NTC特性
- 格式:doc
- 大小:105.50 KB
- 文档页数:4
ntc温敏电阻
NTC(Negative Temperature Coefficient)温敏电阻是一种随温
度下降而电阻值减小的热敏电阻。
其电阻随温度的变化呈负温度系数,即温度升高时电阻减小,温度降低时电阻增加。
这种性质使得NTC温敏电阻在温度测量、温度补偿和温度敏感控
制等领域有广泛的应用。
以下是关于NTC温敏电阻的一些基本信息:
1.工作原理: NTC温敏电阻的电阻值变化与其材料的温度敏
感性有关。
通常,NTC温敏电阻由氧化物(例如,锰氧化铜)制成。
随着温度的升高,氧化物晶格中的自由电子增多,电子迁移变得更加容易,从而电阻值减小。
2.特性曲线:NTC温敏电阻的电阻-温度特性曲线呈指数关系,即在一定温度范围内,电阻值随温度呈指数下降。
这种特性使得NTC温敏电阻在一些特定的温度范围内对温度变化更为敏感。
3.应用领域: NTC温敏电阻广泛用于温度测量、温度补偿和
温度控制等方面。
它们可以作为温度传感器,被嵌入到电子设备、电路中,用于测量和监控环境温度。
4.热敏控制: NTC温敏电阻还常用于热敏控制电路中,例如
用于电源电路的过热保护、温度补偿电路等。
在这些应用中,NTC温敏电阻能够提供可靠的温度敏感特性。
5.替代传感器:在一些应用中,NTC温敏电阻也被用作替代
传感器,例如在测量液体温度或表面温度方面。
总的来说,NTC温敏电阻因其负温度系数的特性,在温度敏感应用中扮演着重要的角色。
在选择和使用时,需要考虑其特性曲线、温度范围以及精度等因素。
NTC热敏电阻特性参数基本知识热敏电阻分为两类,分别为:1.NTC负温度系数热敏电阻2.PTC正温度系数热敏电阻热敏电阻的物理特性用下列参数表示:电阻值、B值、耗散系数、热时间常数、电阻温度系数。
电阻值:R〔Ω〕电阻值的近似值表示为:R2=R1exp[1/T2-1/T1]其中: R2:绝对温度为T2〔K〕时的电阻〔Ω〕R1:绝对温度为T1〔K〕时的电阻〔Ω〕B: B值〔K〕B值:B〔k〕B值是电阻在两个温度之间变化的函数,表达式为:B= InR1-InR2 =2.3026(1ogR1-1ogR2)1/T1-1/T2 1/T1-1/T2其中: B: B值〔K〕R1:绝对温度为T1〔K〕时的电阻〔Ω〕R2:绝对温度为T2〔K〕时的电阻〔Ω〕耗散系数:δ〔mW/℃〕耗散系数是物体消耗的电功与相应的温升值之比δ= W/T-Ta = I2 R/T-Ta 其中:δ:耗散系数δ〔mW/℃〕W:热敏电阻消耗的电功〔mW〕T:达到热平衡后的温度值〔℃〕Ta: 室温〔℃〕I: 在温度T时加热敏电阻上的电流值〔mA〕R: 在温度T时加热敏电阻上的电流值〔KΩ〕在测量温度时,应注意防止热敏电阻由于加热造成的升温。
热时间常数:τ〔sec.〕热敏电阻在零能量条件下,由于步阶效应使热敏电阻本身的温度发生改变,当温度在初始值和最终值之间改变63.2%所需的时间就是热时间系数τ。
电阻温度系数:α〔%/℃〕α是表示热敏电阻器温度每变化1oC,其电阻值变化程度的系数〔即变化率〕,用α=1/R?dR/dT 表示,计算式为:α = 1/R?dR/dT×100 = -B/T2×100其中:α:电阻温度系数〔%/℃〕R:绝对温度T〔K〕时的电阻值〔Ω〕B: B值〔K〕热敏电阻是开发早、种类多、发展较成熟的敏感元器件.热敏电阻由半导体陶瓷材料组成,利用的原理是温度引起电阻变化.若电子和空穴的浓度分别为n、p,迁移率分别为μn、μp,则半导体的电导为:σ=q(nμn pμp)因为n、p、μn、μp都是依赖温度T的函数,所以电导是温度的函数,因此可由测量电导而推算出温度的高低,并能做出电阻-温度特性曲线.这就是半导体热敏电阻的工作原理.热敏电阻包括正温度系数(PTC)和负温度系数(NTC)热敏电阻,以及临界温度热敏电阻(CTR).它们的电阻-温度特性如图1所示.热敏电阻的主要特点是:①灵敏度较高,其电阻温度系数要比金属大10~100倍以上,能检测出10-6℃的温度变化;②工作温度范围宽,常温器件适用于-55℃~315℃,高温器件适用温度高于315℃(目前最高可达到2000℃),低温器件适用于-273℃~55℃;③体积小,能够测量其他温度计无法测量的空隙、腔体及生物体内血管的温度;④使用方便,电阻值可在0.1~100kΩ间任意选择;⑤易加工成复杂的形状,可大批量生产;⑥稳定性好、过载能力强.由于半导体热敏电阻有独特的性能,所以在应用方面,它不仅可以作为测量元件(如测量温度、流量、液位等),还可以作为控制元件(如热敏开关、限流器)和电路补偿元件.热敏电阻广泛用于家用电器、电力工业、通讯、军事科学、宇航等各个领域,发展前景极其广阔.一、PTC热敏电阻PTC(Positive Temperature Coeff1Cient)是指在某一温度下电阻急剧增加、具有正温度系数的热敏电阻现象或材料,可专门用作恒定温度传感器.该材料是以BaTiO3或SrTiO3或PbTiO3为主要成分的烧结体,其中掺入微量的Nb、Ta、Bi、Sb、Y、La等氧化物进行原子价控制而使之半导化,常将这种半导体化的BaTiO3等材料简称为半导(体)瓷;同时还添加增大其正电阻温度系数的Mn、Fe、Cu、Cr的氧化物和起其他作用的添加物,采用一般陶瓷工艺成形、高温烧结而使钛酸铂等及其固溶体半导化,从而得到正特性的热敏电阻材料.其温度系数及居里点温度随组分及烧结条件(尤其是冷却温度)不同而变化.钛酸钡晶体属于钙钛矿型结构,是一种铁电材料,纯钛酸钡是一种绝缘材料.在钛酸钡材料中加入微量稀土元素,进行适当热处理后,在居里温度附近,电阻率陡增几个数量级,产生PTC效应,此效应与BaTiO3晶体的铁电性及其在居里温度附近材料的相变有关.钛酸钡半导瓷是一种多晶材料,晶粒之间存在着晶粒间界面.该半导瓷当达到某一特定温度或电压,晶体粒界就发生变化,从而电阻急剧变化.钛酸钡半导瓷的PTC效应起因于粒界(晶粒间界).对于导电电子来说,晶粒间界面相当于一个势垒.当温度低时,由于钛酸钡内电场的作用,导致电子极容易越过势垒,则电阻值较小.当温度升高到居里点温度(即临界温度)附近时,内电场受到破坏,它不能帮助导电电子越过势垒.这相当于势垒升高,电阻值突然增大,产生PTC效应.钛酸钡半导瓷的PTC效应的物理模型有海望表面势垒模型、丹尼尔斯等人的钡缺位模型和叠加势垒模型,它们分别从不同方面对PTC效应作出了合理解释.实验表明,在工作温度范围内,PTC热敏电阻的电阻-温度特性可近似用实验公式表示:RT=RT0expBp(T-T0)式中RT、RT0表示温度为T、T0时电阻值,Bp为该种材料的材料常数.PTC效应起源于陶瓷的粒界和粒界间析出相的性质,并随杂质种类、浓度、烧结条件等而产生显著变化.最近,进入实用化的热敏电阻中有利用硅片的硅温度敏感元件,这是体型且精度高的PTC热敏电阻,由n型硅构成,因其中的杂质产生的电子散射随温度上升而增加,从而电阻增加.PTC热敏电阻于1950年出现,随后1954年出现了以钛酸钡为主要材料的PTC热敏电阻.PTC热敏电阻在工业上可用作温度的测量与控制,也用于汽车某部位的温度检测与调节,还大量用于民用设备,如控制瞬间开水器的水温、空调器与冷库的温度,利用本身加热作气体分析和风速机等方面.下面简介一例对加热器、马达、变压器、大功率晶体管等电器的加热和过热保护方面的应用。
NTC热敏电阻特性参数基本知识NTC热敏电阻(Negative Temperature Coefficient Thermistor)是一种温度敏感的电阻器件,其电阻值随着温度的升高而减小,温度降低时则电阻值增加。
它广泛应用于温度测量、温度控制以及温度补偿等领域。
了解NTC热敏电阻的特性参数对于正确选择和使用该器件至关重要。
下面将介绍NTC热敏电阻的基本知识以及其特性参数。
1.NTC热敏电阻的材料2.NTC热敏电阻的电阻温度特性NTC热敏电阻的电阻温度特性是指在一定温度范围内,NTC热敏电阻的电阻值随温度的变化规律。
一般来说,NTC热敏电阻的电阻值在室温附近随温度线性下降。
即温度升高,电阻值减小;温度降低,电阻值增加。
这种特性可以通过温度系数来描述,即NTC热敏电阻的温度系数为负值。
3.NTC热敏电阻的温度系数NTC热敏电阻的温度系数(α)是指在一定温度范围内,电阻值单位变化所对应的温度变化。
一般用%/°C来表示。
温度系数越大,NTC热敏电阻的灵敏度越高。
常见的NTC热敏电阻的温度系数范围为-1%~-6%/°C。
4.NTC热敏电阻的额定电阻值与温度关系NTC热敏电阻的额定电阻值只是一个参考值,一般在室温下测量得到。
随着温度的变化,NTC热敏电阻的电阻值也会相应改变。
实际应用时,需要根据具体的温度测量范围和精度要求,选择合适的NTC热敏电阻型号和相应的电阻值。
5.NTC热敏电阻的温度测量范围和精度6.NTC热敏电阻的响应时间7.NTC热敏电阻的封装形式综上所述,NTC热敏电阻的特性参数包括电阻温度特性、温度系数、额定电阻值与温度关系、温度测量范围和精度、响应时间以及封装形式等。
在选择和应用NTC热敏电阻时,需要根据实际需求和具体的设计要求进行综合考虑。
这些基本知识的掌握能够帮助工程师正确选择和使用NTC热敏电阻,从而确保系统的稳定性和性能。
NTC工作原理及应用关键信息项:1、 NTC 的定义及特性名称:____________________________工作温度范围:____________________________电阻值范围:____________________________精度等级:____________________________2、 NTC 的工作原理材料特性:____________________________电阻与温度的关系:____________________________电学特性:____________________________3、 NTC 的应用领域消费电子:____________________________工业控制:____________________________汽车电子:____________________________医疗设备:____________________________4、 NTC 应用中的注意事项安装方式:____________________________环境影响:____________________________可靠性问题:____________________________11 NTC 的定义及特性NTC 是 Negative Temperature Coefficient 的缩写,即负温度系数热敏电阻。
它是一种电阻值随温度上升而下降的电子元件。
111 NTC 的工作温度范围通常较广,可以从低温到高温,具体取决于其材料和制造工艺。
一般常见的工作温度范围在-55℃至+150℃之间。
112 NTC 的电阻值范围也有很大的差异,从几欧姆到几兆欧姆不等。
113 精度等级是衡量 NTC 性能的重要指标之一,常见的精度等级有1%、2%、5%等。
12 NTC 的工作原理NTC 主要由具有负温度系数的半导体材料制成。
121 其材料特性决定了在温度变化时,载流子的浓度和迁移率发生改变,从而导致电阻值的变化。
NTCNTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。
它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。
这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。
温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。
NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。
NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。
NTC(Negative Temperature Coeff1Cient)是指随温度上升电阻呈指数关系减小、具有负温度系数的热敏电阻现象和材料.该材料是利用锰、铜、硅、钴、铁、镍、锌等两种或两种以上的金属氧化物进行充分混合、成型、烧结等工艺而成的半导体陶瓷,可制成具有负温度系数(NTC)的热敏电阻.其电阻率和材料常数随材料成分比例、烧结气氛、烧结温度和结构状态不同而变化.现在还出现了以碳化硅、硒化锡、氮化钽等为代表的非氧化物系NTC热敏电阻材料.NTC热敏半导瓷大多是尖晶石结构或其他结构的氧化物陶瓷,具有负的温度系数,电阻值可近似表示为:式中RT、RT0分别为温度T、T0时的电阻值,Bn为材料常数.陶瓷晶粒本身由于温度变化而使电阻率发生变化,这是由半导体特性决定的.NTC热敏电阻器的发展经历了漫长的阶段.1834年,科学家首次发现了硫化银有负温度系数的特性.1930年,科学家发现氧化亚铜-氧化铜也具有负温度系数的性能,并将之成功地运用在航空仪器的温度补偿电路中.随后,由于晶体管技术的不断发展,热敏电阻器的研究取得重大进展.1960年研制出了N1C热敏电阻器.NTC热敏电阻器广泛用于测温、控温、温度补偿等方面.下面介绍一个温度测量的应用实例,NTC热敏电阻测温用原理如图4所示.它的测量范围一般为-10~+300℃,也可做到-200~+10℃,甚至可用于+300~+ 1200℃环境中作测温用.RT为NTC热敏电阻器;R2和R3是电桥平衡电阻;R1为起始电阻;R4为满刻度电阻,校验表头,也称校验电阻;R7、R8和W为分压电阻,为电桥提供一个稳定的直流电源.R6与表头(微安表)串联,起修正表头刻度和限制流经表头的电流的作用.R5与表头并联,起保护作用.在不平衡电桥臂(即R1、RT)接入一只热敏元件RT作温度传感探头.由于热敏电阻器的阻值随温度的变化而变化,因而使接在电桥对角线间的表头指示也相应变化.这就是热敏电阻器温度计的工作原理.热敏电阻器温度计的精度可以达到0.1℃,感温时间可少至10s以下.它不仅适用于粮仓测温仪,同时也可应用于食品储存、医药卫生、科学种田、海洋、深井、高空、冰川等方面的温度测量.。
NTC热敏电阻特性参数基本知识NTC热敏电阻(Negative Temperature Coefficient Thermistor)是一种温度敏感的电阻器件,其电阻值随温度的升高而下降。
它具有快速响应、高精度、可靠性高等特点,被广泛应用于温度测量、温度补偿、过热保护等领域。
一、NTC热敏电阻的结构与原理NTC热敏电阻由导电粒子均匀分布在陶瓷或聚合物基底中组成。
当温度升高时,导电粒子随之受热膨胀,导致电阻器的电阻值下降;反之,当温度下降时,导电粒子缩小,电阻值则上升。
这种负温度系数的特性使得NTC热敏电阻可以作为温度变化的传感器使用。
二、NTC热敏电阻的温度特性1. 热敏特性(Temperature Coefficient of Resistance,TCR):TCR是NTC热敏电阻电阻值随温度变化的斜率,通常以ppm/℃或%/℃来表示。
TCR越大,NTC热敏电阻对温度变化的灵敏度越高。
2. 零点电阻(Zero Power Resistance):零点电阻指NTC热敏电阻在零功率状态下的电阻值。
NTC热敏电阻的零点电阻通常在室温(25℃)下测量。
3. B值(B Value):B值是NTC热敏电阻数据表的一个重要参数,用于描述NTC热敏电阻电阻值与温度之间的关系。
B值越大,NTC热敏电阻对温度变化的响应越快。
三、NTC热敏电阻的封装形式与特点1.芯片型:芯片型NTC热敏电阻封装小巧,适合高密度集成电路板焊接使用。
常见的封装形式有0402、0603、0805等。
2.线材型:线材型NTC热敏电阻采用线材引出,方便直接连接电路。
常见的线材型NTC热敏电阻有带头、带露点、带保护套等。
3.壳体型:壳体型NTC热敏电阻采用外壳封装,结构较为坚固,适用于恶劣环境下的温度检测和控制。
常见的壳体型NTC热敏电阻有玻璃封装、金属封装等。
四、NTC热敏电阻的应用1.温度测量:NTC热敏电阻可以通过测量其电阻值来获取温度信息,广泛应用于温度计、恒温器、温度传感器等领域。
ntc温度传感器的工作原理NTC温度传感器是一种常见的温度测量设备,其工作原理基于热敏效应。
在本文中,我们将详细介绍NTC温度传感器的工作原理。
一、什么是NTC温度传感器?NTC是Negative Temperature Coefficient(负温度系数)的缩写,意味着当温度升高时,NTC材料的电阻值会下降。
NTC温度传感器由这种特殊材料制成,并用于测量环境或物体的温度。
它们广泛应用于家电、汽车、医疗设备等领域。
二、NTC材料的特性1. 负温度系数:当温度升高时,NTC材料的电阻值会下降。
2. 热敏效应:NTC材料对温度变化非常敏感,可以快速响应并提供准确的测量结果。
3. 非线性特性:NTC材料的电阻-温度关系呈非线性曲线,需要校准和补偿来提高精确性。
三、NTC温度传感器的结构1. NTC元件:NTC元件是由特殊材料制成的小型电阻器件。
它通常是一个陶瓷圆柱体,表面覆盖有导电材料。
NTC元件的电阻值随温度变化而变化。
2. 外壳:NTC温度传感器的外壳通常由金属或塑料制成,用于保护NTC元件并提供机械支撑。
3. 连接线:连接线用于将NTC温度传感器与电路板或测量设备连接起来。
四、NTC温度传感器的工作原理NTC温度传感器利用热敏效应来测量温度。
当环境或物体的温度发生变化时,NTC材料的电阻值也会相应地发生变化。
1. 电阻-温度关系NTC材料的电阻-温度关系呈现出非线性曲线。
随着温度升高,NTC 材料的导电能力增强,导致电阻值下降。
这种关系可以通过查找或实验得到一个特定的电阻-温度曲线。
2. 电路连接在典型的应用中,NTC元件与一个电路连接在一起。
该电路通常包括一个参考电压源和一个测量设备(如微处理器)。
参考电压源为NTC 元件提供恒定的电压。
测量设备用于测量NTC元件的电阻值,并基于已知的电阻-温度曲线计算出温度值。
3. 工作原理当NTC温度传感器与待测物体接触时,NTC元件会受到待测物体的温度影响。
NTC热敏电阻特性参数基本知识热敏电阻分为两类,分别为:1.NTC负温度系数热敏电阻2.PTC正温度系数热敏电阻热敏电阻的物理特性用下列参数表示:电阻值、B值、耗散系数、热时间常数、电阻温度系数。
电阻值:R〔Ω〕电阻值的近似值表示为:R2=R1exp[1/T2-1/T1]其中: R2:绝对温度为T2〔K〕时的电阻〔Ω〕R1:绝对温度为T1〔K〕时的电阻〔Ω〕B: B值〔K〕B值:B〔k〕B值是电阻在两个温度之间变化的函数,表达式为:B= InR1-InR2 =2.3026(1ogR1-1ogR2)1/T1-1/T2 1/T1-1/T2其中: B: B值〔K〕R1:绝对温度为T1〔K〕时的电阻〔Ω〕R2:绝对温度为T2〔K〕时的电阻〔Ω〕耗散系数:δ〔mW/℃〕耗散系数是物体消耗的电功与相应的温升值之比δ= W/T-Ta = I2 R/T-Ta 其中:δ:耗散系数δ〔mW/℃〕W:热敏电阻消耗的电功〔mW〕T:达到热平衡后的温度值〔℃〕Ta: 室温〔℃〕I: 在温度T时加热敏电阻上的电流值〔mA〕R: 在温度T时加热敏电阻上的电流值〔KΩ〕在测量温度时,应注意防止热敏电阻由于加热造成的升温。
热时间常数:τ〔sec.〕热敏电阻在零能量条件下,由于步阶效应使热敏电阻本身的温度发生改变,当温度在初始值和最终值之间改变63.2%所需的时间就是热时间系数τ。
电阻温度系数:α〔%/℃〕α是表示热敏电阻器温度每变化1oC,其电阻值变化程度的系数〔即变化率〕,用α=1/R?dR/dT 表示,计算式为:α = 1/R?dR/dT×100 = -B/T2×100其中:α:电阻温度系数〔%/℃〕R:绝对温度T〔K〕时的电阻值〔Ω〕B: B值〔K〕热敏电阻是开发早、种类多、发展较成熟的敏感元器件.热敏电阻由半导体陶瓷材料组成,利用的原理是温度引起电阻变化.若电子和空穴的浓度分别为n、p,迁移率分别为μn、μp,则半导体的电导为:σ=q(nμn pμp)因为n、p、μn、μp都是依赖温度T的函数,所以电导是温度的函数,因此可由测量电导而推算出温度的高低,并能做出电阻-温度特性曲线.这就是半导体热敏电阻的工作原理.热敏电阻包括正温度系数(PTC)和负温度系数(NTC)热敏电阻,以及临界温度热敏电阻(CTR).它们的电阻-温度特性如图1所示.热敏电阻的主要特点是:①灵敏度较高,其电阻温度系数要比金属大10~100倍以上,能检测出10-6℃的温度变化;②工作温度范围宽,常温器件适用于-55℃~315℃,高温器件适用温度高于315℃(目前最高可达到2000℃),低温器件适用于-273℃~55℃;③体积小,能够测量其他温度计无法测量的空隙、腔体及生物体内血管的温度;④使用方便,电阻值可在0.1~100kΩ间任意选择;⑤易加工成复杂的形状,可大批量生产;⑥稳定性好、过载能力强.由于半导体热敏电阻有独特的性能,所以在应用方面,它不仅可以作为测量元件(如测量温度、流量、液位等),还可以作为控制元件(如热敏开关、限流器)和电路补偿元件.热敏电阻广泛用于家用电器、电力工业、通讯、军事科学、宇航等各个领域,发展前景极其广阔.一、PTC热敏电阻PTC(Positive Temperature Coeff1Cient)是指在某一温度下电阻急剧增加、具有正温度系数的热敏电阻现象或材料,可专门用作恒定温度传感器.该材料是以BaTiO3或SrTiO3或PbTiO3为主要成分的烧结体,其中掺入微量的Nb、Ta、Bi、Sb、Y、La等氧化物进行原子价控制而使之半导化,常将这种半导体化的BaTiO3等材料简称为半导(体)瓷;同时还添加增大其正电阻温度系数的Mn、Fe、Cu、Cr的氧化物和起其他作用的添加物,采用一般陶瓷工艺成形、高温烧结而使钛酸铂等及其固溶体半导化,从而得到正特性的热敏电阻材料.其温度系数及居里点温度随组分及烧结条件(尤其是冷却温度)不同而变化.钛酸钡晶体属于钙钛矿型结构,是一种铁电材料,纯钛酸钡是一种绝缘材料.在钛酸钡材料中加入微量稀土元素,进行适当热处理后,在居里温度附近,电阻率陡增几个数量级,产生PTC效应,此效应与BaTiO3晶体的铁电性及其在居里温度附近材料的相变有关.钛酸钡半导瓷是一种多晶材料,晶粒之间存在着晶粒间界面.该半导瓷当达到某一特定温度或电压,晶体粒界就发生变化,从而电阻急剧变化.钛酸钡半导瓷的PTC效应起因于粒界(晶粒间界).对于导电电子来说,晶粒间界面相当于一个势垒.当温度低时,由于钛酸钡内电场的作用,导致电子极容易越过势垒,则电阻值较小.当温度升高到居里点温度(即临界温度)附近时,内电场受到破坏,它不能帮助导电电子越过势垒.这相当于势垒升高,电阻值突然增大,产生PTC效应.钛酸钡半导瓷的PTC效应的物理模型有海望表面势垒模型、丹尼尔斯等人的钡缺位模型和叠加势垒模型,它们分别从不同方面对PTC效应作出了合理解释.实验表明,在工作温度范围内,PTC热敏电阻的电阻-温度特性可近似用实验公式表示:RT=RT0expBp(T-T0)式中RT、RT0表示温度为T、T0时电阻值,Bp为该种材料的材料常数.PTC效应起源于陶瓷的粒界和粒界间析出相的性质,并随杂质种类、浓度、烧结条件等而产生显著变化.最近,进入实用化的热敏电阻中有利用硅片的硅温度敏感元件,这是体型且精度高的PTC热敏电阻,由n型硅构成,因其中的杂质产生的电子散射随温度上升而增加,从而电阻增加.PTC热敏电阻于1950年出现,随后1954年出现了以钛酸钡为主要材料的PTC热敏电阻.PTC热敏电阻在工业上可用作温度的测量与控制,也用于汽车某部位的温度检测与调节,还大量用于民用设备,如控制瞬间开水器的水温、空调器与冷库的温度,利用本身加热作气体分析和风速机等方面.下面简介一例对加热器、马达、变压器、大功率晶体管等电器的加热和过热保护方面的应用。
NTC温度传感器
NTC(Negative Temperature Coefficient)温度传感器是一种广泛应用于工业自动化领域的传感器。
它基于热电阻效应,随温度的变化而改变电阻值,进而反映出温度的变化。
NTC温度传感器的工作原理简单而可靠,被广泛用于温度测量和控制领域。
工作原理
NTC温度传感器是基于氧化物、金属、陶瓷等材料构成的热敏元件。
当该元件受到温度变化时,其电阻值发生变化,呈现出负温度系数的特性。
这意味着随着温度的升高,电阻值降低;反之,温度降低时电阻值增加。
特点
NTC温度传感器具有以下特点:
1.灵敏度高:对温度变化的响应速度快。
2.测量范围广:能够覆盖从极低温度到高温度的范围。
3.稳定性强:长期使用不易失效。
4.尺寸小巧:易于集成到各种设备中。
5.成本低廉:制造成本较低。
应用领域
NTC温度传感器在工业自动化中有着广泛的应用,包括但不限于以下领域:•温度控制:用于空调、冰箱、热水器等家电产品中的温度控制。
•温度测量:用于实时监测工业生产中的温度变化。
•温度补偿:用于补偿电子设备中温度变化带来的影响。
总结
NTC温度传感器作为一种简单而有效的温度传感器,在工业领域得到了广泛的应用。
其高灵敏度、稳定性强以及适用于广泛的温度范围,使其成为工程师在温度测量和控制方面的重要选择。
随着技术的发展,NTC温度传感器在自动化控制系统中发挥着越来越重要的作用。
NTC 热敏电阻的特性与应用
一、NTC 热敏电阻的定义
NTC(Negative Temperature Coefficient) 热敏电阻,也叫做负温度系数热敏电阻,是一种半导体材料制作的电阻器件,其电阻值随着温度的升高而减小,反之亦然。
二、NTC 热敏电阻的特性
NTC 热敏电阻的主要特性是其电阻值与温度之间的关系,即它的电阻值随温度的变化而变化。
当温度升高时,NTC 热敏电阻的电阻值会减小,而当温度降低时,其电阻值会增加。
这种特性使得 NTC 热敏电阻在电路中有着广泛的应用。
三、NTC 热敏电阻的工作原理
NTC 热敏电阻的工作原理是基于半导体材料的特性。
NTC 热敏电阻材料中的载流子浓度随着温度的升高而增加,从而导致电阻值的减小。
反之,当温度降低时,载流子浓度减少,电阻值增加。
四、NTC 热敏电阻的应用
NTC 热敏电阻在电子电路中有着广泛的应用,下面列举几个常见的应用:
1. 温度传感器:NTC 热敏电阻可以作为温度传感器,将其连接到一个电路中,通过测量其电阻值可以推断出当时的温度。
2. 热保护器:由于 NTC 热敏电阻的电阻值随着温度的升高而减小,因此可以将其用作热保护器,当电路中的温度升高到一定程度时,NTC 热敏电阻的电阻值会减小到一定程度,从而切断电路,保护电路
不受过热的损坏。
3. 恒温控制器:通过将 NTC 热敏电阻与一个加热器和一个控制器相连,可以制作一个恒温控制器。
当温度升高时,NTC 热敏电阻的电阻值减小,控制器会切断加热器的电源,从而使温度保持恒定。
NTC(负温度系数)热敏电阻器产品专业术语
1.零功率电阻值(RT)
在规定温度下,采用引起电阻变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。
2.额定零功率电阻(R25)
热敏电阻器的设计电阻值,通常是指25℃时测得的零功率电阻值。
3.B值
B值是NTC(负温度系数)热敏电阻器的热敏指数,它被定义为两个温度下零功率电阻值的自然对数之差与两个温度倒数之差的比值,即:
式中:RT1--温度为T1时的零功率电阻值
RT2--温度为T2时的零功率电阻值
除非特别指出,B值是由25℃(298.15K)和50℃(323.15K)的零功率电阻值计算而得到的,
B值在工作温度范围内并不是一个严格的常数。
4.零功率电阻温度系数
指在规定温度下,热敏电阻器的零功率电阻随温度的变化率与它的零功率电阻值之比,即:
式中: аT-温度为T时的零功率电阻温度系数
RT-温度为T时的零功率电阻值
T-温度(以K表示)
B-B值
5.耗散系数δ
在规定的环境温度下,热敏电阻器耗散功率变化率与其相应温度变化之比,即:
δ =ΔP/ΔT
在工作温度范围内,δ随环境温度变化而有所变化。
6.热时间常数τ
在零功率条件下,当温度发生突变时,热敏电阻体温度变化了始末温度差的63.2%所需的时间。
τ与热敏电阻器的热容量C成正比,与其耗散系数δ成反比,即:τ= C/δ
7.最大稳态电流
在环境温度25℃时允许施加在热敏电阻上的最大连续电流。
8.电阻温度特性
热敏电阻器的零功率电阻值与其电阻体温度之间的依赖关系。
在热平衡情况下,热敏电阻的电压与电流的关系称伏安特性,如图14.4-3所示。
在一定温度的静止环境中,在开始阶段Oa,仍服从欧姆定律,
随着电流增加,热敏电阻自身温度上升超过环境温度,则热敏电阻阻值下降,电压相应上升缓慢,出现非线性的正阻区ab段。
当电流继续增加,电压达到最大值时,电流再继续增加,热敏电阻发热剧烈,电阻值下降的速度超过电流增加的速度,此时热敏电阻的电压降随电流增加而降低,形成cd段负阻区。
当电流超过某一允许值,热敏电阻将被烧坏。
NTC伏安特性
因此,在任一固定室温情况下,假如有足够大的功率用来使NTC的温度高于室温,则热敏电阻阻值主要取决它自身的耗散功率。
一般工作条件下,NTC可升至100~200℃,而它的电阻值可降至低电流时的千分之一。
NTC热敏电阻的用途十分广泛。
可用作温度测量、温度控制及电子电路中元件的温度补偿,如温度计、温度报警器、温度继电器、比热测定器等;还可用作厂房、宾馆、油库、粮库的火灾预报,铁路、桥梁地温的监视,矿山、煤中的温度测量和控制及远距离多点温度的测量和控制。
要根据使用情况的不同,选择热敏电阻的电参数、工作点、结
构与类型。
若要求测量的结果准确,一般都选择其U~I特性的小电流线性区。
因这时流过NTC中的电流很小,其本身的温度近似环境温度,阻值可认为不变。