的扇形圆心角的度数是 .14.(3分)如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB交边BC于点D,E,F分别是AD,AC上的点,连接CE,EF.若AB=10,BC=6,AC=8,则CE+EF的最小值是 .15.(3分)如图,正方形网格中的△ABC,若小方格的边长都为1,则△ABC是 三角形.三、解答题(本大题共8个小题,共75分)(共8题;共75分)16.(10分)回答下列问题.(1)(5分)计算:.(2)(5分)解方程:.17.(9分)为了让同学们了解自己的体育水平,初二1班的体育刘老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表平均分方差中位数众数男生287女生7.92 1.998根据以上信息,解答下列问题:(1)(3分)这个班共有男生 人,共有女生 人;(2)(3分)补全初二1班体育模拟测试成绩分析表;(3)(3分)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由.18.(9分)一犯罪分子正在两交叉公路间沿到两公路距离相等的一条小路上逃跑,埋伏在A、B两处的两名公安人员想在距A、B相等的距离处同时抓住这一罪犯.请你帮助公安人员在图中设计出抓捕点.19.(9分)如图,等腰Rt的直角顶点A在反比例函数的图象上.(1)(3分)已知,求此反比例函数的解析式;(2)(3分)先将点A绕原点O逆时针旋转90°,得到点E,再将点E向右平移1个单位得到点F,若点F恰好在正比例函数的图象上,求正比例函数的表达式.20.(9分)如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P、Q、S在一条直线上,且直线与河垂直,在过点S且与直线垂直的直线a上选择适当的点T,与过点Q且与垂直的直线b的交点为R.如果,,,求的长.21.(9分)一辆出租车一天上午从某商场出发在东西大街上运行,若规定向东行为正,向西行为负,行驶里程(单位:km)依次如下:+9,-8,-5,+6,-8,+9,-3,-7,-5,+10.(1)(3分)将最后一名乘客送到目的地,出租车在该商场的哪边?离商场有多远?(2)(3分)如果出租车每行驶100 km的油耗为10L,1L汽油的售价为7.2元,那么出租车在这天上午消耗汽油的金额是多少元?22.(10分)如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头部的正上方达到最高点M,距地面4米高,球落地为C点.(1)(5分)求足球开始飞出到第一次落地时,该抛物线的解析式;(2)(5分)足球第一次落地点C距守门员多少米?23.(10分)如图,在菱形ABCD中,,将边AB绕点A逆时针旋转至,记旋转角为.过点D作于点F,过点B作BE⊥直线于点E,连接EF.【探索发现】(1)(3分)填空:当时,_ °;的值是_ ;(2)(3分)【验证猜想】当时,(1)中的结论是否仍然成立?若成立,请仅就图2的情形进行证明;若不成立,请说明理由;(3)(4分)【拓展应用】在(2)的条件下,若,当是等腰直角三角形时,请直接写出线段EF的长.答案1.C2.C3.B4.C5.B6.C7.C8.C9.D10.D11.d-c=b-a12.①②③13.160°14.4.815.直角16.(1)解:原式(2)解:,.17.(1)20;25(2)解:甲的平均分为×(5+6×2+7×6+8×3+9×5+10×3)=7.9,女生的众数为8,补全表格如下:平均分方差中位数众数男生7.9287女生7.92 1.9988(3)解:可根据众数比较得出答案.从众数看,女生队的众数高于男生队的众数,所以女生队表现更突出.18.解:角平分线上的点到角两边的距离相等(即犯罪分子在∠MON的角平分线上,点P也在其上)线段垂直平分线上的点到线段两端点的距离相等(所以点P在线段AB的垂直平分线上).∴两线的交点,即点P符合要求.19.(1)解:如图,作AC⊥OB于C,∵△AOB是等腰直角三角形,OA=2,∴AC=OC=2,∴A(2,2),∵直角顶点A在反比例函数y=(x>0)的图象上,∴k=2×2=4,∴反比例函数的解析式为y=;(2)解:∵A(2,2),∴将点A绕原点O逆时针旋转90°,得到点E(-2,2),再将点E向右平移1个单位得到点F(-1,2),∵点F恰好在正比例函数y=mx的图象上,∴2=-m,解得m=-2,∴正比例函数的表达式为y=-2x.20.解:由题意可知,,,设,∵,,,∴,,解得,经检验x=120是方程的解的长为.21.(1)解:9-8-5+6-8+9-3-7-5+10=(9+6+9+10)-(8+5+8+3+7+5)=34-36=-2(km).答:将最后一名乘客送到目的地,出租车在该商场的西边,离商场2 km;(2)解:|+9|+|-8|+|-5|+|+6|+|-8|+|+9|+|-3|+|-7|+|-5|+|+10|=70(km),×10×7.2= 50.4 (元).答:出租车在这天上午消耗汽油的金额是50.4元.22.(1)解:以O为原点,直线OA为y轴,直线OB为x轴建直角坐标系.由于抛物线的顶点是(6,4),所以设抛物线的表达式为y=a(x﹣6)2+4,当x=0,y=1时,1=a(0﹣6)2+4,所以a=﹣,所以抛物线解析式为:y=﹣x2+x+1;(2)解:令y=0,则﹣x2+x+1=0,解得:x1=6﹣4 (舍去),x2=6+4 =12.8(米),所以,足球落地点C距守门员约12.8米.23.(1)30;(2)解:当时,(1)中的结论仍然成立.证明:如图,连接BD,∵,∴,,∴,∴,∵,∴,∴,即,∴,,∴,又∵,∴,∴.(3)解:的长为或.。
2020年河南省中考数学模拟试卷解析版一.选择题(共10小题,满分30分,每小题3分)1.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=bC.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|2.根据制定中的通州区总体规划,将通过控制人口总量上限的方式,努力让副中心远离“城市病”.预计到2035年,副中心的常住人口规模将控制在130万人以内,初步建成国际一流的和谐宜居现代化城区.130万用科学记数法表示为()A.×106B.130×104C.13×105D.×1053.将一个正方体沿图1所示切开,形成如图2的图形,则图2的左视图为()A.B.C.D.4.如图,直线a∥b,点C,D分别在直线b,a上,AC⊥BC,CD平分∠ACB,若∠1=65°,则∠2的度数为()A.65°B.70°C.75°D.80°5.为迎接体育中考,九年级(1)班八名同学课间练习垫排球,记录成绩(个数)如下:40,38,42,35,45,40,42,42,则这组数据的众数与中位数分别是()A.40,41 B.42,41 C.41,42 D.41,406.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.如图,菱形ABCD中,对角线AC、BD交于点O,点E为AB的中点,连接OE,若OE=3,∠ADC=60°,则BD的长度为()A.6 B.6 C.3 D.38.两个不透明的袋子中分别装有标号1、2、3、4和标号2、3、4的7个小球,7个小球除标号外其余均相同,随机从两个袋子中抽取一个小球,则其标号数字和大于6的概率为()A.B.C.D.9.如图,在平面直角坐标系中,等边△OBC的边OC在x轴正半轴上,点O为原点,点C坐标为(12,0),D是OB上的动点,过D作DE⊥x轴于点E,过E作EF⊥BC于点F,过F作FG⊥OB于点G.当G与D重合时,点D的坐标为()A.(1,)B.(2,2)C.(4,4)D.(8,8)10.如图1.已知正△ABC中,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,y关于x的函数图象如图2,则△EFG的最小面积为()A.B.C.2 D.二.填空题(共5小题,满分15分,每小题3分)11.计算:(﹣π)0﹣=.12.如图,在⊙O中,直径EF⊥CD,垂足为M,EM•MF=12,则CD的长度为.13.如果函数y=﹣2x与函数y=ax2+1有两个不同的交点,则实数a的取值范围是.14.如图,等腰三角形ABC中,AB=AC=2,∠B=75°,以C为旋转中心将△ABC顺时针旋转,当点B落在AB上点D处时,点A的对应点为E,则阴影部分面积为.15.如图,将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处.若BC=10,BE=2,则AB2﹣AC2的值为.三.解答题(共8小题,满分75分)16.(8分)先化简,再求值:(x﹣2﹣)÷,其中x=2﹣4.17.(9分)某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数18.(9分)如图,⊙O中,AB为直径,点P为⊙O外一点,且PA=AB,PA、PB交⊙O于D、E两点,∠PAB为锐角,连接DE、OD、OE.(1)求证:∠EDO=∠EBO;(2)填空:若AB=8,①△AOD的最大面积为;②当DE=时,四边形OBED为菱形.19.(9分)济南大明湖畔的“超然楼”被称作“江北第一楼”.某校数学社团的同学对超然楼的高度进行了测量.如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m至B处,测得仰角为60°,若学生的身高忽略不计,则该楼的高度CD多少米(结果保留根号)20.(9分)如图,已知一次函数y=mx﹣4(m≠0)的图象分别交x轴,y轴于A(﹣4,0),B两点,与反比例函数y=(k≠0)的图象在第二象限的交点为C(﹣5,n)(1)分别求一次函数和反比例函数的表达式;(2)点P在该反比例函数的图象上,点Q在x轴上,且P,Q两点在直线AB的同侧,若以B,C,P,Q为顶点的四边形是平行四边形,求满足条件的点P和点Q的坐标.21.(10分)开学前夕,某文具店准备购进A、B两种品牌的文具袋进行销售,若购进A品牌文具袋和B品牌文具袋各5个共花费125元,购进A品牌文具袋3个和B品牌文具袋各4个共花费90元.(1)求购进A品牌文具袋和B品牌文具袋的单价;(2)若该文具店购进了A,B两种品牌的文具袋共100个,其中A品牌文具袋售价为12元,B品牌文具袋售价为23元,设购进A品牌文具袋x个,获得总利润为y元.①求y关于x的函数关系式;②要使销售文具袋的利润最大,且所获利润不超过进货价格的40%,请你帮该文具店设计一个进货方案,并求出其所获利润的最大值.22.(10分)已知:AD是△ABC的高,且BD=CD.(1)如图1,求证:∠BAD=∠CAD;(2)如图2,点E在AD上,连接BE,将△ABE沿BE折叠得到△A′BE,A′B与AC相交于点F,若BE=BC,求∠BFC的大小;(3)如图3,在(2)的条件下,连接EF,过点C作CG⊥EF,交EF的延长线于点G,若BF=10,EG=6,求线段CF的长.23.(11分)如图1,抛物线y=x2+(m﹣2)x﹣2m(m>0)与x轴交于A、B两点(A在B左边),与y轴交于点C.连接AC、BC,D为抛物线上一动点(D在B、C两点之间),OD交BC于E点.(1)若△ABC的面积为8,求m的值;(2)在(1)的条件下,求的最大值;(3)如图2,直线y=kx+b与抛物线交于M、N两点(M不与A重合,M在N左边),连MA,作NH⊥x轴于H,过点H作HP∥MA交y轴于点P,PH交MN于点Q,求点Q的横坐标.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据绝对值的定义进行分析即可得出正确结论.【解答】解:选项A、B、C中,a与b的关系还有可能互为相反数.故选D.【点评】绝对值相等的两个数的关系是相等或互为相反数.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将130万用科学记数法表示为×106.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】由几何体形状直接得出其左视图,正方形上面有一条斜线.【解答】解:如图所示:图2的左视图为:.故选:C.【点评】此题主要考查了简单组合体的三视图,正确注意观察角度是解题关键.4.【分析】由AC⊥BC,CD平分∠ACB知∠BCD=45°,结合∠1=65°知∠2=∠3=180°﹣∠1﹣∠BCD,据此可得答案.【解答】解:如图,∵AC⊥BC,∴∠ACB=90°,∵CD平分∠ACB,∴∠BCD=∠ACB=45°,∵∠1=65°,∴∠2=∠3=180°﹣∠1﹣∠BCD=70°,故选:B.【点评】本题主要考查垂线的性质,解题的关键是掌握垂线与角平分线的性质及三角形的内角和定理等知识点.5.【分析】先将数据从大到小从新排列,然后根据众数及中位数的定义求解即可.【解答】解:将数据从小到大排列为:35,38,40,40,42,42,42,65,众数为42;中位数为=41.故选:B.【点评】本题考查了众数及中位数的知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就可能会出错.6.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:解3x﹣2<1,得x<1;解x+1≥0,得x≥﹣1;不等式组的解集是﹣1≤x<1,故选:D.【点评】在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.【分析】利用三角形中位线定理求出AD,再在Rt△AOD中,解直角三角形求出OD即可解决问题.【解答】解:∵四边形ABCD是菱形,∠ADC=60°,∴AC⊥BD,OA=OC,OB=OD,∠ADO=∠CDO=30°,∵AE=EB,BO=OD,∴AD=2OE=6,在Rt△AOD中,∵AD=6,∠AOD=90°,∠ADO=30°,∴OD=AD•cos30°=3,∴BD=2OD=6,故选:A.【点评】本题考查菱形的性质,三角形的中位线定理,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.【分析】利用树状图法列举出所有可能,进而求出概率.【解答】解:画树状图如下:由树状图可知,共有12种等可能结果,其中标号数字和大于6的结果数为3,所以标号数字和大于6的概率为=,故选:C.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.9.【分析】设BG=x,依据∠BFG=∠CEF=∠ODE=30°,可得BF=2x,CF=12﹣2x,CE=2CF=24﹣4x,OE=12﹣CE=4x﹣12,OD=2OE=8x﹣24,再根据当G与D重合时,OD+BG=OB列方程,即可得到x的值,进而得出点D的坐标.【解答】解:如图,设BG=x,∵△OBC是等边三角形,∴∠BOC=∠B=∠C=60°,∵DE⊥OC于点E,EF⊥BC于点F,FG⊥OB,∴∠BFG=∠CEF=∠ODE=30°,∴BF=2x,∴CF=12﹣2x,∴CE=2CF=24﹣4x,∴OE=12﹣CE=4x﹣12,∴OD=2OE=8x﹣24,当G与D重合时,OD+BG=OB,∴8x﹣24+x=12,解得x=4,∴OD=8x﹣24=32﹣24=8,∴OE=4,DE=4,∴D(4,4).故选:C.【点评】本题考查了等边三角形的性质,含30°角的直角三角形的性质,熟练掌握等边三角形的性质是解题的关键.10.【分析】本题根据图2判断△EFG的面积y最小时和最大时分别对应的x值,从而确定AB,EG 的长度,求出等边三角形EFG的最小面积.【解答】由图2可知,x=2时△EFG的面积y最大,此时E与B重合,所以AB=2∴等边三角形ABC的高为∴等边三角形ABC的面积为由图2可知,x=1时△EFG的面积y最小此时AE=AG=CG=CF=BG=BE显然△EGF是等边三角形且边长为1所以△EGF的面积为故选:A.【点评】本题是运动型综合题,考查了动点问题的函数图象等边三角形等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.二.填空题(共5小题,满分15分,每小题3分)11.【分析】本题涉及三次根式化简、零指数幂2个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(﹣π)0﹣=1+3=4.故答案为:4.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握三次根式、零指数幂等考点的运算.12.【分析】连接CE,DF,根据圆周角定理得到∠E=∠D,∠C=∠F,根据相似三角形的性质得到CM•DM=EM•MF=12,根据垂径定理即可得到结论.【解答】解:连接CE,DF,∵∠E=∠D,∠C=∠F,∴△CEM∽△DFM,∴=,∴CM•DM=EM•MF=12,∵直径EF⊥CD,∴CM=DM,∴CM==2,∴CD=2CM=4,故答案为:4.【点评】本题考查了相似三角形的判定和性质,垂径定理,圆周角定理,正确的作出辅助线构造相似三角形是解题的关键.13.【分析】当a=0时,两直线y=﹣2x和y=1只有一个交点,则当a≠0时,先联立抛物线与直线的解析式得出关于x的方程,再由直线y=﹣2x和抛物线有两个不同交点可知△>0,求出a 的取值范围.【解答】解:当a=0时,两直线y=﹣2x和y=1只有一个交点,当a≠0时,,由题意得,方程ax2+1=﹣2x有两个不同的实数根,∴△=4﹣4a>0,解得:a<1.故答案为:a<1.【点评】主要考查的是函数图象的交点问题,两函数有两个不同的交点,则△>0.14.【分析】作CK⊥BD于K.根据S阴=S△ABC+S扇形ACE﹣S△BCD﹣S△EDC计算即可.【解答】解:作CK⊥BD于K.∵AB=AC=3,∴∠B=∠ACB=75°,∴∠BAC=180°﹣75°﹣75°=30°,在Rt△ACK中,CK=AC=1,AK=,∴BK=2﹣,∵CB=CD,CK⊥BD,∴BD=2BK=4﹣2,∠B=∠CDB=75°,∴ACE=∠BCD=30°,∴S阴=S△ABC+S扇形ACE﹣S△BCD﹣S△EDC=﹣•(4﹣2)•1=﹣2+,故答案为﹣2+.【点评】本题考查旋转变换,扇形的面积,等腰三角形的性质,解直角三角形等知识,解题的关键是学会用分割法求阴影部分面积.15.【分析】由折叠的性质可得∠ADC=∠ADE=90°,DE=CD=CE,可得DE=4,BD=6,根据勾股定理可求AB2﹣AC2的值.【解答】解:∵将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处,∴∠ADC=∠ADE=90°,DE=CD=CE,∵BC=10,BE=2∴CE=8,∴CD=DE=4,BD=6,在Rt△ABD中,AB2=AD2+BD2,在Rt△ACD中,AC2=AD2+CD2,∴AB2﹣AC2=BD2﹣CD2=20,故答案为:20【点评】本题考查了翻折变换,勾股定理,熟练运用折叠的性质是本题的关键.三.解答题(共8小题,满分75分)16.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x的值代入计算即可求出值.【解答】解:(x﹣2﹣)÷=÷=•=x+4,当x=2﹣4时,原式=2﹣4+4=2.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.【分析】(1)用C品牌的数量除以所占的百分比,计算机求出鸡蛋的总量,再用A品牌的百分比乘以360°计算即可求出圆心角的度数;(2)求出B品牌鸡蛋的数量,然后条形补全统计图即可;(3)用B品牌所占的百分比乘以1500,计算即可得解.【解答】解:(1)共销售绿色鸡蛋:1200÷50%=2400个,A品牌所占的圆心角:×360°=60°;故答案为:2400,60;(2)B品牌鸡蛋的数量为:2400﹣400﹣1200=800个,补全统计图如图;(3)分店销售的B种品牌的绿色鸡蛋为:×1500=500个.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.【分析】(1)如图1,连AE,由等腰三角形的性质可知E为PB中点,则OE是△PAB的中位线,OE∥PA,可证得∠DOE=∠EOB,则∠EDO=∠EBO可证;(2)如图2,由条件知OA=4,当OA边上的高最大时,△AOD的面积最大,可知点D是的中点时满足题意,此时最大面积为8;(3)如图3,当DE=4时,四边形ODEB是菱形.只要证明△ODE是等边三角形即可解决问题.【解答】证明:(1)如图1,连AE,∵AB为⊙O的直径,∴∠AEB=90°,∵PA=AB,∴E为PB的中点,∵AO=OB,∴OE∥PA,∴∠ADO=∠DOE,∠A=∠EOB∵OD=OA,∴∠A=∠ADO,∴∠EOB=∠DOE,∵OD=OE=OB,∴∠EDO=∠EBO;(2)①∵AB=8,∴OA=4,当OA边上的高最大时,△AOD的面积最大(如图2),此时点D是的中点,∴OD⊥AB,∴;②如图3,当DE=4时,四边形OBED为菱形,理由如下:∵OD=DE=OE=4,∴△ODE是等边三角形,∴∠EDO=60°,由(1)知∠EBO=∠EDO=60°,∴OB=BE=OE,∴四边形OBED为菱形,故答案为:8;4.【点评】本题考查了圆周角定理、等腰三角形的性质、中位线定理、菱形的判定等知识,解题的关键是找准动点D在圆上的位置,灵活运用所学知识解决问题,19.【分析】由题意易得:∠A=30°,∠DBC=60°,DC⊥AC,即可证得△ABD是等腰三角形,然后利用三角函数,求得答案.【解答】解:根据题意得:∠A=30°,∠DBC=60°,DC⊥AC,∴∠ADB=∠DBC﹣∠A=30°,∴∠ADB=∠A=30°,∴BD=AB=60m,∴CD=BD•sin60°=60×=30(m)【点评】此题考查了解直角三角形的应用﹣仰角俯角问题.注意证得△ABD是等腰三角形,利用特殊角的三角函数值求解是关键.20.【分析】(1)将点A坐标代入y=mx﹣4(m≠0),求出m,得出直线AB的解析式,进而求出点C坐标,再代入反比例函数解析式中,求出k,即可得出结论;(2)先求出点B坐标,设出点P,Q坐标,分两种情况,利用平行四边形的对角线互相平分建立方程组求解即可得出结论.【解答】解:(1)∵点A是一次函数y=mx﹣4的图象上,∴﹣4m﹣4=0,∴m=﹣1,∴一次函数的解析式为y=﹣x﹣4,∵点C(﹣5,n)是直线y=﹣x﹣4上,∴n=﹣(﹣5)﹣4=1,∴C(﹣5,1),∵点C(﹣5,1)是反比例函数y=(k≠0)的图象上,∴k=﹣5×1=﹣5,∴反比例函数的解析式为y=﹣;(2)由(1)知,C(﹣5,1),直线AB的解析式为y=﹣x﹣4,∴B(0,﹣4),设点Q(q,0),P(p,﹣),∵以B,C,P,Q为顶点的四边形是平行四边形,且P,Q两点在直线AB的同侧,∴①当BP与CQ是对角线时,∴BP与CQ互相平分,∴,∴,∴P(﹣1,5),Q(4,0)②当BQ与CP是对角线时,∴BQ与CP互相平分,∴,∴,∴P(﹣1,5),Q(﹣4,0),此时,点C,Q,B,P在同一条线上,不符合题意,舍去,即以B,C,P,Q为顶点的四边形是平行四边形,点P(﹣1,5),点Q(4,0).【点评】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的性质,用方程组的思想解决问题是解本题的关键.21.【分析】(1)设购进A品牌文具袋的单价为x元,购进B品牌文具袋的单价为y元,列出方程组求解即可;(2)①把(1)得出的数据代入即可解答;②根据题意可以得到x的取值范围,然后根据一次函数的性质即可求得w的最大值和相应的进货方案.【解答】解:(1)设购进A品牌文具袋的单价为x元,购进B品牌文具袋的单价为y元,根据题意得,,解得,所以购进A品牌文具袋的单价为10元,购进B品牌文具袋的单价为15元;(2)①由题意可得,y=(12﹣10)x+(23﹣15)(100﹣x)=800﹣6x;②由题意可得,﹣6x+800≤40%[10x+15(100﹣x)],解得:x≥50,又由(1)得:w=﹣6x+800,k=﹣6<0,∴w随x的增大而减小,∴当x=50时,w达到最大值,即最大利润w=﹣50×6+800=500元,此时100﹣x=100﹣50=50个,答:购进A品牌文具袋50个,B品牌文具袋50个时所获利润最大,利润最大为500元.【点评】本题综合考察了一次函数的应用及一元一次不等式的相关知识,找出函数的等量关系及掌握解不等式得相关知识是解决本题的关键.22.【分析】(1)利用线段的垂直平分线的性质证明AB=AC,再利用等腰三角形的性质即可解决问题;(2)如图2中,连接EC.首先证明△EBC是等边三角形,推出∠BED=30°,再由∠BFC=∠FAB+∠FBA=2(∠BAE+∠ABE)=2∠BED=60°解决问题;(3)如图3中,连接EC,作EH⊥AB于H,EN⊥AC于N,EM⊥BA′于M.首先证明∠AFE=∠BFE =60°,在Rt△EFM中,∠FEM=90°﹣60°=30°,推出EF=2FM,设FM=m,则EF=2m,推出FG=EG﹣EF=6﹣2m,FN=EF=m,CF=2FG=12﹣4m,再证明Rt△EMB≌Rt△ENC(HL),推出BM=CN,由此构建方程即可解决问题;【解答】(1)证明:如图1中,∵BD=CD,AD⊥BC,∴AB=AC,∴∠BAD=∠CAD.(2)解:如图2中,连接EC.∵BD⊥BC,BD=CD,∴EB=EC,又∵EB=BC,∴BE=EC=BC,∴△BCE是等边三角形,∴∠BEC=60°,∴∠BED=30°,由翻折的性质可知:∠ABE=∠A′BE=∠ABF,∴∠ABF=2∠ABE,由(1)可知∠FAB=2∠BAE,∴∠BFC=∠FAB+∠FBA=2(∠BAE+∠ABE)=2∠BED=60°.(3)解:如图3中,连接EC,作EH⊥AB于H,EN⊥AC于N,EM⊥BA′于M.∵∠BAD=∠CAD,∠ABE=∠A′BE,∴EH=EN=EM,∴∠AFE=∠EFB,∵∠BFC=60°,∴∠AFE=∠BFE=60°,在Rt△EFM中,∵∠FEM=90°﹣60°=30°,∴EF=2FM,设FM=m,则EF=2m,∴FG=EG﹣EF=6﹣2m,易知:FN =EF =m ,CF =2FG =12﹣4m ,∵∠EMB =∠ENC =90°,EB =EC ,EM =EN ,∴Rt △EMB ≌Rt △ENC (HL ),∴BM =CN ,∴BF ﹣FM =CF +FN ,∴10﹣m =12﹣4m +m ,∴m =1,∴CF =12﹣4=8.【点评】本题属于几何变换综合题,考查了等腰三角形的判定和性质,线段的垂直平分线的性质,全等三角形的判定和性质,勾股定理,角平分线的判定和性质,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.23.【分析】(1)将A 、B 、C 三点坐标表示为线段长,OA =m ,OB =2,OC =2m ,然后根据面积公式建立关于m 的方程,解方程即可;(2)过点D 作DF ∥OC ,可以通过平行构造八字型的相似关系,将DE 与OE 的比转换为DF 与OC 的比,OC 为定值,所以设点D 坐标,表示DF 线段长度,从而得到表示线段长度之比的二次函数关系式,转换成顶点式,则的最大值可求;(3)分析条件AM ∥PH 可知应有等角,所以从M 、Q 向x 轴作垂直,构造相似,利用直线解析式设M 、N 、Q 三点坐标,将直线与抛物线解析式联立,用韦达定理表示x 1+x 2,x 1x 2,根据相似关系建立参数方程,因式分解讨论取值.【解答】解:(1)y =x 2+(m ﹣2)x ﹣2m =(x +m )(x ﹣2)令y =0,则(x +m )(x ﹣2)=0,解得x 1=﹣m ,x 2=2∴A (﹣m ,0)、B (2,0)令x =0,则y =﹣2m∴C (0,﹣2m )∴AB =2+m ,OC =2m∵S △ABC =×(2+m )×2m =8,解得m 1=2,m 2=﹣4∵m >0∴m =2(2)如图1,过点D 作DF ∥y 轴交BC 于F由(1)可知:m =2∴抛物线的解析式为y=x2﹣4∴B(2,0)、C(0,﹣4)∴直线BC的解析式为y=2x﹣4设D(t,t2﹣4),则F(t,2t﹣4)∴DF=2t﹣4﹣(t2﹣4)=﹣t2+2t,OC=4∵DF∥y轴∴===当t=1时,∵,∴,此时D(1,﹣3).(3)设M(x1,kx1+b)、N(x2,kx2+b)联立,整理得x2+(m﹣2﹣k)x﹣2m﹣b=0∴x1+x2=2+k﹣m,x1x2=﹣2m﹣b设点Q的横坐标为n,则Q(n,kn+b)∵MA∥PH如图2,过点M作MK⊥x轴于K,过点Q作QL⊥x轴于L ∵△MKA∽△QLH∴=即,整理得kx1x2+b(x1+x2)+kmn+bm﹣bn=0∴k(﹣2m﹣b)+b(2+k﹣m)+kmn+bm﹣bn=0∴(km﹣b)(n﹣2)=0①当km﹣b=0,此时直线为y=k(x+m),过点A(﹣m,0),不符合题意②当n﹣2=0,此时n=2,Q点的横坐标为2.【点评】此题考查了因式分解,相似构造,一元二次方程根与系数之间的关系,二次函数的极值求法以及一次函数与二次函数的关系,前两问属于常规问题,难度不大,解法比较常见,第三问难度较大,条件中没有已知数值,需要学生设多个参数,用韦达定理和因式分解的方法来解决问题,难度较大.。