96高中数学高考总复习函数概念习题及详解96
- 格式:doc
- 大小:274.50 KB
- 文档页数:12
高中数学高考总复习函数概念习题(附参考答案)一、选择题1.(文)(2010·浙江文)已知函数f (x )=log 2(x +1),若f (a )=1,则a =( ) A .0 B .1 C .2D .3[答案] B[解析] 由题意知,f (a )=log 2(a +1)=1,∴a +1=2, ∴a =1.(理)(2010·广东六校)设函数f (x )=⎩⎪⎨⎪⎧2xx ∈(-∞,2]log 2x x ∈(2,+∞),则满足f (x )=4的x 的值是( )A .2B .16C .2或16D .-2或16[答案] C[解析] 当f (x )=2x 时.2x =4,解得x =2. 当f (x )=log 2x 时,log 2x =4,解得x =16. ∴x =2或16.故选C.2.(文)(2010·湖北文,3)已知函数f (x )=⎩⎪⎨⎪⎧log 3x x >02x x ≤0,则f (f (19))=( )A .4 B.14 C .-4D .-14[答案] B[解析] ∵f (19)=log 319=-2<0∴f (f (19))=f (-2)=2-2=14.(理)设函数f (x )=⎩⎪⎨⎪⎧21-x-1 (x <1)lg x (x ≥1),若f (x 0)>1,则x 0的取值范围是( )A .(-∞,0)∪(10,+∞)B .(-1,+∞)C .(-∞,-2)∪(-1,10)D .(0,10) [答案] A[解析] 由⎩⎪⎨⎪⎧ x 0<121-x 0-1>1或⎩⎪⎨⎪⎧x 0≥1lg x 0>1⇒x 0<0或x 0>10.3.(2010·天津模拟)若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为f (x )=x 2,值域为{1,4}的“同族函数”共有( )A .7个B .8个C .9个D .10个[答案] C[解析] 由x 2=1得x =±1,由x 2=4得x =±2,故函数的定义域可以是{1,2},{-1,2},{1,-2},{-1,-2},{1,2,-1},{1,2,-2},{1,-2,-1},{-1,2,-2}和{-1,-2,1,2},故选C.4.(2010·柳州、贵港、钦州模拟)设函数f (x )=1-2x1+x ,函数y =g (x )的图象与y =f (x )的图象关于直线y =x 对称,则g (1)等于( )A .-32B .-1C .-12D .0[答案] D[解析] 设g (1)=a ,由已知条件知,f (x )与g (x )互为反函数,∴f (a )=1,即1-2a1+a =1,∴a =0.5.(2010·广东六校)若函数y =f (x )的图象如图所示,则函数y =f (1-x )的图象大致为( )[答案] A[解析] 解法1:y =f (-x )的图象与y =f (x )的图象关于y 轴对称.将y =f (-x )的图象向右平移一个单位得y =f (1-x )的图象,故选A.解法2:由f (0)=0知,y =f (1-x )的图象应过(1,0)点,排除B 、C ;由x =1不在y =f (x )的定义域内知,y =f (1-x )的定义域应不包括x =0,排除D ,故选A.6.(文)(2010·广东四校)已知两个函数f (x )和g (x )的定义域和值域都是集合{1,2,3},其定义如下表,填写下列g (f (x ))的表格,其三个数依次为( )A.3,1,2 C .1,2,3D .3,2,1[答案] D[解析] 由表格可知,f (1)=2,f (2)=3,f (3)=1,g (1)=1,g (2)=3,g (3)=2, ∴g (f (1))=g (2)=3,g (f (2))=g (3)=2,g (f (3))=g (1)=1, ∴三个数依次为3,2,1,故选D.(理)(2010·山东肥城联考)已知两个函数f (x )和g (x )的定义域和值域都是集合{1,2,3},其定义如下表:则方程g [f (x )]=x 的解集为( ) A .{1} B .{2} C .{3}D .∅[答案] C[解析] g [f (1)]=g (2)=2,g [f (2)]=g (3)=1; g [f (3)]=g (1)=3,故选C.7.若函数f (x )=log a (x +1) (a >0且a ≠1)的定义域和值域都是[0,1],则a 等于( ) A.13B. 2C.22D .2[答案] D[解析] ∵0≤x ≤1,∴1≤x +1≤2,又∵0≤log a (x +1)≤1,故a >1,且log a 2=1,∴a =2.8.(文)(2010·天津文)设函数g (x )=x 2-2(x ∈R),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x )g (x )-x ,x ≥g (x ),则f (x )的值域是( )A.⎣⎡⎦⎤-94,0∪(1,+∞) B .[0,+∞)C.⎣⎡⎭⎫-94,+∞D.⎣⎡⎦⎤-94,0∪(2,+∞) [答案] D[解析] 由题意可知f (x )=⎩⎪⎨⎪⎧x 2+x +2 x <-1或x >2x 2-x -2 -1≤x ≤21°当x <-1或x >2时,f (x )=x 2+x +2=⎝⎛⎭⎫x +122+74 由函数的图可得f (x )∈(2,+∞).2°当-1≤x ≤2时,f (x )=x 2-x -2=⎝⎛⎭⎫x -122-94, 故当x =12时,f (x )min =f ⎝⎛⎭⎫12=-94, 当x =-1时,f (x )max =f (-1)=0, ∴f (x )∈⎣⎡⎦⎤-94,0. 综上所述,该分段函数的值域为⎣⎡⎦⎤-94,0∪(2,+∞). (理)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2(1-x ) (x ≤0)f (x -1)-f (x -2) (x >0),则f (2010)的值为( ) A .-1 B .0 C .1D .2[答案] B[解析] f (2010)=f (2009)-f (2008)=(f (2008)-f (2007))-f (2008)=-f (2007),同理f (2007)=-f (2004),∴f (2010)=f (2004),∴当x >0时,f (x )以6为周期进行循环, ∴f (2010)=f (0)=log 21=0.9.(文)对任意两实数a 、b ,定义运算“*”如下:a *b =⎩⎪⎨⎪⎧a ,若a ≤b ;b ,若a >b函数f (x )=log 12(3x-2)*log 2x 的值域为( )A .(-∞,0)B .(0,+∞)C .(-∞,0]D .[0,+∞)[答案] C[解析] ∵a *b =⎩⎪⎨⎪⎧a ,若a ≤b ,b ,若a >b .而函数f (x )=log 12(3x -2)与log 2x 的大致图象如右图所示,∴f (x )的值域为(-∞,0].(理)定义max{a 、b 、c }表示a 、b 、c 三个数中的最大值,f (x )=max{⎝⎛⎭⎫12x,x -2,log 2x (x >0)},则f (x )的最小值所在范围是( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,3)[答案] C[解析] 在同一坐标系中画出函数y =⎝⎛⎭⎫12x,y =x -2与y =log 2x 的图象,y =⎝⎛⎭⎫12x 与y =log 2x 图象的交点为A (x 1,y 1),y =x -2与y =log 2x 图象的交点为B (x 2,y 2),则由f (x )的定义知,当x ≤x 1时,f (x )=⎝⎛⎭⎫12x,当x 1<x <x 2时,f (x )=log 2x ,当x ≥x 2时,f (x )=x -2,∴f (x )的最小值在A 点取得,∵0<y 1<1,故选C.10.(文)(2010·江西吉安一中)如图,已知四边形ABCD 在映射f :(x ,y )→(x +1,2y )作用下的象集为四边形A 1B 1C 1D 1,若四边形A 1B 1C 1D 1的面积是12,则四边形ABCD 的面积是( )A .9B .6C .6 3D .12[答案] B[解析] 本题考察阅读理解能力,由映射f 的定义知,在f 作用下点(x ,y )变为(x +1,2y ),∴在f 作用下|A 1C 1|=|AC |,|B 1D 1|=2|BD |,且A 1、C 1仍在x 轴上,B 1、D 1仍在y 轴上,故S ABCD =12|AC |·|BD |=12|A 1C 1|·12|B 1D 1|=12SA 1B 1C 1D 1=6,故选B.(理)设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c x ≤02 x >0,若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( )A .1B .2C .3D .4[答案] C[解析] 解法1:当x ≤0时,f (x )=x 2+bx +c . ∵f (-4)=f (0),f (-2)=-2,∴⎩⎪⎨⎪⎧ (-4)2+b ·(-4)+c =c (-2)2+b ·(-2)+c =-2,解得⎩⎪⎨⎪⎧b =4c =2, ∴f (x )=⎩⎪⎨⎪⎧x 2+4x +2 x ≤02 x >0,当x ≤0时,由f (x )=x 得,x 2+4x +2=x , 解得x =-2,或x =-1; 当x >0时,由f (x )=x 得,x =2, ∴方程f (x )=x 有3个解.解法2:由f (-4)=f (0)且f (-2)=-2可得,f (x )=x 2+bx +c 的对称轴是x =-2,且顶点为(-2,-2),于是可得到f (x )的简图如图所示.方程f (x )=x 的解的个数就是函数图象y =f (x )与y =x 的图象的交点的个数,所以有3个解.二、填空题11.(文)(2010·北京东城区)函数y =x +1+lg(2-x )的定义域是________. [答案] [-1,2)[解析] 由⎩⎪⎨⎪⎧x +1≥02-x >0得,-1≤x <2.(理)函数f (x )=x +4-x 的最大值与最小值的比值为________. [答案]2[解析] ∵⎩⎪⎨⎪⎧x ≥04-x ≥0,∴0≤x ≤4,f 2(x )=4+2x (4-x )≤4+[x +(4-x )]=8,且f2(x )≥4,∵f (x )≥0,∴2≤f (x )≤22,故所求比值为 2.[点评] (1)可用导数求解;(2)∵0≤x ≤4,∴0≤x 4≤1,故可令x 4=sin 2θ(0≤θ≤π2)转化为三角函数求解.12.函数y =cos x -1sin x -2 x ∈[0,π]的值域为________.[答案] ⎣⎡⎦⎤0,43 [解析] 函数表示点(sin α,cos α)与点(2,1)连线斜率.而点(sin α,cos α)α∈[0,π]表示单位圆右半部分,由几何意义,知y ∈[0,43].13.(2010·湖南湘潭市)在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,如果函数f (x )的图象恰好通过n (n ∈N *)个整点,则称函数f (x )为n 阶整点函数,有下列函数①f (x )=sin2x ②g (x )=x 3 ③h (x )=⎝⎛⎭⎫13x ④φ(x )=ln x .其中是一阶整点函数的是________.(写出所有正确结论的序号) [答案] ①④[解析] 其中①只过(0,0)点,④只过(1,0)点;②过(0,1),(1,1),(2,8)等,③过(0,1),(-1,3)等.14.(文)若f (a +b )=f (a )·f (b )且f (1)=1,则f (2)f (1)+f (3)f (2)+…+f (2012)f (2011)=________.[答案] 2011[解析] 令b =1,则f (a +1)f (a )=f (1)=1,∴f (2)f (1)+f (3)f (2)+…+f (2012)f (2011)=2011. (理)设函数f (x )=x |x |+bx +c ,给出下列命题: ①b =0,c >0时,方程f (x )=0只有一个实数根; ②c =0时,y =f (x )是奇函数; ③方程f (x )=0至多有两个实根.上述三个命题中所有的正确命题的序号为________. [答案] ①②[解析] ①f (x )=x |x |+c=⎩⎪⎨⎪⎧x 2+c ,x ≥0-x 2+c ,x <0, 如右图与x 轴只有一个交点.所以方程f (x )=0只有一个实数根正确. ②c =0时,f (x )=x |x |+bx 显然是奇函数.③当c =0,b <0时,f (x )=x |x |+bx =⎩⎪⎨⎪⎧x 2+bx ,x ≥0-x 2+bx ,x <0如右图方程f (x )=0可以有三个实数根. 综上所述,正确命题的序号为①②. 三、解答题15.(文)(2010·深圳九校)某自来水厂的蓄水池存有400吨水,水厂每小时可向蓄水池中注水60吨,同时蓄水池又向居民小区不间断供水,t 小时内供水总量为1206t 吨,(0≤t ≤24).(1)从供水开始到第几小时时,蓄水池中的存水量最少?最少水量是多少吨?(2)若蓄水池中水量少于80吨时,就会出现供水紧张现象,请问在一天的24小时内,有几小时出现供水紧张现象.[解析] (1)设t 小时后蓄水池中的水量为y 吨, 则y =400+60t -1206t (0≤t ≤24) 令6t =x ,则x 2=6t 且0≤x ≤12,∴y =400+10x 2-120x =10(x -6)2+40(0≤x ≤12); ∴当x =6,即t =6时,y min =40,即从供水开始到第6小时时,蓄水池水量最少,只有40吨. (2)依题意400+10x 2-120x <80, 得x 2-12x +32<0,解得4<x <8,即4<6t <8,∴83<t <323;∵323-83=8,∴每天约有8小时供水紧张.(理)某物流公司购买了一块长AM =30米,宽AN =20米的矩形地块AMPN ,规划建设占地如图中矩形ABCD 的仓库,其余地方为道路和停车场,要求顶点C 在地块对角线MN 上,B 、D 分别在边AM 、AN 上,假设AB 长度为x 米.(1)要使仓库占地ABCD 的面积不少于144平方米,AB 长度应在什么范围内? (2)若规划建设的仓库是高度与AB 长度相同的长方体形建筑,问AB 长度为多少时仓库的库容最大?(墙体及楼板所占空间忽略不计)[解析] (1)依题意得三角形NDC 与三角形NAM 相似,所以DC AM =ND NA ,即x 30=20-AD20,AD =20-23x ,矩形ABCD 的面积为S =20x -23x 2 (0<x <30),要使仓库占地ABCD 的面积不少于144平方米, 即20x -23x 2≥144,化简得x 2-30x +216≤0,解得12≤x ≤18. 所以AB 长度应在[12,18]内.(2)仓库体积为V =20x 2-23x 3(0<x <30),V ′=40x -2x 2=0得x =0或x =20, 当0<x <20时,V ′>0,当20<x <30时V ′<0, 所以x =20时,V 取最大值80003m 3,即AB 长度为20米时仓库的库容最大.16.(2010·皖南八校联考)对定义域分别是Df ,Dg 的函数y =f (x ),y =g (x ),规定: 函数h (x )=⎩⎪⎨⎪⎧f (x )g (x ),当x ∈Df 且x ∈Dg ,f (x ),当x ∈Df 且x ∉Dg ,g (x ),当x ∈Dg 且x ∉Df .(1)若函数f (x )=1x -1,g (x )=x 2,写出函数h (x )的解析式;(2)求问题(1)中函数h (x )的值域;(3)若g (x )=f (x +α),其中α是常数,且α∈[0,π],请设计一个定义域为R 的函数y =f (x ),及一个α的值,使得h (x )=cos4x ,并予以证明.[解析] (1)由定义知,h (x )=⎩⎪⎨⎪⎧x 2x -1,x ∈(-∞,1)∪(1,+∞),1,x =1.(2)由(1)知,当x ≠1时,h (x )=x -1+1x -1+2,则当x >1时,有h (x )≥4(当且仅当x =2时,取“=”); 当x <1时,有h (x )≤0(当且仅当x =0时,取“=”). 则函数h (x )的值域是(-∞,0]∪{1}∪[4,+∞).(3)可取f (x )=sin2x +cos2x ,α=π4,则g (x )=f (x +α)=cos2x -sin2x ,于是h (x )=f (x )f (x +α)=cos4x .(或取f (x )=1+2sin2x ,α=π2,则g (x )=f (x +α)=1-2sin2x .于是h (x )=f (x )f (x +α)=cos4x ).[点评] 本题中(1)、(2)问不难求解,关键是读懂h (x )的定义,第(3)问是一个开放性问题,乍一看可能觉得无从下手,但细加观察不难发现,cos4x =cos 22x -sin 22x =(cos2x +sin2x )(cos2x -sin2x )积式的一个因式取作f (x ),只要能够找到α,使f (x +α)等于另一个因式也就找到了f (x )和g (x ).17.(文)某种商品在30天内每件的销售价格P (元)与时间t (天)的函数关系如图所示:该商品在30天内日销售量Q (件)与时间t (天)之间的关系如表所示:(1)(2)在所给直角坐标系中,根据表中提供的数据描出实数对(t ,Q )的对应点,并确定日销售量Q 与时间t 的一个函数关系式;(3)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?(日销售金额=每件的销售价格×日销售量)[解析] (1)P =⎩⎪⎨⎪⎧t +20 (0<t <25,t ∈N *)-t +100 (25≤t ≤30,t ∈N *) (2)图略,Q =40-t (t ∈N *) (3)设日销售金额为y (元),则y =⎩⎪⎨⎪⎧-t 2+20t +800 (0<t <25,t ∈N *)t 2-140t +4000 (25≤t ≤30,t ∈N *)=⎩⎪⎨⎪⎧-(t -10)2+900 (0<t <25,t ∈N *)(t -70)2-900 (25≤t ≤30,t ∈N *) 若0<t <25(t ∈N *),则当t =10时,y max =900;若25≤t ≤30(t ∈N *),则当t =25时,y max =1125.由1125>900,知y max =1125,∴这种商品日销售金额的最大值为1125元,30天中的第25天的日销售金额最大. (理)(2010·广东六校)某西部山区的某种特产由于运输的原因,长期只能在当地销售,当地政府通过投资对该项特产的销售进行扶持,已知每投入x 万元,可获得纯利润P =-1160(x -40)2+100万元(已扣除投资,下同),当地政府拟在新的十年发展规划中加快发展此特产的销售,其规划方案为:在未来10年内对该项目每年都投入60万元的销售投资,其中在前5年中,每年都从60万元中拨出30万元用于修建一条公路,公路5年建成,通车前该特产只能在当地销售;公路通车后的5年中,该特产既在本地销售,也在外地销售,在外地销售的投资收益为:每投入x 万元,可获纯利润Q =-159160(60-x )2+1192·(60-x )万元,问仅从这10年的累积利润看,该规划方案是否可行?[解析] 在实施规划前,由题设P =-1160(x -40)2+100(万元),知每年只需投入40万,即可获得最大利润100万元,则10年的总利润为W 1=100×10=1000(万元)实施规划后的前5年中,由题设P =-1160(x -40)2+100知,每年投入30万元时,有最大利润P max =7958(万元) 前5年的利润和为7958×5=39758(万元) 设在公路通车的后5年中,每年用x 万元投资于本地的销售,而剩下的(60-x )万元用于外地区的销售投资,则其总利润为W 2=[-1160(x -40)2+100]×5+(-159160x 2+1192x )×5=-5(x -30)2+4950. 当x =30时,W 2=4950(万元)为最大值,从而10年的总利润为39758+4950(万元). ∵39758+4950>1000, ∴该规划方案有极大实施价值.。
1996年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题共65分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.一.选择题:本大题共15小题,第1—10题每小题4分,第11—15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知全集I N =,集合{}{}2,,4,A x x n n N B x x n n N ==∈==∈||,则 A .B A I = B .B A I = C .B A I = D .B A I = 【答案】C【解析】由于B A Þ,所以AB I =.2.当1a >时,在同一坐标系中,函数xy a -=与log a y x =的图像【答案】A【解析】当1a >时,函数xy a -=是减函数,且过点(0,1);而函数log a y x =为增函数,且过点(1,0).3.若22sin cos x x >,则x 的取值范围是 A .⎭⎬⎫⎩⎨⎧∈+<<-Z k k x k x ,412432ππππ B .⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,452412ππππ C .⎭⎬⎫⎩⎨⎧∈+<<-Z k k x k x ,4141ππππ D .⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,4341ππππ 【答案】D【解析】2221sin cos sin sin 22x x x x >⇒>⇒>或sin 2x <-,解得24k x ππ+< 32()4k k Z ππ<+∈或322()44k x k k Z ππππ-<<-∈,即(21)(21)4k x k πππ-+<<- 3()4k Z π+∈,所以x 的取值范围是⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,4341ππππ.4.复数54)31()22(i i -+等于A .i 31+B .i 31+-C .i 31-D .i 31--【答案】B44425(2)12()i ω===-+-.5.如果直线,l m 与平面,,αβγ满足:,//,l l m βγαα=⊂和m γ⊥,那么必有A .αγ⊥且l m ⊥B .αγ⊥且//m βC .//m β且l m ⊥D .//αβ且αγ⊥ 【答案】A 【解析】略. 6.当22x ππ-≤≤时,函数()sin f x x x =+的A .最大值是1,最小值是1-B .最大值是1,最小值是12-C .最大值是2,最小值是2-D .最大值是2,最小值是1- 【答案】D【解析】因为()sin 2sin()3f x x x x π==+,由已知5636x πππ-≤+≤.故当 32x ππ+=,即6x π=时,()f x 有最大值是2;当36x ππ+=-,即2x π=-时,()f x 有最小值是1-. 7.椭圆⎩⎨⎧+-=+=ϕϕsin 51,cos 33y x 的两个焦点坐标是A .(3,5),(3,3)---B .(3,3),(3,5)-C .(1,1),(7,1)-D .(7,1),(1,1)--- 【答案】B【解析】消去参数可得直角坐标方程22(1)(3)1259y x +-+=,故焦点坐标是(3,3),(3,5)-.8.若02πα<<,则arcsin[cos()]arccos[sin()]2παπα+++等于A .2πB .2π-C .22πα-D .22πα--【答案】A【解析】解法一:由于已知sin 0,cos()02παα>+<,原式arcsin(sin )arccos(sin )arccos(sin )αααπααπ=-+-=-+-=-+arccos[cos()]()222πππααπα--=-+--=.解法二:当1x ≤时arcsin arccos 2x x π+=,而1sin 0α-<-<,∴原式arcsin(sin )arccos(sin )2παα=-+-=.9.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD a =,则三棱锥D ABC -的体积为A .63aB .123a C .3123a D .3122a 【答案】D【解析】取AC 的中点O ,连接,BO DO ,如图所示.,ABC ADC ∆∆均为等腰直角三角形,22AC BO DO ===, ∴2BOD π∠=,则DO ⊥面ABC ,DO 就是三棱锥D ABC -的高,所以231132212D ABC V a -=⋅⋅=.10.等比数列{}n a 的首项11a =-,前n 项和为n S ,若3231510=S S 则n n S ∞→lim 等于 A .32 B .23- C .2 D .2- 【答案】B【解析】显然1q ≠,由3231510=S S 得10151(1)31(1)32a q a q -=-,则105323110q q --=,解得 5132q =-,得12q =-,所以12lim 13n n a S q →∞==--.11.椭圆的极坐标方程为θρcos 23-=,则它在短轴上的两个顶点的极坐标是A .(3,0),(1,)π B.3)22ππ C .5(2,),(2,)33ππD .(2arctg )22π- 【答案】C【解析】将极坐标方程为θρcos 23-=化为直角坐标方程22(1)143x y -+=,在短轴上的两个顶点的直角坐标是,所以极坐标是5(2,),(2,)33ππ.12.等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和为A .130B .170C .210D .260 【答案】C【解析】由已知得230,100m m S S ==,则232,,m m m m m S S S S S --成等差数列,所以323()210m m m S S S =-=.13.设双曲线)0(12222b a by a x <<=-的半焦距为c ,直线l 过(,0),(0,)a b 两点.已知原点到直线l 的距离为c 43,则双曲线的离心率为 A .2 B .3 C .2 D .332 【答案】A【解析】直线l 的方程为0bx ay ab +-=,原点到直线l 4c =,则22222316a b c a b =+,即22222()316a c a c c -=,解得2e =或e =0a b <<,所以e ==>,所以3e =不合题意.14.母线长为1的圆锥体积最大时,其侧面展开图圆心角ϕ等于 A .π322 B .π332 C .π2 D .π362 【答案】D15.设()f x 是(,)-∞+∞上的奇函数,(2)()f x f x +=-,当01x ≤≤时,()f x x =,则(7.5)f 等于A .0.5B .0.5-C .1.5D . 1.5- 【答案】B【解析】(7.5)(5.52)(5.5)[(3.5)](3.5)(1.5)[(0.5)]f f f f f f f =+=-=--==-=---(0.5)0.5f =-=-.第Ⅱ卷(非选择题共85分)二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.16.已知圆07622=--+x y x 与抛物线)0(22>=p px y 的准线相切,则p = . 【答案】2【解析】圆的标准方程为22(3)16x y -+=,圆心和半径分别为(3,0),4,所以4312p=-=,则2p =.17.正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有 个.(用数字作答) 【答案】32【解析】从7个点中取3个点有37C 种取法,3个点共线的有3种,三角形共有37332C -=个.18.tg20tg403tg20tg40++的值是 . 【答案】3【解析】∵tg20tg40tg(2040)31tg20tg40++==-,∴tg20tg403(1-tg20tg40)+=,tg20tg403tg20tg403++=.19.如图,正方形ABCD 所在平面与正方形ABEF 所在平面成60的二面角,则异面直线AD与BF 所成角的余弦值是 .【答案】42 【解析】由于//AD BC ,所以CBF ∠即为异面直线AD 与BF 所成角,设正方形边长为a ,在CBF ∆中,,,BF BC a FC =====,222cos 24BF BC FC CBF BF BC +-∠==⋅.三.解答题:本大题共6小题;共69分.解答应写出文字说明、证明过程或演算步骤. 20.(本小题满分11分)解不等式1)11(log >-xa .【解】本小题考查对数函数性质,对数不等式的解法,分类讨论的方法和运算能力.满分11分.(Ⅰ)当1>a 时,原不等式等价于不等式组:⎪⎪⎩⎪⎪⎨⎧>->-.11,011a xx——2分由此得xa 11>-. 因为10a -<,所以0x <,∴101x a<<-. ——5分 (Ⅱ)当01a <<时,原不等式等价于不等式组:110,11.xa x⎧->⎪⎪⎨⎪-<⎪⎩——7分由①得,1x >或0x <, 由②得,101x a <<-,∴ax -<<111. ——10分 综上,当1>a 时,不等式的解集为⎭⎬⎫⎩⎨⎧<<-011x a x;当10<<a 时,不等式的解集为⎭⎬⎫⎩⎨⎧-<<a x x 111. ——11分 21.(本小题满分12分)已知ABC ∆的三个内角,,A B C 满足:BC A B C A cos 2cos 1cos 1,2-=+=+,求 2cosCA -的值. 【解】本小题考查三角函数基础知识,利用三角公式进行恒等变形和运算的能力.满分12分.解法一:由题设条件知60,120B A C =+=. ——2分∵cos 60=-22cos 1cos 1-=+CA .将上式化为C A C A cos cos 22cos cos -=+. 利用和差化积及积化和差公式,上式可化为)]cos()[cos(22cos 2cos2C A C A CA C A -++-=-+. ——6分 将21)cos(,2160cos 2cos-=+==+C A C A 代入上式得cos)22A C A C -=-. 将1)2(cos 2)cos(2--=-CA C A 代入上式并整理得 023)2cos(2)2(cos 242=--+-CA C A ——9分(2cos3)022A C A C ---+=,∵302A C -+≠,∴2cos 02A C-=.从而得cos2A C -=. ——12分 解法二:由题设条件知60,120B A C =+=.设2A Cα-=,则2A C α-=,可得60,60A C αα=+=-, ——3分 所以)60cos(1)60cos(1cos 1cos 1αα-++=+ C A ααααsin 23cos 211sin 23cos 211++-=ααα22sin 43cos 41cos -=43cos cos 2-=αα. ——7分 依题设条件有Bcos 243cos cos 2-=-αα, ∵21cos =B ,∴2243cos cos 2-=-αα.整理得22cos 0,αα+-= ——9分(2cos 3)0αα-+=,∵03cos 22≠+α,∴02cos 2=-α.从而得222cos=-C A . ——12分22.(本小题满分12分)如图1,在正三棱柱111ABC A B C -中,1E BB ∈,截面1A EC ⊥侧面1AC . (Ⅰ)求证:1BE EB =;(Ⅱ)若111AA A B =;求平面1A EC 与平面111A B C 所成二面角(锐角)的度数. 注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ). (Ⅰ)证明:(如图2)在截面1A EC 内,过E 作1EG AC ⊥,G 是垂足.① ∵ ,∴EG ⊥侧面1AC ;取AC 的中点F ,连结,BF FG ,由AB BC = 得BF AC ⊥.② ∵ ,∴BF ⊥侧面1AC ;得//,,BF EG BF EG 确定一个平面,交侧面1AC 于FG .③ ∵ ,∴//BE FG ,四边形BEGF 是平行四边形,BE FG =. ④ ∵ ,∴11//,FG AA AAC FGC ∆∆,⑤ ∵ ,∴112121BB AA FG ==,即112BE BB =,故1BE EB =. (Ⅱ)解:【解】本小题考查空间线面关系,正三棱柱的性质,逻辑思维能力,空间想象能力及运算能力.满分12分.(Ⅰ)①面1A EC ⊥侧面1AC , ——2分②面ABC ⊥侧面1AC , ——3分 ③//BE 侧面1AC , ——4分 ④1//BE AA , ——5分 ⑤//AF FC , ——6分 (Ⅱ)分别延长11,CE C B 交于点D ,连结1A D .∵1111111//,22EB CC EB BB CC ==,∴,21111111B A C B DC DB ===∵11111160B AC C B A ∠=∠=︒,1111111(180)302DA B A DB DB A ∠=∠=︒-∠=︒,∴111111190DAC DA B B AC ∠=∠+∠=︒, 即111DA AC ⊥. ——9分∵1CC ⊥面111AC B ,即11A C 是1A C 在平面11AC D 上的射影, 根据三垂线定理得11DA A C ⊥,所以11CAC ∠是所求二面角的平面角. ——11分 ∵11111111,90CC AA A B AC AC C ===∠=︒,∴1145CA C ∠=,即所求二面角为45. ——12分 23.(本小题满分10分)某地现有耕地10000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%.如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷(精确到1公顷)?(粮食单产=耕地面积总产量,人均粮食占有量=总人口数总产量)【解】本小题主要考查运用数学知识和方法解决实际问题的能力,指数函数和二项式定理的应用,近似计算的方法和能力.满分10分.设耕地平均每年至多只能减少x 公顷,又设该地区现有人口为P 人,粮食单产为M 吨/公顷.依题意得不等式%)101(10%)11()1010(%)221(4104+⨯⨯≥+⨯-⨯+⨯P M P x M .——5分 化简得]22.1)01.01(1.11[10103+⨯-⨯≤x . ——7分 ∵103312210101.1(10.01) 1.110[1]10[1(10.010.01)]1.22 1.22C C ⨯+⨯-=⨯-⨯+⨯+⨯+3 1.110[1 1.1045] 4.11.22≈⨯-⨯≈. —— 9分 ∴4x ≤(公顷).答:按规划该地区耕地平均每年至多只能减少4公顷. ——10分 24.(本小题满分12分)已知12,l l 是过点)0,2(-P 的两条互相垂直的直线,且12,l l 与双曲线122=-x y 各有两个交点,分别为11,A B 和22,A B .(Ⅰ)求1l 的斜率1k 的取值范围;(Ⅱ)若1122A B B =,求12,l l 的方程.【解】本小题主要考查直线与双曲线的性质,解析几何的基本思想,以及综合运用知识的能力.满分12分.(I )依题设,12,l l 的斜率都存在,因为1l 过点)0,2(-P 且与双曲线有两个交点,故方程组⎪⎩⎪⎨⎧=-≠+=1)0)(2(2211x y k x k y ① ——1分 有两个不同的解.在方程组①中消去y ,整理得01222)1(2121221=-++-k x k x k . ②若0121=-k ,则方程组①只有一个解,即1l 与双曲线只有一个交点,与题设矛盾,故0121≠-k ,即11≠k ,方程②的判别式为2222211111)4(1)(21)4(31)k k k ∆=---=-.设2l 的斜率为2k ,因为2l 过点)0,2(-P 且与双曲线有两个交点,故方程组⎪⎩⎪⎨⎧=-≠+=.1),0)(2(2222x y k x k y ③ 有两个不同的解.在方程组③中消去y ,整理得01222)1(2222222=-++-k x k x k . ④同理有)13(4,0122222-=∆≠-k k .又因为12l l ⊥,所以有121l l ⋅=-. ——4分于是,12,l l 与双曲线各有两个交点,等价于⎪⎪⎩⎪⎪⎨⎧≠-=⋅>->-.1,1,013,0131212221k k k k k解得⎪⎩⎪⎨⎧≠<<.1,33311k k——6分∴)3,1()1,33()33,1()1,3(1 ----∈k . ——7分 (Ⅱ)设),(),,(221111y x B y x A .由方程②知112,122212121212121--=⋅--=+k k x x k k x x . ∴22222111212112()()(1)()A B x x y y k x x =-+-=+-22112214(1)(31)(1)k k k +-=-. ⑤ ——9分 同理,由方程④可求得222B A ,整理得2212121222)1()3)(1(4k k k B A --+= ⑥ 由22115B A B A =,得2211225A B A B =将⑤、⑥代入上式得22121212212121)1()3)(1(45)1()13)(1(4k k k k k k --+⨯=--+,解得21±=k 取21=k 时,)2(22:),2(2:21+-=+=x y l x y l ; 取21-=k 时,)2(22:),2(2:21+=+-=x y l x y l . ——12分25.(本小题满分12分)已知,,a b c 是实数,函数2(),()f x ax bx c g x ax b =++=+,当11x -≤≤时,()1f x ≤. (Ⅰ)证明:1c ≤;(Ⅱ)证明:当11x -≤≤时,()2g x ≤;(Ⅲ)设0a >,当11x -≤≤时,()g x 的最大值为2,求()f x .【解】本小题主要考查函数的性质、含有绝对值的不等式的性质,以及综合运用数学知识分析问题与解决问题的能力.满分12分.(Ⅰ)证明:由条件当11x -≤≤时,()1f x ≤,取0x =得(0)1c f =≤,即1c ≤.——2分(Ⅱ)证法一:当0a >时,()g x ax b =+在[1,1]-上是增函数,∴(1)(0)(1)g g g -≤≤,∵()1(11),1f x x c ≤-≤≤≤,∴(1)(1)(1)2g a b f c f c =+=-≤+≤,(1)(1)((1))2g a b f c f c -=-+=--+≥--+≥-,由此得()2g x ≤. ——5分 当0a <时,()g x ax b =+在[1,1]-上是减函数,∴(1)(0)(1)g g g -≥≥, ∵()1(11),1f x x c ≤-≤≤≤,∴(1)(1)(1)2g a b f c f c -=-+=--+≤-+≤,(1)(1)((1))2g a b f c f c =+=-≥-+≥-,由此得()2g x ≤; ——7分当0a =时,(),()g x b f x bx c ==+.∵11x -≤≤,∴()(1)(1)2g x f c f c =-≤+≤.综上得()2g x ≤. ——8分证法二:由4)1()1(22--+=x x x ,可得221111()[()()]()2222x x x x g x ax b a b +-+-=+=-+- ])21()21([])21()21([22c x b x a c x b x a +-+--++++= 11()()22x x f f +-=-, ——6分当11x -≤≤时,有,0211,1210≤-≤-≤+≤x x 根据含绝对值的不等式的性质,得2)21()21()21()21(≤-++≤--+x f x f x f x f ,即()2g x ≤. ——8分 (Ⅲ)因为0a >,()g x 在[1,1]-上是增函数,当1x =时取得最大值2,即(1)(1)(0)2g a b f f =+=-=. ①∵1(0)(1)2121f f -≤=-≤-=-,∴(0)1c f ==-. ——10分 因为当11x -≤≤时,()1f x ≥-,即()(0)f x f ≥,根据二次函数的性质,直线0x =为()f x 的图像的对称轴,由此得02ba-=,即0b =.由①得2a =.所以 2()21f x x =-. ——12分。
1996年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题共65分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.一.选择题:本大题共15小题,第1—10题每小题4分,第11—15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知全集I N =,集合{}{}2,,4,A x x n n N B x x n n N ==∈==∈||,则 A .B A I = B .B A I = C .B A I = D .B A I = 【答案】C 【解析】由于B A ,所以A B I =.2.当1a >时,在同一坐标系中,函数xy a -=与log a y x =的图像【答案】A【解析】当1a >时,函数xy a -=是减函数,且过点(0,1);而函数log a y x =为增函数,且过点(1,0).3.若22sin cos x x >,则x 的取值范围是 A .⎭⎬⎫⎩⎨⎧∈+<<-Z k k x k x ,412432ππππ B .⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,452412ππππ C .⎭⎬⎫⎩⎨⎧∈+<<-Z k k x k x ,4141ππππ D .⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,4341ππππ 【答案】D【解析】2221sin cos sin sin 22x x x x >⇒>⇒>或sin 2x <-,解得24k x ππ+< 32()4k k Z ππ<+∈或322()44k x k k Z ππππ-<<-∈,即(21)(21)4k x k πππ-+<<- 3()4k Z π+∈,所以x 的取值范围是⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,4341ππππ.4.复数54)31()22(i i -+等于A .i 31+B .i 31+-C .i 31-D .i 31--【答案】B44425(2)12()i ω===-+-.5.如果直线,l m 与平面,,αβγ满足:,//,l l m βγαα=⊂和m γ⊥,那么必有A .αγ⊥且l m ⊥B .αγ⊥且//m βC .//m β且l m ⊥D .//αβ且αγ⊥ 【答案】A 【解析】略.6.当22x ππ-≤≤时,函数()sin f x x x =+的A .最大值是1,最小值是1-B .最大值是1,最小值是12-C .最大值是2,最小值是2-D .最大值是2,最小值是1- 【答案】D【解析】因为()sin 2sin()3f x x x x π==+,由已知5636x πππ-≤+≤.故当 32x ππ+=,即6x π=时,()f x 有最大值是2;当36x ππ+=-,即2x π=-时,()f x 有最小值是1-.7.椭圆⎩⎨⎧+-=+=ϕϕsin 51,cos 33y x 的两个焦点坐标是A .(3,5),(3,3)---B .(3,3),(3,5)-C .(1,1),(7,1)-D .(7,1),(1,1)--- 【答案】B【解析】消去参数可得直角坐标方程22(1)(3)1259y x +-+=,故焦点坐标是(3,3),(3,5)-.8.若02πα<<,则arcsin[cos()]arccos[sin()]2παπα+++等于A .2πB .2π-C .22πα-D .22πα--【答案】A【解析】解法一:由于已知sin 0,cos()02παα>+<,原式arcsin(sin )arccos(sin )arccos(sin )αααπααπ=-+-=-+-=-+arccos[cos()]()222πππααπα--=-+--=.解法二:当1x ≤时arcsin arccos 2x x π+=,而1sin 0α-<-<,∴原式arcsin(sin )arccos(sin )2παα=-+-=.9.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD a =,则三棱锥D ABC -的体积为A .63aB .123a C .3123a D .3122a 【答案】D【解析】取AC 的中点O ,连接,BO DO ,如图所示.,ABC ADC ∆∆均为等腰直角三角形,222AC aBO DO ===, ∴2BOD π∠=,则DO ⊥面ABC ,DO 就是三棱锥D ABC -的高,所以23112232212D ABC a V a a -=⋅⋅=.10.等比数列{}n a 的首项11a =-,前n 项和为n S ,若3231510=S S 则n n S ∞→lim 等于 A .32 B .23- C .2 D .2- 【答案】B【解析】显然1q ≠,由3231510=S S 得10151(1)31(1)32a q a q -=-,则105323110q q --=,解得 5132q =-,得12q =-,所以12lim 13n n a S q →∞==--.11.椭圆的极坐标方程为θρcos 23-=,则它在短轴上的两个顶点的极坐标是A .(3,0),(1,)πB .3(3,),(3,)22ππC .5(2,),(2,)33ππD .(2arctg π- 【答案】C【解析】将极坐标方程为θρcos 23-=化为直角坐标方程22(1)143x y -+=,在短轴上的两个顶点的直角坐标是,所以极坐标是5(2,),(2,)33ππ.12.等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和为 A .130 B .170 C .210 D .260 【答案】C【解析】由已知得230,100m m S S ==,则232,,m m m m m S S S S S --成等差数列,所以323()210m m m S S S =-=.13.设双曲线)0(12222b a by a x <<=-的半焦距为c ,直线l 过(,0),(0,)a b 两点.已知原点到直线l 的距离为c 43,则双曲线的离心率为 A .2 B .3 C .2 D .332 【答案】A【解析】直线l 的方程为0bx ay ab +-=,原点到直线l 4c =,则22222316a b c a b =+,即22222()316a c a c c -=,解得2e =或3e =0a b <<,所以e ==>e =14.母线长为1的圆锥体积最大时,其侧面展开图圆心角ϕ等于A .π322 B .π332 C .π2 D .π362 【答案】Dα=而(0,)2πα∈,∴tan α=,而它是唯一的极值点.∴ 当tan α=时,V 取得最大值,此时cos α=22cos 3r l ππα==⋅=,应选D . 【点评】上述几个选择题是当年高考中难度最大,得分率最低的选择题,但用导数求解,可以大大降低试题的难度.15.设()f x 是(,)-∞+∞上的奇函数,(2)()f x f x +=-,当01x ≤≤时,()f x x =,则(7.5)f 等于 A .0.5 B .0.5- C .1.5 D . 1.5- 【答案】B【解析】(7.5)(5.52)(5.5)[(3.5)](3.5)(1.5)[(0.5)]f f f f f f f =+=-=--==-=---(0.5)0.5f =-=-.第Ⅱ卷(非选择题共85分)二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.16.已知圆07622=--+x y x 与抛物线)0(22>=p px y 的准线相切,则p = . 【答案】2【解析】圆的标准方程为22(3)16x y -+=,圆心和半径分别为(3,0),4,所以4312p=-=,则2p =.17.正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有 个.(用数字作答) 【答案】32【解析】从7个点中取3个点有37C 种取法,3个点共线的有3种,三角形共有37332C -=个.18.tg20tg403tg20tg40++的值是 . 【答案】3【解析】∵tg20tg40tg(2040)31tg20tg40++==-,∴tg20tg403(1-tg20tg40)+=,tg20tg403tg20tg403++=.60的二面19.如图,正方形ABCD 所在平面与正方形ABEF 所在平面成角,则异面直线AD 与BF 所成角的余弦值是 . 【答案】42 【解析】由于//AD BC ,所以CBF ∠即为异面直线AD 与BF 所成角,设正方形边长为a ,在CBF ∆中,222,,BF a BC a FC FD CD ===+=2222cos602AD FA AD FA CD a +-⋅︒+=,2222cos 24BF BC FC CBF BF BC +-∠==⋅.三.解答题:本大题共6小题;共69分.解答应写出文字说明、证明过程或演算步骤.20.(本小题满分11分)解不等式1)11(log >-xa . 【解】本小题考查对数函数性质,对数不等式的解法,分类讨论的方法和运算能力.满分11分.(Ⅰ)当1>a 时,原不等式等价于不等式组:⎪⎪⎩⎪⎪⎨⎧>->-.11,011a xx——2分由此得xa 11>-. 因为10a -<,所以0x <,∴101x a<<-. ——5分 (Ⅱ)当01a <<时,原不等式等价于不等式组:110,11.xa x⎧->⎪⎪⎨⎪-<⎪⎩——7分由①得,1x >或0x <, 由②得,101x a <<-,∴ax -<<111. ——10分 综上,当1>a 时,不等式的解集为⎭⎬⎫⎩⎨⎧<<-011x a x;当10<<a 时,不等式的解集为⎭⎬⎫⎩⎨⎧-<<a x x 111. ——11分21.(本小题满分12分)已知ABC ∆的三个内角,,A B C 满足:BC A B C A cos 2cos 1cos 1,2-=+=+,求 2cosCA -的值. 【解】本小题考查三角函数基础知识,利用三角公式进行恒等变形和运算的能力.满分12分. 解法一:由题设条件知60,120B AC =+=. ——2分∵2cos 60=-22cos 1cos 1-=+CA .将上式化为C A C A cos cos 22cos cos -=+. 利用和差化积及积化和差公式,上式可化为)]cos()[cos(22cos 2cos 2C A C A CA C A -++-=-+. ——6分 将21)cos(,2160cos 2cos -=+==+C A C A代入上式得cos)22A C A C -=--.将1)2(cos 2)cos(2--=-CA C A 代入上式并整理得 023)2cos(2)2(cos 242=--+-CA C A ——9分(2cos 3)022A C A C --+=,∵302A C -+≠,∴2cos 02A C-=.从而得cos22A C -=. ——12分 解法二:由题设条件知60,120B AC =+=.设2A Cα-=,则2A C α-=,可得60,60A C αα=+=-, ——3分 所以)60cos(1)60cos(1cos 1cos 1αα-++=+ C A ααααsin 23cos 211sin 23cos 211++-=ααα22sin 43cos 41cos -=43cos cos 2-=αα. ——7分 依题设条件有Bcos 243cos cos 2-=-αα, ∵21cos =B ,∴2243cos cos 2-=-αα.整理得22cos 0,αα+-= ——9分(2cos 3)0αα+=,∵03cos 22≠+α,∴02cos 2=-α.从而得222cos =-C A . ——12分22.(本小题满分12分)如图1,在正三棱柱111ABC A B C -中,1E BB ∈,截面1A EC ⊥侧面1AC . (Ⅰ)求证:1BE EB =;(Ⅱ)若111AA A B =;求平面1A EC 与平面111A B C 所成二面角(锐角)的度数. 注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ). (Ⅰ)证明:(如图2)在截面1A EC 内,过E 作1EG AC ⊥,G 是垂足.① ∵ ,∴EG ⊥侧面1AC ;取AC 的中点F ,连结,BF FG ,由AB BC = 得BF AC ⊥.② ∵ ,∴BF ⊥侧面1AC ;得//,,BF EG BF EG 确定一个平面,交侧面1AC 于FG . ③ ∵ ,∴//BE FG ,四边形BEGF 是平行四边形,BE FG =. ④ ∵ ,∴11//,FG AA AAC FGC ∆∆,⑤ ∵ ,∴112121BB AA FG ==,即112BE BB =,故1BE EB =. (Ⅱ)解:【解】本小题考查空间线面关系,正三棱柱的性质,逻辑思维能力,空间想象能力及运算能力.满分12分.(Ⅰ)①面1A EC ⊥侧面1AC , ——2分②面ABC ⊥侧面1AC , ——3分 ③//BE 侧面1AC , ——4分 ④1//BE AA , ——5分⑤//AF FC , ——6分 (Ⅱ)分别延长11,CE C B 交于点D ,连结1A D .∵1111111//,22EB CC EB BB CC ==,∴,21111111B A C B DC DB === ∵11111160B AC C B A ∠=∠=︒,1111111(180)302DA B A DB DB A ∠=∠=︒-∠=︒,∴111111190DAC DA B B AC ∠=∠+∠=︒, 即111DA AC ⊥. ——9分∵1CC ⊥面111AC B ,即11A C 是1A C 在平面11AC D 上的射影, 根据三垂线定理得11DA A C ⊥,所以11CAC ∠是所求二面角的平面角. ——11分 ∵11111111,90CC AA A B AC AC C ===∠=︒,∴1145CA C ∠=,即所求二面角为45. ——12分23.(本小题满分10分)某地现有耕地10000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%.如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷(精确到1公顷)?(粮食单产=耕地面积总产量,人均粮食占有量=总人口数总产量)【解】本小题主要考查运用数学知识和方法解决实际问题的能力,指数函数和二项式定理的应用,近似计算的方法和能力.满分10分.设耕地平均每年至多只能减少x 公顷,又设该地区现有人口为P 人,粮食单产为M 吨/公顷.依题意得不等式%)101(10%)11()1010(%)221(4104+⨯⨯≥+⨯-⨯+⨯P M P x M .——5分 化简得]22.1)01.01(1.11[10103+⨯-⨯≤x . ——7分∵103312210101.1(10.01) 1.110[1]10[1(10.010.01)]1.22 1.22C C ⨯+⨯-=⨯-⨯+⨯+⨯+3 1.110[1 1.1045] 4.11.22≈⨯-⨯≈. —— 9分 ∴4x ≤(公顷).答:按规划该地区耕地平均每年至多只能减少4公顷. ——10分24.(本小题满分12分)已知12,l l 是过点)0,2(-P 的两条互相垂直的直线,且12,l l 与双曲线122=-x y 各有两个交点,分别为11,A B 和22,A B .(Ⅰ)求1l 的斜率1k 的取值范围;(Ⅱ)若1122A B B =,求12,l l 的方程.【解】本小题主要考查直线与双曲线的性质,解析几何的基本思想,以及综合运用知识的能力.满分12分.(I )依题设,12,l l 的斜率都存在,因为1l 过点)0,2(-P 且与双曲线有两个交点,故方程组⎪⎩⎪⎨⎧=-≠+=1)0)(2(2211x y k x k y ① ——1分 有两个不同的解.在方程组①中消去y ,整理得01222)1(2121221=-++-k x k x k . ②若0121=-k ,则方程组①只有一个解,即1l 与双曲线只有一个交点,与题设矛盾,故0121≠-k ,即11≠k ,方程②的判别式为2222211111)4(1)(21)4(31)k k k ∆=---=-.设2l 的斜率为2k ,因为2l 过点)0,2(-P 且与双曲线有两个交点,故方程组⎪⎩⎪⎨⎧=-≠+=.1),0)(2(2222x y k x k y ③ 有两个不同的解.在方程组③中消去y ,整理得01222)1(2222222=-++-k x k x k . ④同理有)13(4,0122222-=∆≠-k k .又因为12l l ⊥,所以有121l l ⋅=-. ——4分于是,12,l l 与双曲线各有两个交点,等价于⎪⎪⎩⎪⎪⎨⎧≠-=⋅>->-.1,1,013,0131212221k k k k k解得⎪⎩⎪⎨⎧≠<<.1,33311k k——6分∴)3,1()1,33()33,1()1,3(1 ----∈k . ——7分 (Ⅱ)设),(),,(221111y x B y x A .由方程②知112,122212121212121--=⋅--=+k k x x k k x x . ∴22222111212112()()(1)()A B x x y y k x x =-+-=+-22112214(1)(31)(1)k k k +-=-. ⑤ ——9分 同理,由方程④可求得222B A ,整理得2212121222)1()3)(1(4k k k B A --+= ⑥ 由22115B A B A =,得2211225A B A B =将⑤、⑥代入上式得22121212212121)1()3)(1(45)1()13)(1(4k k k k k k --+⨯=--+,解得21±=k 取21=k 时,)2(22:),2(2:21+-=+=x y l x y l ; 取21-=k 时,)2(22:),2(2:21+=+-=x y l x y l . ——12分25.(本小题满分12分)已知,,a b c 是实数,函数2(),()f x ax bx c g x ax b =++=+,当11x -≤≤时,()1f x ≤. (Ⅰ)证明:1c ≤;(Ⅱ)证明:当11x -≤≤时,()2g x ≤;(Ⅲ)设0a >,当11x -≤≤时,()g x 的最大值为2,求()f x .【解】本小题主要考查函数的性质、含有绝对值的不等式的性质,以及综合运用数学知识分析问题与解决问题的能力.满分12分.(Ⅰ)证明:由条件当11x -≤≤时,()1f x ≤,取0x =得(0)1c f =≤,即1c ≤.——2分(Ⅱ)证法一:当0a >时,()g x ax b =+在[1,1]-上是增函数,∴(1)(0)(1)g g g -≤≤,∵()1(11),1f x x c ≤-≤≤≤,∴(1)(1)(1)2g a b f c f c =+=-≤+≤,(1)(1)((1))2g a b f c f c -=-+=--+≥--+≥-,由此得()2g x ≤. ——5分 当0a <时,()g x ax b =+在[1,1]-上是减函数,∴(1)(0)(1)g g g -≥≥, ∵()1(11),1f x x c ≤-≤≤≤,∴(1)(1)(1)2g a b f c f c -=-+=--+≤-+≤,(1)(1)((1))2g a b f c f c =+=-≥-+≥-,由此得()2g x ≤; ——7分当0a =时,(),()g x b f x bx c ==+.∵11x -≤≤,∴()(1)(1)2g x f c f c =-≤+≤.综上得()2g x ≤. ——8分证法二:由4)1()1(22--+=x x x ,可得221111()[()()]()2222x x x x g x ax b a b +-+-=+=-+-])21()21([])21()21([22c x b x a c x b x a +-+--++++= 11()()22x x f f +-=-, ——6分当11x -≤≤时,有,0211,1210≤-≤-≤+≤x x根据含绝对值的不等式的性质,得2)21()21()21()21(≤-++≤--+x f x f x f x f ,即()2g x ≤. ——8分 (Ⅲ)因为0a >,()g x 在[1,1]-上是增函数,当1x =时取得最大值2,即(1)(1)(0)2g a b f f =+=-=. ①∵1(0)(1)2121f f -≤=-≤-=-,∴(0)1c f ==-. ——10分 因为当11x -≤≤时,()1f x ≥-,即()(0)f x f ≥,根据二次函数的性质,直线0x =为()f x 的图像的对称轴,由此得02ba-=,即0b =. 由①得2a =.所以 2()21f x x =-. ——12分。
高中数学高考总复习-集合与函数概念知识点及习题第一章 集合与函数概念知识网络第一讲 集合★知识梳理一:集合的含义及其关系1.集合中的元素具有的三个性质:确定性、无序性和互异性;2.集合的3种表示方法:列举法、描述法、韦恩图;3.集合中元素与集合的关系: 文字语言 符号语言属于 ∈不属于∉4.常见集合的符号表示数集 自然数集正整数集整数集有理数集实数集 复数集符号N *N 或+NZQR C集合 集 合 表 示 法 集 合 的 运 算集 合 的 关 系 列 举 法 描 述 法 图 示 法包 含 相 等 子集与真子集交 集 并 集 补 集函数函数 及其表示 函数基本性质单调性与最值 函数的概念函数 的 奇偶性函数的表示法映射 映射的概念集合与函数概念表示关系文字语言符号语言相等集合A与集合B中的所有元素都相同BA⊆且A⊆B⇔BA=子集A中任意一元素均为B中的元素BA⊆或AB⊇真子集A中任意一元素均为B中的元素,且B中至少有一元素不是A的元素A B空集空集是任何集合的子集,是任何非空集合的真子集A⊆φ,φB(φ≠B)三:集合的基本运算①两个集合的交集:A BI= {}x x A x B∈∈且;②两个集合的并集: A BU={}x x A x B∈∈或;③设全集是U,集合A U⊆,则UC A={}x x U x A∈∉且交并补I U{|,}A B x x A x B=∈∈I且{|,}A B x x A x B=∈∈U或UC A={}x x U x A∈∉且方法:常用数轴或韦恩图进行集合的交、并、补三种运算.★重、难点突破重点:集合元素的特征、集合的三种表示方法、集合的交、并、补三种运算。
难点:正确把握集合元素的特征、进行集合的不同表示方法之间的相互转化,准确进行集合的交、并、补三种运算。
重难点:1.集合的概念掌握集合的概念的关键是把握集合元素的三大特性,要特别注意集合中元素的互异性,在解题过程中最易被忽视,因此要对结果进行检验;2.集合的表示法(1)列举法要注意元素的三个特性;(2)描述法要紧紧抓住代表元素以及它所具有的性质,{})(x fyx=如、{})(x fyy=、{})(),(xfyyx=等的差别,如果对集合中代表元素认识不清, 将导致求解错误:问题:已知集合221,1,9432x y x y M xN y ⎧⎫⎧⎫=+==+=⋂⎨⎬⎨⎬⎩⎭⎩⎭则M N=( ) A. Φ;B. {})2,0(),0,3(;C. []3,3-;D. {}3,2(3)Venn 图是直观展示集合的很好方法, 在解决集合间元素的有关问题和集合的运算时常用Venn 图。
第 96题 高考选择题的解法I .题源探究·黄金母题【例1】已知全集,U R =且{}{}2|12,|680,A x x B x x x =->=-+<则()U C A B = ( )A .[1,4)-B .(2,3)C .(2,3]D .(1,4)- 【答案】C【解析】集合{}{}||1|2|31A x x x x x =->=><-或,所以{}|13U C A x x =-≤≤,集合{}{}2|680|24B x x x x x =-+<=<<,所以()U C A B 为(2,3],故选C .精彩解读【试题来源】人教A 版必修1P 12习题1.1 A 组T 10改编. 【母题评析】本题考查集合的基本运算、绝对值不等式及一元二次不等式的解法,考查考生的基本运算能力.【思路方法】选择题解法的特殊性在于可以“不讲道理”.常用方法分直接法和间接法两大类. II .考场精彩·真题回放【例1】【2017高考新课标1理1】已知集合{}{}1,31xA x xB x =<=<,则 ( ) A .{|0}A B x x =< B .A B =R C .{|1}AB x x =>D .AB =∅【答案】A【解析】由31x <可得033x <,则0x <,即{|0}B x x =<,所以{|1}{|0}{|0}A B x x x x x x =<<=<,{|1}{|0}{|1}A B x x x x x x =<<=<,故选A .【例2】【2017高考山东理1】设函数A ,函数y=ln(1-x)的定义域为B ,则AB = ( )A .()1,2B .(]1,2C .()2,1-D .[)2,1- 【答案】D【解析】由240x -≥得22x -≤≤,由10x ->得1x <,故A B={|22}{|1}{|21}x x x x x x -≤≤⋂<=-≤<,选D .【命题意图】选择题基本涵盖整个高中数学,高频考点有集合与常用逻辑用语、复数、函数性质、导数、三视图、空间平行与垂直、空间角、直线与圆、算法框图、统计与概率计算、三角函数、平面向量、数列、不等式性质、线性规划、解三角形、排列组合、二项式定理等,能较好的考查考生分析问题解决问题的能力、基本计算能力等.【考试方向】高考中选择题共12题,一般5道基础题,5-6道中档题,1-2题压轴题,难度大.【难点中心】1.解选择题的常用方法分直接法和间接法两大类.直接法是解答选择题最基本、最常用的方法,但高考的题量较大,如果所有选【例3】【2017高考天津文8】已知函数2,1,()2, 1.x x f x x x x⎧+<⎪=⎨+≥⎪⎩设a ∈R ,若关于x 的不等式()2xf x a ≥+在R 上恒成立,则a 的取值范围是( ) A .[]2,2- B.2⎡⎤-⎣⎦ C.2,⎡-⎣ D.⎡-⎣【答案】A .【解析】首先画出函数()f x 的图象,当0a >时,()2xg x a =+的零点是20x a =-<,零点左边直线的斜率112->-,不会和函数()f x 有交点,满足不等式恒成立,零点右边()2x g x a =+,函数的斜率12k =,根据图象分析,当0x =时,2a ≤,即02a <≤成立,同理,若0a <,函数()2xg x a =+的零点是20x a =->,零点右边()()2xg x a f x =+<恒成立,零点左边()2xg x a =--,根据图象分析当0x =时,2,2a a -≤∴≥-,即20a -≤<,当0a =时,()()f x g x ≥恒成立,所以22a -≤≤,故选A .择题都用直接法解答,时间可能不允许,因此我们还要研究解答选择题的一些间接法的应用技巧.其基本解答策略是:充分利用题干和选项所提供的信息作出判断.先定性后定量,先特殊后推理,先间接后直接,先排除后求解.总的来说,选择题属于小题,尽量避免“小题大做”.在考场上,提高解题速度,也是一种制胜法宝.但在复习过程中,要注意通过“小题大做”,深入挖掘小题考查的知识、技能、思想方法等,以充分发挥小题的复习功能. 2.解答选择题既要用各类常规题的解题思想原则来指导选择题的解答,但更应该充分挖掘题目的“个性”,寻求简便解法,充分利用选项的暗示,迅速地做出正确的选择.这样不但可以迅速、准确地获取正确答案,还可以提高解题速度,为后续解题节省时间. III .理论基础·解题原理在高考数学中选择题是一种只要求得到结果,不要求写出解答过程的试题.具有概括性强、小巧灵活、知识覆盖面广,其中融入多种数学思想和方法等特点,可以有效地检验考生的数学思维层次及分析问题、判断问题、推理问题和解决问题的能力. 做选填题的步骤为:1.首先,审题.能很好的把数学的三种语言(文字语言、图形语言、数字符号语言)之间快速转化并发掘题目中的隐含条件,要去伪存真,快速领会题目的真正含义.2.其次,要注意选填题的解题技巧.小题小做、巧做,简单做,要多用数形结合、特殊值法等技巧,节约时间.3.最后,仔细检查答卷不能有漏填的现象(遇到不会做的,也不要空着不做,一定要写一个答案),不能有把答案抄错的现象.IV .题型攻略·深度挖掘【考试方向】高考中选择题共12题,一般5道基础题,5-6道中档题,1-2题压轴题,难度大. 【技能方法】常用的方法有直接法、特例(值)法、代入检验法(验证法)、数形结合法、构造法、估算法、极限化法. 【易错指导】每道选择题有它固有的漏洞和具体的解决办法:6大漏洞、8大法则.“6大漏洞”是指:有且只有一个正确答案,不问过程只问结果,题目有暗示,答案有暗示,错误答案有严格标准,正确答案有严格标准;“8大原则”是指:选项唯一原则,范围最大原则,定量转定性原则,选项对比原则,题目暗示原则,选择项暗示原则,客观接受原则,语言的精确度原则.V .举一反三·触类旁通方法1 直接法所谓直接法,就是直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过变形、推理、运算等过程,直接得到结果.一般涉及概念、性质、定义的辨析或运算较简单的题目常用直接法. 【例1】【2018届河南省郑州市高三第一次质量检测(模拟)】在ABC 中,角,,A B C 的对边分别为,,a b c ,且2cos 2c B a b =+,若ABC 的面积为S =,则ab 的最小值为( ) A .28 B .36 C .48 D .56 【答案】C【解析】由条件及余弦定理的推理得222222222a c b a c b c a b ac a +-+-⋅==+,整理得222a b c ab +-=-,∴2221cos 22a b c C ab +-==-,可得23C π=.又12sin 23S ab π===,可得4ab c =.∵2222222cos33c a b ab a b ab ab π=+-=++≥,当且仅当a b =时等号成立. ∴22316a b ab ≥,解得48ab ≥,故ab 的最小值为48.选C . 【反思】直接演绎法是解选择填空题最基本的方法,涉及概念、性质的辨析或运算较简单的题目,充分挖掘题设条件,通过严谨的推理,正确的运算必能得出正确的答案.因此,学会熟练运用基本知识,并能迅速分析题目,抓住主干,吃透题意是用直接演绎法解题的不二法宝.【例2】【2017高考课标II 理3】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏 【答案】B 【解析】【例3】【2017高考山东理7】若0a b >>,且1ab =,则下列不等式成立的是 A .()21log 2a b a a b b +<<+ B .()21log 2a b a b a b <+<+ C .()21log 2a ba ab b +<+< D .()21log 2a b a b a b +<+<【答案】B【跟踪练习】1.【2017高考新课标II 理】设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =A .{}1,3-B .{}1,0C .{}1,3D .{}1,5( )【答案】C 【解析】由{}1AB =得1B ∈,即1x =是方程240x x m -+=的根,所以140,3m m -+==,{}1,3B =,故选C .【名师点睛】集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.两个防范:一是不要忽视元素的互异性;二是保证运算的准确性.2.【2017高考新课标1理5】函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是【答案】D【名师点睛】奇偶性与单调性的综合问题,要重视利用奇、偶函数与单调性解决不等式和比较大小问题,若()f x 在R 上为单调递增的奇函数,且12()()0f x f x +>,则120x x +>,反之亦成立.3.【2017高考北京理5】已知函数1()3()3x xf x =-,则()f x(A )是奇函数,且在R 上是增函数 (B )是偶函数,且在R 上是增函数 (C )是奇函数,且在R 上是减函数 (D )是偶函数,且在R 上是减函数【答案】A【解析】()()113333xx xx f x f x --⎛⎫⎛⎫-=-=-=- ⎪ ⎪⎝⎭⎝⎭,所以函数是奇函数,并且3x 是增函数,13x⎛⎫⎪⎝⎭是减函数,根据增函数-减函数=增函数,所以函数是增函数,故选A .【名师点睛】本题属于基础题型,根据奇偶性的定义()f x -与()f x 的关系就可以判断函数的奇偶性,判断函数单调性的方法;1.平时学习过的基本初等函数的单调性;2.函数图象判断函数的单调性;3.函数的四则运算判断,增函数+增函数=增函数,增函数-减函数=增函数,判断函数的单调性;4.导数判断函数的单调性. 方法2 特例(值)法所谓特例(值)法,就是利用满足题设条件的一些特殊数值、特殊函数、特殊方程、特殊数列、特殊点、特殊角、特殊图形、特殊位置等进行求解,从而得出正确答案. 【例4】【2018衡水金卷】设,,,,为实数,且,,下列不等式正确的是( )A .B .C .D .【答案】D【解析】取a=2,b=4,c=3,d=2,d-a=0,c-b=-1,此时d-a>c-b ,A 错误;取a=2,b=3,小,则,,此时,B 错误;取b=3,a=,c=1,d=-3,,C 错误;对于D,D 正确.故选D .【例5】【2017高考新课标1理5】函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是( )【答案】D 【解析】【另解】函数()f x x =-符合题意.所以由1(2)1x -≤--≤可得解.【反思】特例(值)法是高考数学解选择填空题的最佳方法,能降低解题难度,提高解题效率.当正确的选择对象,在题设普遍条件下都成立的情况下,用特例(值)法(取得越简单越好)进行探究,从而清晰、快捷地得到正确答案,即通过对特殊情况的研究来判断一般规律.【例6】【2018湖北荆州市高三质量检查(III )】函数的图象大致是( ).A B . C . D . 【答案】A【解析】 由题意,所以函数为偶函数,图象关于轴对称,排除B 、C ;又由,排除D ,故选A .【跟踪练习】1.【2018贵州凯里市一中高三下学期《黄金卷》第三套】函数()2sin f x x x =的图象可能为( )A .B .C .D . 【答案】C【名师点睛】识图常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题. 2.【2018衡水金卷信息卷(三)】函数sin sin 122xxy =+的部分图象大致是( )A .B .C .D . 【答案】D【解析】 因为()()()()sin sin sin sin 112222x x xx f x y f x ---=+==+=,所以函数sin sin 122x xy =+是定义在R上的偶函数,排除A 、B 项;又sin 2sin 2115222222f πππ⎛⎫=+=+= ⎪⎝⎭,排除C ,综上,函数sin sin 122x x y =+大致的图象应为D 项,故选D .3.【2018广东中山高二上学期理科数学期末考试】条件甲:24{ 03x y xy <+<<<;条件乙:01{23x y <<<<,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不也不必要条件 【答案】B方法3 代入检验法(验证法)将选项中给出的答案或其特殊值,代入题干逐一去验证是否满足题设条件,然后选择符合题设条件的选项. 【例7】若对于定义在R 上的函数f(x),其图象是连续不断的,且存在常数λ(λ∈R)使得f(x +λ)+λf(x)=0对任意实数都成立,则称f(x)是一个“λ伴随函数”.下列是关于“λ伴随函数”的结论: ①f(x)=0不是常数函数中唯一一个“λ伴随函数”;②f(x)=x 是“λ伴随函数”;③f(x)=x 2是“λ伴随函数”;④“12伴随函数”至少有一个零点.其中正确的结论个数是( ) A .1 B .2C .3D .4【答案】B【解析】由题意得,①正确,如f(x)=c≠0,取λ=-1,则f(x -1)-f(x)=c -c =0,即f(x)=c≠0是一个“λ伴随函数”;②不正确,若f(x)=x 是一个“λ伴随函数”,则x +λ+λx =x(1+λ)+λ=0,对任意实数x 成立,所以1+λ=λ=0,而找不到λ使此式成立,所以f(x)=x 不是一个“λ伴随函数”;③不正确,若f(x)=x 2是一个“λ伴随函数”,则(x +λ)2+λx 2=(1+λ)x 2+2λx +λ2=0对任意实数x 成立,所以λ+1=2λ=λ2=0,而找不到λ使此式成立,所以f(x)=x 2不是一个“λ伴随函数”;④正确,若f(x)是“12伴随函数”,则f ⎝⎛⎭⎫x +12+12f(x)=0,取x =0,则f ⎝⎛⎭⎫12+12f(0)=0,若f(0),f ⎝⎛⎭⎫12任意一个为0,则函数f(x)有零点;若f(0),f ⎝⎛⎭⎫12均不为0,则f(0),f ⎝⎛⎭⎫12异号,由零点存在性定理知,在⎝⎛⎭⎫0,12区间内存在零点.因此①,④的结论正确. 【名师点睛】1.创新命题是新课标高考的一个亮点,此类题型是用数学符号、文字叙述给出一个教材之外的新定义,如本例中的“λ伴随函数”,要求考生在短时间内通过阅读、理解后,解决题目给出的问题. 2.解决该类问题的关键是准确把握新定义的含义,把从定义和题目中获取的信息进行有效整合,并转化为熟悉的知识加以解决.【例8】【2017高考天津理6】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为 (A )a b c << (B )c b a <<(C )b a c <<(D )b c a <<【答案】C【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.【例9】【2017高考山东理15】若函数()x e f x ( 2.71828e =是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 .①()2x f x -=②()3x f x -=③()3f x x =④()22f x x =+【答案】①④【解析】试题分析:①()22xx x x e e f x e -⎛⎫=⋅= ⎪⎝⎭在R 上单调递增,故()2xf x -=具有M 性质;②()33xxxxe ef x e -⎛⎫=⋅= ⎪⎝⎭在R 上单调递减,故()3xf x -=不具有M 性质;③()3xxe f x e x =⋅,令()3xg x e x =⋅,则()()32232xxxg x e x e x x ex '=⋅+⋅=+,∴当2x >-时,()0g x '>,当2x <-时,()0g x '<,∴()3x x e f x e x =⋅在(),2-∞-上单调递减,在()2,-+∞上单调递增,故()3f x x =不具有M 性质;④()()22x x e f x e x =+,令()()22x g x e x =+,则()()()2222110xx x g x exe x e x ⎡⎤'=++⋅=++>⎣⎦,∴()()22x x e f x e x =+在R 上单调递增,故()22f x x =+具有M 性质.【名师点睛】1.本题考查新定义问题,属于创新题,符合新高考的走向.它考查学生的阅读理解能力,接受新思维的能力,考查学生分析问题与解决问题的能力,新定义的概念实质上只是一个载体,解决新问题时,只要通过这个载体把问题转化为我们已经熟悉的知识即可. 2.求可导函数单调区间的一般步骤 (1)确定函数f (x )的定义域(定义域优先); (2)求导函数f ′(x );(3)在函数f (x )的定义域内求不等式f ′(x )>0或f ′(x )<0的解集.(4)由f ′(x )>0(f ′(x )<0)的解集确定函数f (x )的单调增(减)区间.若遇不等式中带有参数时,可分类讨论求得单调区间.3.由函数f(x)在(a,b)上的单调性,求参数范围问题,可转化为f′(x)≥0(或f′(x)≤0)恒成立问题,要注意“=”是否可以取到.【跟踪练习】1.【2018届河南省高三一轮复习诊断】某城市收集并整理了该市2017高考年1月份至10月份各月最低气温与最高气温(单位;℃)的数据,绘制了下面的折线图.已知该市的各月最低气温与最高气温具有较好的线性关系,则根据该折线图,下列结论错误的是A.最低气温与最高气温为正相关B.10月的最高气温不低于5月的最高气温C.月温差(最高气温减最低气温)的最大值出现在1月D.最低气温低于0℃的月份有4个【答案】D的月份是1,2,4三月份,故D错,选D.低气温低于0C2.【2018浙江金华十校4月高考模拟】已知函数,对任意的实数,,,关于方程的的解集不可能是()A.B.C.D.【答案】D则解,或有成对的解且两解关于对称,所以D 选项不符合条件.本题选择D 选项.3.【2018河南中原名校(即豫南九校)高三第六次质量考评】函数()xxf x e ae -=+与()2g x x ax =+在同一坐标系内的图象不可能是( )A .B .C .D .【答案】C【解析】因为()2g x x ax =+的图像过原点,所以图像中过原点的抛物线是函数()g x 的图像,在选项C中,上面的图像是函数()f x 的图像,下面的是函数()g x 的图像,所以02a->,所以0a <,由题得()x x f x e ae -=-',因为a<0,所以()0f x '>恒成立,所以函数f(x)在定义域内单调递增,不是选项C中的图像,故选C . 方法4 排除法排除法(淘汰法)是充分利用选择题有且只有一个正确的选项这一特征,通过分析、推理、计算、判断,排除不符合要求的选项,从而得出正确结论的一种方法.【例10】【2018广东中山一中高三第五次统测】已知0a b <<,且1a b +=,下列不等式中,一定成立的是 ( )①2log 1a >-;②22log log 2a b +>-;③()2log 0b a -<;④2log ) 1.b aa b+>( A .①② B .③④ C .②③ D .①④【答案】B【例11】已知下列结论:①a ·0=0;②0a =0;③0-AB BA =;④|a ·b |=|a ||b |;⑤若a ≠0,则对任一非零向量b 有a ·b ≠0;⑥若a ·b =0,则a 与b 中至少有一个为0;⑦若a 与b 是两个单位向量,则a 2=b 2. 则以上结论正确的是( ) A .①②③⑥⑦ B .③④⑦ C .②③④⑤ D .③⑦ 【答案】D【解析】对于①:两个向量的数量积是一个实数,应有0·a =0;对于②:应有0·a =0;对于④:由数量积定义有|a ·b |=|a ||b |·|cosθ|≤|a ||b |,这里θ是a 与b 的夹角,只有θ=0或θ=π时,才有|a ·b |=|a ||b |;对于⑤:若非零向量a 、b 垂直,则有a ·b =0;对于⑥:由a ·b =0可知a ⊥b ,可以都非零.故③⑦正确. 【另解】由对①②的分析排除A ,C ;分析④排除B ,故选D .【名师点睛】1.排除法适用于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的予以否定,再根据另一些条件在缩小选项的范围内找出矛盾,这样逐步筛选,直到得出正确的答案.2.排除法常与特例法,数形结合法联合使用,在高考题求解中更有效发挥功能. 【例12】【2018上海崇明区高三一模】设,a b R ∈,若a b >,则( ) A .11a b< B .lg lg a b > C .sin sin a b > D .22a b > 【答案】D【跟踪练习】1.【2018河南中原名校(即豫南九校)高二上学期第二次联考】若1a b >>,则下列结论不一定成立的是( )A .11a b< B > C .b a a b > D .log log b a a b > 【答案】C【解析】∵1a b >>,∴<,>,故A ,B 成立.当a=4,b=2时,16b a a b ==,故C 错误;log b a >log b b=1=log a a >log a b ,故D 成立,故选C .2.【2018河北衡水中学高三十五模】已知330c c a b<<,则下列选项中错误的是( ) A .b a > B .ac bc > C .0a b c -> D .ln 0ab> 【答案】D【解析】330c c a b<<,当0c <时,110a b >>,即b 0a >>,∴b a >,ac bc >,0a bc ->成立,此时01a b <<,∴ln 0ab<,故选D . 3.【2018河南焦作高三第四次模拟】已知0a b >>,则下列不等式中成立的是( )A .11a b >B .22log log a b <C .1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D .1122a b -->【答案】C【解析】 因为0a b >>,则11a b<,22log log a b >,1122a b --<,所以A 、B 、D 是错误的,因为13x y ⎛⎫= ⎪⎝⎭为单调递减函数,所以1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭成立,故选C .方法5 数形结合法所谓数形结合法是把抽象的数学语言同直观的图形结合起来,通过“以形助数”、“以数辅形”,使抽象思维与形象思维相结合,通过图形的描述、代数的论证来研究和解决数学问题. 【例13】如图是函数()y f x =的导函数()'y f x =的图象,给出下列命题: ①-2是函数()y f x =的极值点; ②1是函数()y f x =的极值点;③()y f x =的图象在0x =处切线的斜率小于零; ④函数()y f x =在区间()2,2-上单调递增. 则正确命题的序号是( )A .①③B .②④C .②③D .①④ 【答案】D【反思】“数”与“形”是数学的重要基石,二者在内容上互相联系,在方法上互相渗透,在一定条件下可以互相转化,如果在解答选择填空题的过程中能够很好的运用这一数学解题中最重要的方法之一,就能够使复杂的问题简单化,抽象的问题具体化,进而简化解题过程,从而达到事半功倍的效果. 【例14】【2018湖南株洲高三年级教学质量统一检测(二)】设函数的图象在点处切线的斜率为,则函数的图象一部分可以是( )A .B .C .D . 【答案】A【名师点睛】本题考查函数的导数的应用,函数的图象的判断,是基本知识的考查.【例15】【2018江西省八所重点中学2018年高三下学期联考】已知偶函数()f x 满足()()44f x f x +=-,且当(]0,4x ∈时,()()ln 2x f x x=,关于x 的不等式()()20fx af x +>在[]200,200-上有且只有300个整数解,则实数a 的取值范围是( )A .1ln2,ln63⎛⎫-- ⎪⎝⎭B .1ln2,ln63⎛⎤-- ⎥⎝⎦C .13ln2ln6,34⎛⎫-- ⎪⎝⎭D .13ln2ln6,34⎛⎤-- ⎥⎝⎦【答案】D【解析】由()()44f x f x +=-可知函数的对称轴为4x =,由于函数是偶函数,0x =也是它的对称轴,故函数是周期为8的周期函数.当(]0,4x ∈时,()21ln2x f x x -'=,函数在e 0,2⎛⎫ ⎪⎝⎭上递增,在e ,42⎛⎫⎪⎝⎭上递增,最大值e 22e f ⎛⎫=⎪⎝⎭,且()ln834ln2044f ==>.由选项可知0a <,所以()()0f x f x a ⎡⎤+>⎣⎦,解得()0f x <或()f x a >-.根据单调性和周期性画出图象如下图所示,由图可知()0f x <没有整数解.根据函数为偶函数,所以在[]0,200上有25个周期,且有150个整数解,也即每个周期内有6个解.()13ln63f =,故()()43f a f ≤-<,解得13ln2ln634x -<≤-.【名师点睛】本小题主要考查函数的奇偶性,考查函数的对称性,考查分段函数的的零点问题,考查一元二次不等式的解,考查数形结合的数学思想方法.题目所给函数为偶函数,所以函数图象关于y 轴,即0x =对称,结合()()44f x f x -=+可知函数由关于4x =对称,故函数是周期为8的周期函数. 【跟踪练习】1.【2017高考浙江7】函数y=f (x )的导函数()y f x '=的图像如图所示,则函数y=f (x )的图像可能是( )【答案】D【解析】【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数)('x f 的正负,得出原函数)(x f 的单调区间.2.【2018辽宁辽阳高三一模】已知函数()xf x e 在其定义域上单调递减,则函数()f x 的图象可能是( )A .B .C .D . 【答案】A【名师点睛】识图常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题. 3.【2018天一大联考高中毕业班阶段性测试(四)】关于x 的方程()()()22222e 12x x x t x x --+-()e 40R x t -=∈的不等实根的个数为( )A .1B .3C .5D .1或5 【答案】B【解析】设()()()(22'xxf x x x e f x x x e =-⇒=,所以函数在(),,+-∞∞上单调递增,在(递减,且当()0x f x →-∞⇒→,(()((200,2f e f f=+==-(),,x f x →+∞→+∞由此画出函数草图,如图所示:,关于x的方程()()()22222e 12x x x t x x --+- e 40x -=令()()()22140,1160u f x u t u t =⇒-+-==++>,故有两个不同的解12,u u,又(124u u f f==-,所以无论如何与函数图像都有3个交点.【名师点睛】根据题意此题属于复合方程求零点的问题,解复合方程首先要分析此方程中函数的草图,然后将函数f(x)看成一个变量去求解二次函数的解的个数,然后再研究f(x)图像与二次函数的解的交点个数即为复合方程的解的个数. 方法6 构造法所谓构造法就是依据某些数学问题的条件或结论所具有的典型特征,用已知条件中的元素为“元件”,用已知的数学关系为“支架”,在思维中构造出一种相关的数学对象、一种新的数学形式;或者利用具体问题的特殊性,为待解决的问题设置一个框架,从而使问题转化并得到解决的方法.【例16】【2018湖北武汉市武昌区高三元月调研】已知函数()ln x f x kx x =-在区间14e ,e ⎡⎤⎢⎥⎣⎦上有两个不同的零点,则实数k 的取值范围为 A.12e ⎫⎪⎭ B.12e ⎫⎪⎭ C.21e ⎡⎢⎣D .211,e e ⎡⎤⎢⎥⎣⎦ 【答案】A1411441144g e e e ⎛⎫== ⎪⎝⎭,()1g e e =,由于()1414e e e e g g ⎛⎫ ⎪⎝⎭>,故k的最小值为1414e e g ⎛⎫ ⎪⎝⎭=,直到y kx =与()g x 图像相切时,观察选项可知,只有A 选项正确.【名师点睛】(1)本题主要考查利用导数研究函数的零点问题,已知零点求参数的取值范围.零点问题的一般方法是令函数值为零,然后变成两个函数图像的交点个数的问题来解决.本题中变为一条曲线()g x 和一条直线y kx =,其中曲线()g x 需要我们求导,利用导数求出单调性来画图像.(2)构造法是一种创造性思维,是综合运用各种知识和方法,依据问题给出的条件和结论给出的信息,把问题作适当的加工处理,构造与问题相关的数学模式,揭示问题的本质,从而沟通解题思路的方法. 【例17】【2018广州高三一模】对于定义域为R 的函数()f x ,若满足① ()00f =;② 当x R ∈,且0x ≠时,都有()0xf x '>;③ 当120x x <<,且12x x =时,都有()()12f x f x <,则称()f x 为“偏对称函数”.现给出四个函数:()32132f x x x =-+;()21x f x e x =--;()411,0,{ 2120,0.x x x f x x ⎛⎫+≠ ⎪=-⎝⎭=则其中是“偏对称函数”的函数个数为A .0B .1C .2D .3 【答案】C()()2122f x f x <,满足条件 ③,()21x f x e x =--是“偏对称函数”;对于()3f x ,()31'1f x x =-,满足条件①②,画出函数()3y f x =的图象以及()3y f x =在原点处的切线,2y x = 关于y 轴对称直线2y x =-,如图,由图可知()3y f x =满足条件③,所以知()3y f x =是“偏对称函数”;函数()4f x 为偶函数,()()1212x x f x f x =⇒=,不符合③,函数()4f x 不是,“偏对称函数”,故选C . 【方法点睛】本题考查函数的图象与性质以及导数的应用、新定义问题及数形结合思想,属于难题.新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题定义“偏对称函数”达到考查函数的图象与性质以及导数的应用的目的. 【跟踪练习】1.【2018北京丰台区高三一模】已知0a b <<,则下列不等式中恒成立的是A .11a b> B < C .22a b > D .33a b > 【答案】A【解析】构造函数1y x =是减函数,已知0a b <<,则11a b>,故A >B 不正确; C 构造函数2a y =是增函数,故22ab<,故选项不正确;D .33a b >,构造函数3y x =是增函数,故33a b <,所以选项不正确.故答案为:A .2.【2018衡水金卷(一)】若1,01a c b ><<<,则下列不等式不正确的是( ) A .20182018log log a b > B .log log b c a a <C .()()cba c a a c a ->- D .()()cbc b a c b a ->-【答案】C3.【2018河南安阳市高三一模】已知函数(),0{ ,0x e x f x lnx x ≤=>,( e 为自然对数的底数),则函数()()()211F x f f x f xe ⎡⎤=--⎣⎦的零点个数为( ) A .8 B .6 C .4 D .3 【答案】B【解析】设()f x t =,则方程()()2110f f x f x e ⎡⎤--=⎣⎦化为()210tf t e --=,画出函数()y f x =和直线21x y e =+的图象,如图,利用导数知识可知直线21x y e=+与对数函数ln y x =的图象切为()2,2e ,因此函数()y f x =和直线21xy e=+的图象有四个交点,设其横坐标从小到大依次为1234,,,x x x x ,其中10x <,20x =,301x <<,24x e =,又结合()f x 的图象知()0f x =有一解,()3f x x =有三解,()4f x x =有两解,()1f x x =无解,因此()()2110f f x f x e ⎡⎤--=⎣⎦有6解,即函数()F x 6个零点,故选B .【名师点睛】函数零点个数问题,一种方法可用导数研究函数的单调性和极值,再䬑和零点存在定理得函数的零点个数,另一种方法是转化函数图象交点个数,一般是转化为直线与函数图象的交点,其中直线是含参数的、变化的,函数是固定的,且图象画出的,这里可通过导数研究图象的变化趋势,得出图象的大致规律,动直线可以是平行直线,也可以是过一定点的直线,这样容易发现规律,得出结论. 方法7 分析法分析法就是对有关概念进行全面、正确、深刻的理解或对有关信息提取、分析和加工后而作出判断和选择的方法.(1)特征分析法 根据题目所提供的信息,如数值特征、结构特征、位置特征等,进行快速推理,迅速作出判断的方法,称为特征分析法.【例18】已知sin θ=m -3m +5,cos θ=4-2m m +5⎝⎛⎭⎫π2<θ<π,则tan θ2等于( ) A .m -39-m B .⎪⎪⎪⎪⎪⎪m -39-m C .13 D .5 【答案】D(2)逻辑分析法通过对四个选项之间的逻辑关系的分析,达到否定谬误项,选出正确项的方法,称为逻辑分析法.①若A真B 真,则A 必排除,否则与“有且仅有一个正确结论”相矛盾.② 若A B ,则A ,B 均假.③若A ,B 成矛盾关系,则必有一真,可否定C ,D .【例19】设a ,b 是满足ab<0的实数,则( )A .|a +b|>|a -b|B .|a +b|<|a -b|C .|a -b|<|a|-|b|D .|a -b|<|a|+|b|【答案】B方法8 估算法由于选择题提供了唯一正确的选项,解答又无需过程,因此,有些题目不必进行准确的计算,只需对其数值特点和取值界限作出适当的估计,便能作出正确的判断,这就是估算法.估算法往往可以减少运算量,但是加强了思维的层次.【例20】已知正数,x y 满足24x y +<,则11y x ++的取值范围是( ) A .1,53⎛⎫ ⎪⎝⎭ B .1,53⎡⎤⎢⎥⎣⎦ C .()1,5,3⎛⎫-∞⋃+∞ ⎪⎝⎭ D .[)1,5,3⎛⎤-∞⋃+∞ ⎥⎝⎦【答案】A。
第二章函数及其应用第1节函数及其表示课标要求:1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念;2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法) 表示函数;3.了解简单的分段函数,并能简单地应用(函数分段不超过三段).知识衍化体验知识梳理1.函数与映射的概念2.函数的定义域、值域(1)在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的_____;与x的值相对应的y值叫做函数值,函数值的_______叫做函数的_________.(2)如果两个函数的______相同,并且_____完全一致,则这两个函数为相同函数.3.函数的表示法表示函数的常用方法有_______、图象法和________.4.分段函数(1)若函数在其定义域的不同子集上,因_______不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的______,其值域等于各段函数的值域的_______,分段函数虽由几个部分组成,但它表示的是一个函数.[微点提醒]1.函数是特殊的映射,是定义在非空数集上的映射.2.直线x=a(a是常数)与函数y=f(x)的图象有0个或1个交点.基础自测疑误辩析1.判断下列结论正误(在括号内打“√”或“×”)(1)对于函数f:A→B,其值域是集合B.()(2)f(x)=x-3+2-x是一个函数.()(3)若两个函数的定义域与值域相同,则这两个函数相同.()教材衍化2. (必修1P25B2改编)若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y=f(x)的图象可能是()3.下列各组函数中,表示同一函数的是A.y=x+1和y=x2-1x-1; B.y=x0和y=1;C. f(x)=x2和g(x)=(x+1)2;D.f(x)=(x)2x和g(t)=t(t)2.考题体验4.已知f(x5)=lg x,则f(2)=()A.15lg 2 B.12lg 5 C.13lg 2 D.12lg 35.已知函数f(x)由下表给出,则f(f(3))=__________.x 1 2 3 4f(x) -3 -2 4 -16. 已知函数f(x)在[-1,2]上的图象如图所示,则f(x)的解析式为____________.考点聚焦突破考点一 求函数的定义域【例1】 (1)函数2()14ln(31)f x x x =--的定义域为( ) A .1,12⎡⎫⎪⎢⎣⎭B .11,32⎛⎤ ⎥⎝⎦C .11,24⎡⎫-⎪⎢⎣⎭D .11,22⎡⎤-⎢⎥⎣⎦(2)若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域为________.规律方法 1.求给定解析式的函数定义域的方法求给定解析式的函数的定义域,其实质就是以函数解析式中所含式子(运算)有意义为准则,列出不等式或不等式组求解;对于实际问题,定义域应使实际问题有意义.2.求复合函数定义域的方法(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f [g (x )]的定义域可由不等式a ≤g (x )≤b 求出.(2)若已知函数f [g (x )]的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域.【训练1】 (1)函数y =-x 2-x +2ln x 的定义域为( )A.(-2,1)B.[-2,1]C.(0,1)D.(0,1](2)设函数f (x )=lg(1-x ),则函数f [f (x )]的定义域为( ) A.(-9,+∞) B.(-9,1) C.[-9,+∞)D.[-9,1)考点二 求函数的解析式 【例2】(1) 已知f(x +2)=x +4x ,求f(x );(2)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,则f (x )=________; (3)已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝ ⎛⎭⎪⎫1x ·x -1,则f (x )=________.规律方法 求函数解析式的常用方法(1)待定系数法:若已知函数的类型,可用待定系数法.(2)换元法:已知复合函数f [g (x )]的解析式,可用换元法,此时要注意新元的取值范围.(3)构造法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出f (x ).【训练2】 (1)已知函数f (x )=ax -b (a >0),且f [f (x )]=4x -3,则f (2)=________. (2)若f (x )满足2f (x )+f (-x )=3x ,则f (x )=________.考点三 分段函数 角度1 分段函数求值【例3-1】已知实数a≠0,函数f(x)=⎩⎨⎧2x +a ,x<1,-x -2a ,x≥1.若f(1-a)=f(1+a),则a 的值为__________.角度2 分段函数与方程、不等式问题【例3-2】 (1) (2017·全国Ⅲ卷)设函数f (x )=⎩⎨⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值范围是________. (2)函数f(x)=⎩⎪⎨⎪⎧x 2-x ,x >0,12-|12+x|,x≤0.若关于x 的方程f(x)=kx -k 至少有两个不相等的实数根,则实数k 的取值范围是____________.规律方法 1.根据分段函数解析式求函数值.首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解.2.已知函数值或函数的取值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.【训练3】 (1)已知函数f (x )=⎩⎪⎨⎪⎧x +1x -2,x >2,x 2+2,x ≤2,则f [f (1)]=( ) A.-12B.2C.4D.11(2)已知函数f (x )=⎩⎨⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,则实数a 的取值范围是________.反思与感悟 [思维升华]1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是否相同.2.函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质和图象的基础.因此,我们一定要树立函数定义域优先意识.3.函数解析式的几种常用求法:待定系数法、换元法、配凑法、构造解方程组法.4.分段函数问题要用分类讨论思想分段求解. [易错防范]1.复合函数f [g (x )]的定义域也是解析式中x 的范围,不要和f (x )的定义域相混.2.易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A 到B 的一个映射,A ,B 若不是数集,则这个映射便不是函数.3.分段函数无论分成几段,都是一个函数,求分段函数的函数值,如果自变量的范围不确定,要分类讨论.第二章 函数及其应用 第1节 函数及其表示知识衍化体验知 识 梳 理非空数集 非空集合 唯一确定 唯一确定 f :A →B f :A →B定义域;集合{f (x )|x ∈A } 值域. 定义域,对应关系 解析法、列表法. 对应关系 并集,并集,基 础 自 测1. (1)× (2)× (3)×2. B3. D4.A5.-16. f(x)=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,-12x ,0<x ≤2考点聚焦突破【例1】 (1)B ; (2)[0,1). 【训练1】(1)C (2)B【例2】 (1) f(x)=x 2-4(x ≥2); (2)12x 2-32x +2;(3)23x +13 【训练2】 (1)3 (2)3x 【例3-1】-34【例3-2】 (1) ⎝ ⎛⎭⎪⎫-14,+∞;(2) ⎣⎡⎭⎫-13,1∪(1,+∞). 【训练3】 (1)C (2)⎣⎢⎡⎭⎪⎫0,12。
高中数学函数的概念知识点总结及练习题(含答案)※函数的定义设f是集合A﹐B中元素之间的一个对应关系。
若对于集合A中的每个元素a﹐都可以找到集合B中的唯一元素b﹐使得a对应到b﹐则称f为A到B的一个函数。
用f:A→ B表示此函数。
而a对应到b记为f(a)=b﹐b称为函数f在a的值。
集合A称为f的定义域﹐集合B称为f的对应域高中数学中常见的函数﹐例如多项式函数﹑指数函数﹑对数函数﹑三角函数等﹐因为函数值都是实数﹐故对应域皆可定为实数集合R﹐通称为实数值函数。
一般而言﹐实数值函数的定义域指的是﹐会使函数作用有意义的最大可能集合。
※根式函数y=x此函数是由非负实数所成的集合﹐到实数集合R的一个对应关系每一个非负实数﹐都有唯一的非负平方根。
函数的定义域:{x|x∈﹐且x≥0}函数的对应域:实数集合R函数的值域:{y|y∈﹐且y≥0}例题1 ---------------------------------------------------------------------------------------------------------------- 试求下列各函数的定义域:(1)f (x )=1x (2)f (x )=3-x (3)f (x )=1x 2-x +1------------------------------------------------------------------------------------------------------------------------ (1)定义域为{x |x ∈﹐且 x 0}。
(2)定义域为{x |x ∈﹐且 x ≤3}。
(3)分母须有 x 2-x +10﹐但 x 2-x +1=⎝ ⎛⎭⎪⎫x -12 2+34 >0 恒成立﹐故定义域为 R 。
随堂练习 ------------------------------------------------------------------------------------------------------------ 试求下列各函数的定义域: (1)f (x )=1x 2-4 (2)f (x )=1x 2+x +1(3)f (x )=x -2 ------------------------------------------------------------------------------------------------------------------------※区间的符号设 a ﹐b 为实数﹐且 a <b 。
第1讲函数的概念与性质【考点分析】1.函数的定义域、值域、解析式是高考中必考内容,具有较强的综合性,贯穿整个高中数学的始终.而在高考试卷中的形式可谓千变万化,但万变不离其宗,真正实现了常考常新的考试要求.所以,我们应该掌握一些简单的基本方法.2.函数的单调性、奇偶性是高考命题热点,每年都会考一道选择或者填空题,分值5分,一般与指数,对数结合起来命题【题型目录】题型一:函数的定义域题型二:同一函数概念题型三:函数单调性的判断题型四:分段函数的单调性题型五:函数的单调性唯一性题型六:函数奇偶性的判断题型七:已知函数奇偶性,求参数题型八:已知函数奇偶性,求函数值题型九:利用奇偶性求函数解析式题型十:给出函数性质,写函数解析式题型十一:()=x f 奇函数+常数模型(()()常数⨯=+-2x f x f )题型十二:中值定理(求函数最大值最小值和问题,()()()中f x f x f 2min max =+,中指定义域的中间值)题型十三:.单调性和奇偶性综合求不等式范围问题题型十四:值域包含性问题题型十五:函数性质综合运用多选题【典型例题】题型一:函数的定义域【例1】(2021·奉新县第一中学高一月考)函数()f x =的定义域为()A .(]1,2B .[]1,4C .()1,4D .[]2,4答案:C解析:对于函数()f x =,有1040x x ->⎧⎨->⎩,解得14x <<.因此,函数()ln 1f x -=的定义域为()1,4.故选:C.【例2】函数()21log (3)f x x =-的定义域为【答案】()()3,44,⋃+∞【详解】由题意知()230log 30x x ->⎧⎨-≠⎩,得()223log 3log 1x x >⎧⎨-≠⎩,所以331x x >⎧⎨-≠⎩,所以()()3,44,x ∈⋃+∞.【例3】(2020·集宁期中)已知函数)32(-x f 的定义域是]41[,-,则函数)21(x f -的定义域()A .]12[,-B .]21[,C .]32[,-D .]31[,-【答案】C【详解】因为函数)32(-x f 的定义域是]41[,-,所以41≤≤-x ,所以5325≤-≤-x ,函数)(x f 的定义域为]55[,-,令5215≤-≤-x ,解得32≤≤-x 【例4】若函数()12log 22++=x ax y 的定义域为R ,则a 的范围为__________。
1996年全国统一高考数学试卷(理科)一、选择题(共15小题,1-10每小题4分,11-15每小题5分,满分65分)1.(4分)已知全集I=N ,集合A={x|x=2n ,n ∈N},B={x|x=4n ,n ∈N},则( )A . I =A ∪B B . I =∪BC .D .2.(4分)(2010•兰州一模)当a >1时,在同一坐标系中,函数y=a ﹣x 与y=log a x 的图象( )A .B .C .D .3.(4分)若sin 2x >cos 2x ,则x 的取值范围是( )A .B .C .D .4.(4分)复数等于( )A .B .C .D .5.(4分)(2015•广东模拟)如果直线l 、m 与平面α、β、γ满足:l=β∩γ,l ∥α,m ⊂α和m ⊥γ,那么必有( )A . α⊥γ且l ⊥mB . α⊥γ且m ∥βC . m ∥β且l ⊥mD . α∥β且α⊥γ6.(4分)当时,函数f (x )=sinx+cosx 的( )A . 最大值是1,最小值是﹣1B . 最大值是1,最小值是﹣C . 最大值是2,最小值是﹣2D . 最大值是2,最小值是﹣17.(4分)椭圆(θ为参数)的两个焦点坐标是( )A . (﹣3,5),(﹣3,﹣3)B . (3,3),(3,﹣5)C . (1,1),(﹣7,1)D . (7,﹣1),(﹣1,﹣1)8.(4分)若,则等于( )A .B . ﹣C . ﹣2αD . ﹣﹣2α9.(4分)(2014•广西模拟)将边长为a的正方形ABCD沿对角线AC折起,使得BD=a,则三棱锥D﹣ABC的体积为()A.B.C.D.10.(4分)等比数列{a n}的首项a1=﹣1,前n项和为S n,若则等于()A.B.﹣C.2D.﹣211.(5分)椭圆的极坐标方程为,则它在短轴上的两个顶点的极坐标是()B.(,),(,)A.(3,0),(1,π)C.(2,),(2,D.(,),(,))12.(5分)等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.26013.(5分)设双曲线=1(0<a<b)的半焦距为c,直线l过(a,0)(0,b)两点,已知原点到直线l的距离为,则双曲线的离心率为()A.2B.C.D.14.(5分)母线长为1的圆锥体积最大时,其侧面展开图圆心角ϕ等于()A.B.C.D.15.(5分)设f(x)是(﹣∞,+∞)上的奇函数,f(x+2)=﹣f(x),当0≤x≤1时,f(x)=x,则f (7.5)等于()A.0.5 B.﹣0.5 C.1.5 D.﹣1.5二、填空题(共4小题,每小题4分,满分16分)16.(4分)(2010•柳州三模)已知圆x2+y2+4x+3=0与抛物线y2=2px(p>0)的准线相切,则P=_________.17.(4分)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有_________个(用数字作答).18.(4分)求值:tan20°+tan40°+tan20°tan40°=_________.19.(4分)如图,正方形ABCD所在平面与正方形ABEF所在平面成60°的二面角,则异面直线AD 与BF所成角的余弦值是_________.三、解答题(共6小题,满分69分)20.(7分)解不等式.21.(10分)已知△ABC的三个内角A,B,C满足:,求的值.22.(12分)如图,在正三棱柱ABC﹣A1B1C1中,E∈BB1,截面A1EC⊥侧面AC1.(1)求证:BE=EB1;(2)若AA1=A1B1;求平面A1EC与平面A1B1C1所成二面角(锐角)的度数.注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ).(1)证明:在截面A1EC内,过E作EG⊥A1C,G是垂足.①∵_________∴EG⊥侧面AC1;取AC的中点F,连接BF,FG,由AB=BC得BF⊥AC,②∵_________∴BF⊥侧面AC1;得BF∥EG,BF、EG确定一个平面,交侧面AC1于FG.③∵_________∴BE∥FG,四边形BEGF是平行四边形,BE=FG,④∵_________∴FG∥AA1,△AA1C∽△FGC,⑤∵_________∴,即.23.(12分)某地现有耕地10000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%.如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷?(精确到1公顷)(粮食单产=,人均粮食占有量=)24.(12分)已知l1、l2是过点P(﹣,0)的两条互相垂直的直线,且l1、l2与双曲线y2﹣x2=1各有两个交点,分别为A1、B1和A2、B2.(1)求l1的斜率k1的取值范围;(2)若|A1B1|=|A2B2|,求l1、l2的方程.25.(16分)已知a,b,c∈R,函数f(x)=ax2+bx+c,g(x)=ax+b,当﹣1≤x≤1时,|f(x)|≤1,求证:①|c|≤1.②当﹣1≤x≤1时,|g(x)|≤2.1996年全国统一高考数学试卷(理科)参考答案与试题解析一、选择题(共15小题,1-10每小题4分,11-15每小题5分,满分65分)1.(4分)已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则()A.I=A∪B B.I=∪B C.D.考点:集合的包含关系判断及应用.分析:根据题意,分析A是正偶数的集合,而B是4的正整数倍组成的集合,易得B⊂A,做出图示,分析可得答案.解答:解:根据题意,A是正偶数的集合,而B是4的正整数倍组成的集合.易得B⊂A,根据题意,做出图示可得,由图示可得,故选C.点评:本题考查集合间的关系,图示法简单直观的方法.2.(4分)(2010•兰州一模)当a>1时,在同一坐标系中,函数y=a﹣x与y=log a x的图象()A.B.C.D.考点:函数的图象与图象变化.专题:数形结合.分析:先将函数y=a﹣x化成指数函数的形式,再结合函数的单调性同时考虑这两个函数的单调性即可判断出结果.解答:解:∵函数y=a﹣x可化为函数y=,其底数小于1,是减函数,又y=log a x,当a>1时是增函数,两个函数是一增一减,前减后增.故选A.点评:本题考查函数的图象,考查同学们对对数函数和指数函数基础知识的把握程度以及数形结合的思维能力.3.(4分)若sin2x>cos2x,则x的取值范围是()A.B.C.D.考点:余弦函数的单调性;二倍角的余弦.专题:计算题.分析:sin2x>cos2x化为cos2x﹣sin2x<0,就是cos2x<0,然后求解不等式即可得到x的取值范围.解答:解:因为sin2x>cos2x,所以cos2x﹣sin2x<0,就是cos2x<0解得:2kπ+<2x<2kπk∈Z所以x的取值范围是故选D.点评:本题考查余弦函数的单调性,二倍角的余弦,考查计算能力,是基础题.4.(4分)复数等于()A.B.C.D.考点:复数代数形式的混合运算.分析:利用1的立方虚根的性质化简,然后求得答案.解答:解:复数==.故选B.点评:复数代数形式的混合运算,同时应用1的立方虚根的性质化简;本题是中档题.5.(4分)(2015•广东模拟)如果直线l、m与平面α、β、γ满足:l=β∩γ,l∥α,m⊂α和m⊥γ,那么必有()A.α⊥γ且l⊥m B.α⊥γ且m∥β C.m∥β且l⊥m D.α∥β且α⊥γ考点:空间中直线与平面之间的位置关系.分析:m⊂α和m⊥γ⇒α⊥γ,l=β∩γ,l⊂γ.然后推出l⊥m,得到结果.解答:解:∵m⊂α和m⊥γ⇒α⊥γ,∵l=β∩γ,l⊂γ.∴l⊥m,故选A.点评:本题考查空间直线与平面之间的位置关系,画出图形,帮助分析,考查逻辑思维能力和分析判断能力,基础题.6.(4分)当时,函数f(x)=sinx+cosx的()A.最大值是1,最小值是﹣1 B.最大值是1,最小值是﹣C.最大值是2,最小值是﹣2 D.最大值是2,最小值是﹣1考点:三角函数中的恒等变换应用.分析:首先对三角函数式变形,提出2变为符合两角和的正弦公式形式,根据自变量的范围求出括号内角的范围,根据正弦曲线得到函数的值域. 解答: 解:∵f (x )=sinx+cosx=2(sinx+cosx ) =2sin (x+), ∵,∴f (x )∈[﹣1,2], 故选D 点评: 了解各公式间的内在联系,熟练地掌握这些公式的正用、逆用以及某些公式变形后的应用.掌握两角和与差的正弦、余弦、正切公式及其推导,本题主要是公式的逆用和对三角函数值域的考查.7.(4分)椭圆(θ为参数)的两个焦点坐标是( )A . (﹣3,5),(﹣3,﹣3)B . (3,3),(3,﹣5)C . (1,1),(﹣7,1)D . (7,﹣1),(﹣1,﹣1)考点: 椭圆的参数方程.专题: 计算题.分析: 由题意将椭圆先化为一般方程坐标,然后再计算两个焦点坐标.解答:解:∵椭圆,∴5x ﹣15=15cos φ,3y+3=15sin φ,方程两边平方相加, ∴(5x ﹣15)2+(3y+3)2=152∴,∴椭圆的两个焦点坐标是(3,3),(3,﹣5), 故选B . 点评:此题考查椭圆的性质和焦点坐标,还考查了参数方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,这也是每年高考必考的热点问题.8.(4分)若,则等于( ) A .B . ﹣C . ﹣2αD . ﹣﹣2α考点:反三角函数的运用. 专题: 计算题. 分析: 利用诱导公式化简,然后根据﹣sin α∈[﹣1,1],反三角函数的运算法则求出结果即可. 解答: 解:=arcsin[﹣sinα]+arccos[﹣sinα]因为﹣sinα∈[﹣1,1]所以,上式=故选A.点评:本题考查反三角函数的运用,诱导公式,是基础题.9.(4分)(2014•广西模拟)将边长为a的正方形ABCD沿对角线AC折起,使得BD=a,则三棱锥D﹣ABC的体积为()A.B.C.D.考点:棱柱、棱锥、棱台的体积.专题:计算题.分析:取AC的中点O,连接DO,BO,求出三角形DOB的面积,求出AC的长,即可求三棱锥D ﹣ABC的体积.解答:解:O是AC中点,连接DO,BO,如图,△ADC,△ABC都是等腰直角三角形,DO=B0==,BD=a,△BDO也是等腰直角三角形,DO⊥AC,DO⊥BO,DO⊥平面ABC,DO就是三棱锥D﹣ABC的高,S△ABC=a2三棱锥D﹣ABC的体积:,故选D.点评:本题考查棱锥的体积,是基础题.10.(4分)等比数列{a n}的首项a1=﹣1,前n项和为S n,若则等于()A.B.﹣C.2D.﹣2考点:等比数列的前n项和;极限及其运算.专题:计算题.分析:根据q5=得到q5,进而求出q.根据等比数列的求和公式,求得S n,最后令n趋近无穷取极限可得到答案.解答:解:∵∴q5===﹣∴q=∴==()•[1﹣()n﹣1]=﹣故选B点评:本题主要考查了等比数列的求和公式的应用.本题巧妙利用了在同一等比数列中项数相等的几组数列仍是等比数列的性质.11.(5分)椭圆的极坐标方程为,则它在短轴上的两个顶点的极坐标是()A.(3,0),(1,B .(,),(,)π)D.(,),(,)C.(2,),(2,)考点:简单曲线的极坐标方程.专题:计算题.分析:利用圆锥曲线统一的极坐标方程,求出圆锥曲线的短轴上的两个顶点位置,从而确定它们的极坐标.解答:解:将原极坐标方程为,化成:极坐标方程为ρ=,对照圆锥曲线统一的极坐标方程得:e=,a=2,b=,c=1.∴它在短轴上的两个顶点的极坐标(2,),(2,).故选C.点评:本题主要考查了圆锥曲线的极坐标方程,属于基础题.12.(5分)等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260考点:等差数列的前n项和;等差数列的性质.专题:计算题.分析:利用等差数列的前n项和公式,结合已知条件列出关于a1,d的方程组,用m表示出a1、d,进而求出s3m;或利用等差数列的性质,s m,s2m﹣s m,s3m﹣s2m成等差数列进行求解.解答:解:解法1:设等差数列{a n}的首项为a1,公差为d,由题意得方程组,解得d=,a1=,∴s3m=3ma1+d=3m+=210.故选C.解法2:∵设{a n}为等差数列,∴s m,s2m﹣s m,s3m﹣s2m成等差数列,即30,70,s3m﹣100成等差数列,∴30+s3m﹣100=70×2,解得s3m=210.故选C.点评:解法1为基本量法,思路简单,但计算复杂;解法2使用了等差数列的一个重要性质,即等差数列的前n项和为s n,则s n,s2n﹣s n,s3n﹣s2n,…成等差数列.13.(5分)设双曲线=1(0<a<b)的半焦距为c,直线l过(a,0)(0,b)两点,已知原点到直线l的距离为,则双曲线的离心率为()A.2B.C.D.考点:双曲线的简单性质.专题:计算题;压轴题.分析:直线l的方程为,原点到直线l的距离为,∴,据此求出a,b,c间的数量关系,从而求出双曲线的离心率.解答:解:∵直线l的方程为,c2=a2+b2∴原点到直线l的距离为,∴,∴16a2b2=3c4,∴16a2(c2﹣a2)=3c4,∴16a2c2﹣16a4=3c4,∴3e4﹣16e2+16=0,解得或e=2.0<a<b,∴e=2.故选A.点评:若,则有0<b<a.14.(5分)母线长为1的圆锥体积最大时,其侧面展开图圆心角ϕ等于()A.B.C.D.考点:基本不等式在最值问题中的应用;旋转体(圆柱、圆锥、圆台).专题:计算题;压轴题.分析:利用母线长得到底面半径与高的关系,利用圆锥的体积公式将体积表示成底面半径的函数,将函数凑成乘积为定值的形式,利用基本不等式求函数的最值.解答:解:设圆锥底面半径为r,高为h,则圆锥体积V=πr2•h又∵r2+h2=1∴h=∴圆锥体积V=πr2•=•∵=,当且仅当时,即当时圆锥体积V取得最大值∴侧面展开图圆心角ϕ=2πr=2π•故选择D点评:本题考查利用基本不等式求函数的最值:需要注意满足的条件:一正;二定;三相等.15.(5分)设f(x)是(﹣∞,+∞)上的奇函数,f(x+2)=﹣f(x),当0≤x≤1时,f(x)=x,则f(7.5)等于()A.0.5 B.﹣0.5 C.1.5 D.﹣1.5考点:奇函数.专题:计算题;压轴题.分析:题目中条件:“f(x+2)=﹣f(x),”可得f(x+4)=f(x),故f(7.5)=f(﹣0.5)=﹣f(0.5)=﹣0.5.解答:解:∵f(x+2)=﹣f(x),∴可得f(x+4)=f(x),∵f(x)是(﹣∞,+∞)上的奇函数∴f(﹣x)=﹣f(x).∴故f(7.5)=f(﹣0.5)=﹣f(0.5)=﹣0.5.故选B.点评:本题考查函数的奇偶性、周期性等,抽象函数是相对于给出具体解析式的函数来说的,它虽然没有具体的表达式,但是有一定的对应法则,满足一定的性质,这种对应法则及函数的相应的性质是解决问题的关键.二、填空题(共4小题,每小题4分,满分16分)16.(4分)(2010•柳州三模)已知圆x2+y2+4x+3=0与抛物线y2=2px(p>0)的准线相切,则P=2或6.考点:直线与圆的位置关系;抛物线的简单性质.专题:计算题.分析:先求出准线方程为x=﹣,因为准线与圆相切,得到圆心到准线的距离等于半径,再根据对称性得到,列出方程求出P即可.解答:解:由圆的方程得到圆心坐标为(﹣2,0),半径为1;由抛物线的方程得:准线方程为x=﹣,因为准线与圆相切,所以圆心到准线的距离d=圆的半径r得:d===r=1,解得p=2,p=﹣2(舍去),所以p=2;得到准线方程为x=﹣1,根据对称性得:x=﹣3也和圆相切,所以﹣=﹣3,解得p=6.所以p=2或6.故答案为2或6点评:考查学生掌握直线与圆相切时得到圆心到直线的距离等于圆的半径,以及灵活运用抛物线的简单性质解决数学问题,此题有两种情况,学生容易漏解.17.(4分)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有32个(用数字作答).考点:组合及组合数公式.专题:计算题.分析:正六边形的中心和顶点共7个点,选3个点的共有的方法减去在一条直线上的三点的个数即可.解答:解:正六边形的中心和顶点共7个点,选3个点的共有的方法是:C73=35在一条直线上的三点有3个符合题意的三角形有35﹣3=32个故答案为:32点评:本题考查组合及组合数公式,考查计算能力,逻辑思维能力,是基础题.18.(4分)求值:tan20°+tan40°+tan20°tan40°=.考点:两角和与差的正切函数.专题:计算题;压轴题.分析:利用60°=20°+40°,两角和的正切公式,进行变形,化为所求式子的值.解答:解:tan60°=tan(20°+40°)==tan20°+tan40°+tan20°tan40故答案为:点评:本题考查两角和的正切函数公式的应用,考查计算化简能力,观察能力,是基础题.19.(4分)如图,正方形ABCD所在平面与正方形ABEF所在平面成60°的二面角,则异面直线AD与BF所成角的余弦值是.考点:异面直线及其所成的角.专题:计算题;作图题;压轴题.分析:由题意得,CB⊥AB,AB⊥BE.可得正方形ABCD所在平面与正方形ABEF的二面角即∠CBE=60°,同时也得AB⊥平面BCE,即AB⊥CE,即是EF⊥CE.进而求出CF、FB、BC,即可求出异面直线AD与BF所成角的余弦值.解答:解:由题意得,CB⊥AB,AB⊥BE.可得正方形ABCD所在平面与正方形ABEF的二面角即∠CBE=60°,同时也得AB⊥平面BCE,即AB⊥CE,即三角形CEF为直角三角形和三角形CBE为等边三角形;即是EF⊥CE.设AB=1,则CE=1,CF=,FB=,利用余弦定理,得.故异面直线AD与BF所成角的余弦值是.点评:此题主要考查异面直线的角度及余弦值计算.三、解答题(共6小题,满分69分)20.(7分)解不等式.考点:其他不等式的解法.专题:计算题;分类讨论;转化思想.分析:先由对数函数的单调性转化不等式分a>1时,原不等式等价于不等式组:,0<a<1时,原不等式等价于不等式组:求解.解答:解:①当a>1时,原不等式等价于不等式组:由此得.因为1﹣a<0,所以x<0,∴.②当0<a<1时,原不等式等价于不等式组:解得:综上,当a>1时,不等式的解集为;当0<a<1时,不等式的解集为点评:本小题考查对数函数性质,对数不等式的解法,分类讨论的方法和运算能力.最后两种结果分开来写.既不取并集也不能取交集.21.(10分)已知△ABC的三个内角A,B,C满足:,求的值.考点:三角函数中的恒等变换应用;三角函数的积化和差公式.专题:计算题.分析:先根据A,B,C的关系求出B的值,再代入到中得到cosA,cosC的关系,根据和差化积及积化和差公式化简,再将cos,cos(A+C)的值代入整理后因式分解,即可求出的值.解答:解:由题设条件知B=60°,A+C=120°.∵,∴将上式化为利用和差化积及积化和差公式,上式可化为将代入上式得将代入上式并整理得,∵,∴从而得点评:本小题考查三角函数基础知识,利用三角公式进行恒等变形和运算的能力.22.(12分)如图,在正三棱柱ABC﹣A1B1C1中,E∈BB1,截面A1EC⊥侧面AC1.(1)求证:BE=EB1;(2)若AA1=A1B1;求平面A1EC与平面A1B1C1所成二面角(锐角)的度数.注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ).(1)证明:在截面A1EC内,过E作EG⊥A1C,G是垂足.①∵面A1EC⊥侧面AC1∴EG⊥侧面AC1;取AC的中点F,连接BF,FG,由AB=BC得BF⊥AC,②∵面ABC⊥侧面AC1∴BF⊥侧面AC1;得BF∥EG,BF、EG确定一个平面,交侧面AC1于FG.③∵BE∥侧面AC1∴BE∥FG,四边形BEGF是平行四边形,BE=FG,④∵BE∥AA1∴FG∥AA1,△AA1C∽△FGC,⑤∵AF=FC∴,即.考点:与二面角有关的立体几何综合题;棱柱的结构特征.分析:本题考查的知识点是棱柱的结构特征及二面角及其度量,(1)要证BE=EB1;即证E为BB1的中点;由截面A1EC⊥侧面AC1.我们可以在截面A1EC内,过E作EG⊥A1C,G是垂足,则易证FG=BE,我们可转化为FG=,由中位线性质,我们易得答案.(2)分别延长CE、C1B1交于点D,连接A1D.我们易得∠CA1C1是平面A1EC与平面A1B1C1所成锐二面角的平面角,解三角形CA1C1即可得到答案.解答:解:(Ⅰ)①面A1EC⊥侧面AC1②面ABC⊥侧面AC1③BE∥侧面AC1④BE∥AA1⑤AF=FC(Ⅱ)解:分别延长CE、C1B1交于点D,连接A1D.∵EB1∥,∴,∵∠B1A1C1=∠B1C1A1=60°,∠DA1B1=∠A1DB1=(180°﹣∠DB1A1)=30°,∴∠DA1C1=∠DA1B1+∠B1A1C1=90°,即DA1⊥A1C1∵CC1⊥面A1C1B1,即A1C1是A1C在平面A1C1D上的射影,根据三垂线定理得DA1⊥A1C,所以∠CA1C1是所求二面角的平面角.∵CC1=AA1=A1B1=A1C1,∠A1C1C=90°,∴∠CA1C1=45°,即所求二面角为45°点评:本小题考查空间线面关系,正三棱柱的性质,逻辑思维能力,空间想象能力及运算能力.求二面角的大小,一般先作出二面角的平面角.此题是利用二面角的平面角的定义作出∠CA1C1为所求二面角的平面角,通过解∠CA1C1所在的三角形求得∠CA1C1.其解题过程为:作∠CA1C1→证∠CA1C1是二面角的平面角→计算∠CA1C1,简记为“作、证、算”.23.(12分)某地现有耕地10000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%.如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷?(精确到1公顷)(粮食单产=,人均粮食占有量=)考点:二项式定理的应用;基本不等式在最值问题中的应用.专题:计算题;压轴题.分析:利用公式粮食单产=,人均粮食占有量=分别求出现在和10 年后的人均粮食占有量再利用已知条件人均粮食占有量比现在提高10%.列出不等式解得.解答:解:设耕地平均每年至多只能减少x公顷,又设该地区现有人口为P人,粮食单产为M吨/公顷.依题意得不等式化简得∵=≈4.1∴x≤4(公顷).答:按规划该地区耕地平均每年至多只能减少4公顷.点评:本小题主要考查运用数学知识和方法解决实际问题的能力,指数函数和二项式定理的应用,近似计算的方法和能力.24.(12分)已知l1、l2是过点P(﹣,0)的两条互相垂直的直线,且l1、l2与双曲线y2﹣x2=1各有两个交点,分别为A1、B1和A2、B2.(1)求l1的斜率k1的取值范围;(2)若|A1B1|=|A2B2|,求l1、l2的方程.考点:直线与圆锥曲线的关系;直线的斜率;斜率的计算公式.专题:计算题;综合题;压轴题.分析:(1)显然l1、l2斜率都存在,设l1的斜率为k1,得到l1、l2的方程,将直线方程与双曲线方程联立方程组,消去y得到关于x的二次方程,再结合根的判别即可求得斜率k1的取值范围;(2)利用(1)中得到的关于x的二次方程,结合根与系数的关系,利用弦长公式列关于k的方程,解方程即可求得k值,从而求出l1、l2的方程.解答:解:(1)显然l1、l2斜率都存在,否则l1、l2与曲线不相交.设l1的斜率为k1,则l1的方程为y=k1(x+).联立得y=k1(x+),y2﹣x2=1,消去y得(k12﹣1)x2+2k12x+2k12﹣1=0.①根据题意得k12﹣1≠0,②△1>0,即有12k12﹣4>0.③完全类似地有﹣1≠0,④△2>0,即有12•﹣4>0,⑤从而k1∈(﹣,﹣)∪(,)且k1≠±1.(2)由弦长公式得|A1B1|=.⑥完全类似地有|A2B2|=.⑦∵|A1B1|=|A2B2|,∴k1=±,k2=.从而l1:y=(x+),l2:y=﹣(x+)或l1:y=﹣(x+),l2:y=(x+).点评:本题主要考查了直线与圆锥曲线的交点,直线和圆锥曲线的位置是解析几何中的一个重点内容,也是一个难点,在高考试题中占有一席之地,属于中档题.25.(16分)已知a,b,c∈R,函数f(x)=ax2+bx+c,g(x)=ax+b,当﹣1≤x≤1时,|f(x)|≤1,求证:①|c|≤1.②当﹣1≤x≤1时,|g(x)|≤2.考点:简单线性规划.专题:压轴题;分类讨论.分析:①中因为C为函数解析式的常数项,则C=f(0),由些证明C的范围可转化为f(0)的范围②中由于a值不确定,因此要对a进行分类讨论,分类标准为a与0的关系;在每种情况中结合g(x)的单调性与①中结论不难给出结论.注意:分类讨论后一定要有总结的过程,此步骤虽无实际作用,但不可缺少.解答:证明:①∵当﹣1≤x≤1时,|f(x)|≤1,令x=0得|c|=|f(0)|≤1,即|c|≤1.②当a>0时,g(x)=ax+b在[﹣1,1]上是增函数,∴g(﹣1)≤g(x)≤g(1),又∵|f(x)|≤1(﹣1≤x≤1),|c|≤1,∴g(1)=a+b=f(1)﹣c≤|f(1)|+|c|≤2,g(﹣1)=﹣a+b=﹣f(﹣1)+c≥﹣(|f(﹣1)|+|c|)≥﹣2,由此得|g(x)|≤2;同理当a<0时,g(x)=ax+b在[﹣1,1]上是减函数,∴g(﹣1)≥g(x)≥g(1),又∵|f(x)|≤1(﹣1≤x≤1),|c|≤1,∴g(﹣1)=﹣a+b=﹣f(﹣1)+c≤|f(﹣1)|+|c|≤2,g(1)=a+b=f(1)﹣c≥﹣(|f(1)|+|c|)≥﹣2,由此得|g(x)|≤2;当a=0时,g(x)=b,f(x)=bx+c.∵﹣1≤x≤1,∴|g(x)|=|f(1)﹣c|≤|f(1)|+|c|≤2.综上得|g(x)|≤2.点评:在高中阶段由于研究函数的角度与初中阶段相比有所变化,因此同样对二次函数来说,高中研究的主要是二次函数性质的应用,如单调性、对称性等,因此解决此类问题的关键是熟练掌握二次函数的图象和性质,并注意和方程思想、分类讨论思想、转化思想、数形结合思想等高中重要数学思想之间的紧密联系.。
高中数学高考总复习函数概念习题(附参考答案)一、选择题1.(文)(2010·浙江文)已知函数f (x )=log 2(x +1),若f (a )=1,则a =( ) A .0 B .1 C .2D .3[答案] B[解析] 由题意知,f (a )=log 2(a +1)=1,∴a +1=2, ∴a =1.(理)(2010·广东六校)设函数f (x )=⎩⎪⎨⎪⎧2xx ∈(-∞,2]log 2x x ∈(2,+∞),则满足f (x )=4的x 的值是( )A .2B .16C .2或16D .-2或16[答案] C[解析] 当f (x )=2x 时.2x =4,解得x =2. 当f (x )=log 2x 时,log 2x =4,解得x =16. ∴x =2或16.故选C.2.(文)(2010·湖北文,3)已知函数f (x )=⎩⎪⎨⎪⎧log 3x x >02x x ≤0,则f (f (19))=( )A .4 B.14 C .-4D .-14[答案] B[解析] ∵f (19)=log 319=-2<0∴f (f (19))=f (-2)=2-2=14.(理)设函数f (x )=⎩⎪⎨⎪⎧21-x-1 (x <1)lg x (x ≥1),若f (x 0)>1,则x 0的取值范围是( )A .(-∞,0)∪(10,+∞)B .(-1,+∞)C .(-∞,-2)∪(-1,10)D .(0,10) [答案] A[解析] 由⎩⎪⎨⎪⎧ x 0<121-x 0-1>1或⎩⎪⎨⎪⎧x 0≥1lg x 0>1⇒x 0<0或x 0>10.3.(2010·天津模拟)若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为f (x )=x 2,值域为{1,4}的“同族函数”共有( )A .7个B .8个C .9个D .10个[答案] C[解析] 由x 2=1得x =±1,由x 2=4得x =±2,故函数的定义域可以是{1,2},{-1,2},{1,-2},{-1,-2},{1,2,-1},{1,2,-2},{1,-2,-1},{-1,2,-2}和{-1,-2,1,2},故选C.4.(2010·柳州、贵港、钦州模拟)设函数f (x )=1-2x1+x ,函数y =g (x )的图象与y =f (x )的图象关于直线y =x 对称,则g (1)等于( )A .-32B .-1C .-12D .0[答案] D[解析] 设g (1)=a ,由已知条件知,f (x )与g (x )互为反函数,∴f (a )=1,即1-2a1+a =1,∴a =0.5.(2010·广东六校)若函数y =f (x )的图象如图所示,则函数y =f (1-x )的图象大致为( )[答案] A[解析] 解法1:y =f (-x )的图象与y =f (x )的图象关于y 轴对称.将y =f (-x )的图象向右平移一个单位得y =f (1-x )的图象,故选A.解法2:由f (0)=0知,y =f (1-x )的图象应过(1,0)点,排除B 、C ;由x =1不在y =f (x )的定义域内知,y =f (1-x )的定义域应不包括x =0,排除D ,故选A.6.(文)(2010·广东四校)已知两个函数f (x )和g (x )的定义域和值域都是集合{1,2,3},其定义如下表,填写下列g (f (x ))的表格,其三个数依次为( )A.3,1,2 C .1,2,3D .3,2,1[答案] D[解析] 由表格可知,f (1)=2,f (2)=3,f (3)=1,g (1)=1,g (2)=3,g (3)=2, ∴g (f (1))=g (2)=3,g (f (2))=g (3)=2,g (f (3))=g (1)=1, ∴三个数依次为3,2,1,故选D.(理)(2010·山东肥城联考)已知两个函数f (x )和g (x )的定义域和值域都是集合{1,2,3},其定义如下表:则方程g [f (x )]=x 的解集为( ) A .{1} B .{2} C .{3}D .∅[答案] C[解析] g [f (1)]=g (2)=2,g [f (2)]=g (3)=1; g [f (3)]=g (1)=3,故选C.7.若函数f (x )=log a (x +1) (a >0且a ≠1)的定义域和值域都是[0,1],则a 等于( ) A.13B. 2C.22D .2[答案] D[解析] ∵0≤x ≤1,∴1≤x +1≤2,又∵0≤log a (x +1)≤1,故a >1,且log a 2=1,∴a =2.8.(文)(2010·天津文)设函数g (x )=x 2-2(x ∈R),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x )g (x )-x ,x ≥g (x ),则f (x )的值域是( )A.⎣⎡⎦⎤-94,0∪(1,+∞) B .[0,+∞)C.⎣⎡⎭⎫-94,+∞D.⎣⎡⎦⎤-94,0∪(2,+∞) [答案] D[解析] 由题意可知f (x )=⎩⎪⎨⎪⎧x 2+x +2 x <-1或x >2x 2-x -2 -1≤x ≤21°当x <-1或x >2时,f (x )=x 2+x +2=⎝⎛⎭⎫x +122+74 由函数的图可得f (x )∈(2,+∞).2°当-1≤x ≤2时,f (x )=x 2-x -2=⎝⎛⎭⎫x -122-94, 故当x =12时,f (x )min =f ⎝⎛⎭⎫12=-94, 当x =-1时,f (x )max =f (-1)=0, ∴f (x )∈⎣⎡⎦⎤-94,0. 综上所述,该分段函数的值域为⎣⎡⎦⎤-94,0∪(2,+∞). (理)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2(1-x ) (x ≤0)f (x -1)-f (x -2) (x >0),则f (2010)的值为( ) A .-1 B .0 C .1D .2[答案] B[解析] f (2010)=f (2009)-f (2008)=(f (2008)-f (2007))-f (2008)=-f (2007),同理f (2007)=-f (2004),∴f (2010)=f (2004),∴当x >0时,f (x )以6为周期进行循环, ∴f (2010)=f (0)=log 21=0.9.(文)对任意两实数a 、b ,定义运算“*”如下:a *b =⎩⎪⎨⎪⎧a ,若a ≤b ;b ,若a >b函数f (x )=log 12(3x-2)*log 2x 的值域为( )A .(-∞,0)B .(0,+∞)C .(-∞,0]D .[0,+∞)[答案] C[解析] ∵a *b =⎩⎪⎨⎪⎧a ,若a ≤b ,b ,若a >b .而函数f (x )=log 12(3x -2)与log 2x 的大致图象如右图所示,∴f (x )的值域为(-∞,0].(理)定义max{a 、b 、c }表示a 、b 、c 三个数中的最大值,f (x )=max{⎝⎛⎭⎫12x,x -2,log 2x (x >0)},则f (x )的最小值所在范围是( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,3)[答案] C[解析] 在同一坐标系中画出函数y =⎝⎛⎭⎫12x,y =x -2与y =log 2x 的图象,y =⎝⎛⎭⎫12x 与y =log 2x 图象的交点为A (x 1,y 1),y =x -2与y =log 2x 图象的交点为B (x 2,y 2),则由f (x )的定义知,当x ≤x 1时,f (x )=⎝⎛⎭⎫12x,当x 1<x <x 2时,f (x )=log 2x ,当x ≥x 2时,f (x )=x -2,∴f (x )的最小值在A 点取得,∵0<y 1<1,故选C.10.(文)(2010·江西吉安一中)如图,已知四边形ABCD 在映射f :(x ,y )→(x +1,2y )作用下的象集为四边形A 1B 1C 1D 1,若四边形A 1B 1C 1D 1的面积是12,则四边形ABCD 的面积是( )A .9B .6C .6 3D .12[答案] B[解析] 本题考察阅读理解能力,由映射f 的定义知,在f 作用下点(x ,y )变为(x +1,2y ),∴在f 作用下|A 1C 1|=|AC |,|B 1D 1|=2|BD |,且A 1、C 1仍在x 轴上,B 1、D 1仍在y 轴上,故S ABCD =12|AC |·|BD |=12|A 1C 1|·12|B 1D 1|=12SA 1B 1C 1D 1=6,故选B.(理)设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c x ≤02 x >0,若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( )A .1B .2C .3D .4[答案] C[解析] 解法1:当x ≤0时,f (x )=x 2+bx +c . ∵f (-4)=f (0),f (-2)=-2,∴⎩⎪⎨⎪⎧ (-4)2+b ·(-4)+c =c (-2)2+b ·(-2)+c =-2,解得⎩⎪⎨⎪⎧b =4c =2, ∴f (x )=⎩⎪⎨⎪⎧x 2+4x +2 x ≤02 x >0,当x ≤0时,由f (x )=x 得,x 2+4x +2=x , 解得x =-2,或x =-1; 当x >0时,由f (x )=x 得,x =2, ∴方程f (x )=x 有3个解.解法2:由f (-4)=f (0)且f (-2)=-2可得,f (x )=x 2+bx +c 的对称轴是x =-2,且顶点为(-2,-2),于是可得到f (x )的简图如图所示.方程f (x )=x 的解的个数就是函数图象y =f (x )与y =x 的图象的交点的个数,所以有3个解.二、填空题11.(文)(2010·北京东城区)函数y =x +1+lg(2-x )的定义域是________. [答案] [-1,2)[解析] 由⎩⎪⎨⎪⎧x +1≥02-x >0得,-1≤x <2.(理)函数f (x )=x +4-x 的最大值与最小值的比值为________. [答案]2[解析] ∵⎩⎪⎨⎪⎧x ≥04-x ≥0,∴0≤x ≤4,f 2(x )=4+2x (4-x )≤4+[x +(4-x )]=8,且f2(x )≥4,∵f (x )≥0,∴2≤f (x )≤22,故所求比值为 2.[点评] (1)可用导数求解;(2)∵0≤x ≤4,∴0≤x 4≤1,故可令x 4=sin 2θ(0≤θ≤π2)转化为三角函数求解.12.函数y =cos x -1sin x -2 x ∈[0,π]的值域为________.[答案] ⎣⎡⎦⎤0,43 [解析] 函数表示点(sin α,cos α)与点(2,1)连线斜率.而点(sin α,cos α)α∈[0,π]表示单位圆右半部分,由几何意义,知y ∈[0,43].13.(2010·湖南湘潭市)在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,如果函数f (x )的图象恰好通过n (n ∈N *)个整点,则称函数f (x )为n 阶整点函数,有下列函数①f (x )=sin2x ②g (x )=x 3 ③h (x )=⎝⎛⎭⎫13x ④φ(x )=ln x .其中是一阶整点函数的是________.(写出所有正确结论的序号) [答案] ①④[解析] 其中①只过(0,0)点,④只过(1,0)点;②过(0,1),(1,1),(2,8)等,③过(0,1),(-1,3)等.14.(文)若f (a +b )=f (a )·f (b )且f (1)=1,则f (2)f (1)+f (3)f (2)+…+f (2012)f (2011)=________.[答案] 2011[解析] 令b =1,则f (a +1)f (a )=f (1)=1,∴f (2)f (1)+f (3)f (2)+…+f (2012)f (2011)=2011. (理)设函数f (x )=x |x |+bx +c ,给出下列命题: ①b =0,c >0时,方程f (x )=0只有一个实数根; ②c =0时,y =f (x )是奇函数; ③方程f (x )=0至多有两个实根.上述三个命题中所有的正确命题的序号为________. [答案] ①②[解析] ①f (x )=x |x |+c=⎩⎪⎨⎪⎧x 2+c ,x ≥0-x 2+c ,x <0, 如右图与x 轴只有一个交点.所以方程f (x )=0只有一个实数根正确. ②c =0时,f (x )=x |x |+bx 显然是奇函数.③当c =0,b <0时,f (x )=x |x |+bx =⎩⎪⎨⎪⎧x 2+bx ,x ≥0-x 2+bx ,x <0如右图方程f (x )=0可以有三个实数根. 综上所述,正确命题的序号为①②. 三、解答题15.(文)(2010·深圳九校)某自来水厂的蓄水池存有400吨水,水厂每小时可向蓄水池中注水60吨,同时蓄水池又向居民小区不间断供水,t 小时内供水总量为1206t 吨,(0≤t ≤24).(1)从供水开始到第几小时时,蓄水池中的存水量最少?最少水量是多少吨?(2)若蓄水池中水量少于80吨时,就会出现供水紧张现象,请问在一天的24小时内,有几小时出现供水紧张现象.[解析] (1)设t 小时后蓄水池中的水量为y 吨, 则y =400+60t -1206t (0≤t ≤24) 令6t =x ,则x 2=6t 且0≤x ≤12,∴y =400+10x 2-120x =10(x -6)2+40(0≤x ≤12); ∴当x =6,即t =6时,y min =40,即从供水开始到第6小时时,蓄水池水量最少,只有40吨. (2)依题意400+10x 2-120x <80, 得x 2-12x +32<0,解得4<x <8,即4<6t <8,∴83<t <323;∵323-83=8,∴每天约有8小时供水紧张.(理)某物流公司购买了一块长AM =30米,宽AN =20米的矩形地块AMPN ,规划建设占地如图中矩形ABCD 的仓库,其余地方为道路和停车场,要求顶点C 在地块对角线MN 上,B 、D 分别在边AM 、AN 上,假设AB 长度为x 米.(1)要使仓库占地ABCD 的面积不少于144平方米,AB 长度应在什么范围内? (2)若规划建设的仓库是高度与AB 长度相同的长方体形建筑,问AB 长度为多少时仓库的库容最大?(墙体及楼板所占空间忽略不计)[解析] (1)依题意得三角形NDC 与三角形NAM 相似,所以DC AM =ND NA ,即x 30=20-AD20,AD =20-23x ,矩形ABCD 的面积为S =20x -23x 2 (0<x <30),要使仓库占地ABCD 的面积不少于144平方米, 即20x -23x 2≥144,化简得x 2-30x +216≤0,解得12≤x ≤18. 所以AB 长度应在[12,18]内.(2)仓库体积为V =20x 2-23x 3(0<x <30),V ′=40x -2x 2=0得x =0或x =20, 当0<x <20时,V ′>0,当20<x <30时V ′<0, 所以x =20时,V 取最大值80003m 3,即AB 长度为20米时仓库的库容最大.16.(2010·皖南八校联考)对定义域分别是Df ,Dg 的函数y =f (x ),y =g (x ),规定: 函数h (x )=⎩⎪⎨⎪⎧f (x )g (x ),当x ∈Df 且x ∈Dg ,f (x ),当x ∈Df 且x ∉Dg ,g (x ),当x ∈Dg 且x ∉Df .(1)若函数f (x )=1x -1,g (x )=x 2,写出函数h (x )的解析式;(2)求问题(1)中函数h (x )的值域;(3)若g (x )=f (x +α),其中α是常数,且α∈[0,π],请设计一个定义域为R 的函数y =f (x ),及一个α的值,使得h (x )=cos4x ,并予以证明.[解析] (1)由定义知,h (x )=⎩⎪⎨⎪⎧x 2x -1,x ∈(-∞,1)∪(1,+∞),1,x =1.(2)由(1)知,当x ≠1时,h (x )=x -1+1x -1+2,则当x >1时,有h (x )≥4(当且仅当x =2时,取“=”); 当x <1时,有h (x )≤0(当且仅当x =0时,取“=”). 则函数h (x )的值域是(-∞,0]∪{1}∪[4,+∞).(3)可取f (x )=sin2x +cos2x ,α=π4,则g (x )=f (x +α)=cos2x -sin2x ,于是h (x )=f (x )f (x +α)=cos4x .(或取f (x )=1+2sin2x ,α=π2,则g (x )=f (x +α)=1-2sin2x .于是h (x )=f (x )f (x +α)=cos4x ).[点评] 本题中(1)、(2)问不难求解,关键是读懂h (x )的定义,第(3)问是一个开放性问题,乍一看可能觉得无从下手,但细加观察不难发现,cos4x =cos 22x -sin 22x =(cos2x +sin2x )(cos2x -sin2x )积式的一个因式取作f (x ),只要能够找到α,使f (x +α)等于另一个因式也就找到了f (x )和g (x ).17.(文)某种商品在30天内每件的销售价格P (元)与时间t (天)的函数关系如图所示:该商品在30天内日销售量Q (件)与时间t (天)之间的关系如表所示:(1)(2)在所给直角坐标系中,根据表中提供的数据描出实数对(t ,Q )的对应点,并确定日销售量Q 与时间t 的一个函数关系式;(3)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?(日销售金额=每件的销售价格×日销售量)[解析] (1)P =⎩⎪⎨⎪⎧t +20 (0<t <25,t ∈N *)-t +100 (25≤t ≤30,t ∈N *) (2)图略,Q =40-t (t ∈N *) (3)设日销售金额为y (元),则y =⎩⎪⎨⎪⎧-t 2+20t +800 (0<t <25,t ∈N *)t 2-140t +4000 (25≤t ≤30,t ∈N *)=⎩⎪⎨⎪⎧-(t -10)2+900 (0<t <25,t ∈N *)(t -70)2-900 (25≤t ≤30,t ∈N *) 若0<t <25(t ∈N *),则当t =10时,y max =900;若25≤t ≤30(t ∈N *),则当t =25时,y max =1125.由1125>900,知y max =1125,∴这种商品日销售金额的最大值为1125元,30天中的第25天的日销售金额最大. (理)(2010·广东六校)某西部山区的某种特产由于运输的原因,长期只能在当地销售,当地政府通过投资对该项特产的销售进行扶持,已知每投入x 万元,可获得纯利润P =-1160(x -40)2+100万元(已扣除投资,下同),当地政府拟在新的十年发展规划中加快发展此特产的销售,其规划方案为:在未来10年内对该项目每年都投入60万元的销售投资,其中在前5年中,每年都从60万元中拨出30万元用于修建一条公路,公路5年建成,通车前该特产只能在当地销售;公路通车后的5年中,该特产既在本地销售,也在外地销售,在外地销售的投资收益为:每投入x 万元,可获纯利润Q =-159160(60-x )2+1192·(60-x )万元,问仅从这10年的累积利润看,该规划方案是否可行?[解析] 在实施规划前,由题设P =-1160(x -40)2+100(万元),知每年只需投入40万,即可获得最大利润100万元,则10年的总利润为W 1=100×10=1000(万元)实施规划后的前5年中,由题设P =-1160(x -40)2+100知,每年投入30万元时,有最大利润P max =7958(万元) 前5年的利润和为7958×5=39758(万元) 设在公路通车的后5年中,每年用x 万元投资于本地的销售,而剩下的(60-x )万元用于外地区的销售投资,则其总利润为W 2=[-1160(x -40)2+100]×5+(-159160x 2+1192x )×5=-5(x -30)2+4950. 当x =30时,W 2=4950(万元)为最大值,从而10年的总利润为39758+4950(万元). ∵39758+4950>1000, ∴该规划方案有极大实施价值.。