2013年福建省泉州市初中学业质量检查数学试卷
- 格式:doc
- 大小:786.50 KB
- 文档页数:12
准考证号________________姓名________________(在此卷上答题无效)保密★启用前泉州市2013届普通中学高中毕业班质量检查理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),第Ⅱ卷第21题为选考题,其它题为必考题.本试卷共6页,满分150分.考试时间120分钟. 注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.考生作答时,将答案答在答题卡上.请按照题号在各题的答题区域(黑色线框)内作答,34黑.5 s =一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{|0}A x x =<,1{|24}2x B x =<<,则A B I 等于 A .{|12}x x -<< B .{|10}x x -<< C .{|1}x x < D .{|20}x x -<< 2.若数列{}n a 是等差数列,且374a a +=,则数列{}n a 的前9项和9S 等于A .272B .18C .27D .36 3.已知椭圆C 的上、下顶点分别为1B 、2B ,左、右焦点分别为1F 、2F ,若四边形1122B F B F 是正方形,则此椭圆的离心率e 等于A .13B .12C .2D .24.已知m 、n 是两条不同的直线,α、β是两个不同的平面,则下列命题中正确的是 A .若,m n αβ⊥⊥,且m n ⊥,则αβ⊥ B .若//,//m n αβ,且//m n ,则//αβ C .若,//m n αβ⊥,且m n ⊥,则αβ⊥ D .若,//m n αβ⊥,且//m n ,则//αβ5.定义区间[,]a b 的长度为b a -.若,42ππ⎡⎤⎢⎥⎣⎦是函数()()(0,||)f x sin x ωϕωϕπ=+><的一个长度最大的单调递减区间,则 A .8ω=,πϕ=B .8ω=,πϕ=-C .4ω=,2πϕ=D .4ω=,ϕ=6.函数()sin f x =7.已知函数()f x =n 的倾斜角为n θ,则1n tan tan θθ++A .1n B .1 .1n n- 8.已知O 为坐标原点,()1,2A ,点P 的坐标(),x y 满足约束条件1x y x ⎧+≤⎪⎨≥⎪⎩,则z OA OP=⋅的最大值为A .2-B .1-C .1D .29.甲袋内装有2个红球和3个白球,乙袋内装有1个红球和n ()n *∈N 个白球.现分别从甲、乙两袋中各取1个球,若将事件“取出的2个球恰为同色”发生的概率记为()f n .则以下关于函数()f n ()n *∈N 的判断正确的是A .()f n 有最小值,且最小值为25 B .()f n 有最大值,且最大值为35 C .()f n 有最小值,且最小值为12 D .()f n 有最大值,且最大值为1210.对于定义域为D 的函数()y f x =和常数c ,若对任意正实数ξ,,x D ∃∈使得0|()|f x c ξ<-<恒成立,则称函数()y f x =为“敛c 函数”.现给出如下函数: ①()()f x x x Z =∈; ②()()112xf x x Z ⎛⎫=+∈ ⎪⎝⎭;③ ()2log f x x =; ④()1x f x-=. A .①② .①②③11.已知i 12.二项式⎛⎝13.幂函数14||AB 的15.图1是一个由27个棱长为5种简单组合体. 如果每种组合体的个数都有7个,现从总共35个组合体中选出若干组合体,使它们恰好可以拼成1个图1所示的魔方,则所需组合体的序号..和相应的个数..是 .(提示回答形式,如2个①和3个②)题,共80证明过16.(CM CN 、(不含端点C )上运动,23MCN ∠=π,在ABC ∆中,图2 ① ③ ②④ ⑤角A 、B 、C 所对的边分别是a 、b 、c .(Ⅰ)若a 、b 、c 依次成等差数列,且公差为2.求c(Ⅱ)若c =ABC ∠=θ,试用θ表示ABC ∆17.(本小题满分13分)t (cm),相关等品;若(2.8,2.9]t ∈尺寸(3.2,3.3]甲机床零件频数1乙机床零件频数4.参考公式:2K 参考数据:20()P K k ≥0.25 0.15 0.10 0.05 0.025 0.010 0k1.3232.0722.7063.8415.0246.63518.(本小题满分13分)如图1,在等腰梯形ABCD 中,//AD BC ,1AD =,3BC =,E 为BC 上一点, 2BE EC =,且DE =ABCD 沿DE 折成直二面角B DE C --,如图2所示. (Ⅰ)求证:平面AEC ⊥平面ABED ; (Ⅱ)设点A 关于点D 的对称点为G ,点M 在BCE ∆所在平面内,且直线GM 与平面ACE所成的角为60︒,试求出点M 到点B 的最短距离.19.(本小题满分13分)已知点F 为抛物线C : ()220y px p =>的焦点,()()4,0M t t >为抛物线C 上的点,且5MF =.(Ⅰ)求抛物线C 的方程和点M 的坐标;(Ⅱ)过点MA ,2l 与抛物线C (ⅰ)若k20.(本小题满分14已知函数()n f x(Ⅰ)求函数()3f x 的极值; (Ⅱ)判断函数()n f x 在区间上零点的个数,并给予证明;(Ⅲ)阅读右边的程序框图,请结合试题背景简要描述其算法功能,并求出执行框图所表达的算法后输出的n 值.21. 本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2个小题作答,满分14分.如果多做,则按所做的前两题记分.作答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中. (1)(本小题满分7分)选修4—2:矩阵与变换在平面直角坐标系xOy 中,把矩阵10201⎛⎫⎪= ⎪⎝⎭B 确定的压缩变换σ与矩阵0110-⎛⎫= ⎪⎝⎭A 确定的旋转变换90R ︒进行复合,得到复合变换90R σ︒⋅.(Ⅱ)求圆C (2)Q 分别为直线l 与x 直线(3)2013届泉州市普通中学高中毕业班质量检查理科数学试题参考解答及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数.四、只给整数分数.选择题和填空题不给中间分.一、选择题:本大题考查基础知识和基本运算.每小题5分,满分50分.1.B 2.B 3.C 4.A 5.D 6.B 7.A 8.D 9 C.10.C 二、填空题:本大题考查基础知识和基本运算.每小题4分,满分20分.x ;14、3;15、4个③和11、;12、15;13、ln11个⑤.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.16.本小题主要考查三角函数的性质、两角和与差的三角函数公式、解三角形以及数列等基础知识,考查运算求解能力,考查函数与方程思想、数形结合思想.满分13分.解:(Ⅰ)a、b、c成等差,且公差为2,∴4a c=-、2b c=-.……………………………………1分又23MCN∠=π,1cos2C=-,∴222122a b cab+-=-,…………………………4分5分6分分,…3⎝⎭,∴2333πππθ<+<, …………………………12分∴当32ππθ+=即6πθ=时,()fθ取得最大值2+……………………13分17.本小题主要考查概率统计的基础知识和独立性检验、频率估计概率、样本估计总体等统计思想方法,考查数据处理能力、运算求解能力以及应用意识,考查函数与方程思想、必然与或然思想.满分13分. 解:(Ⅰ)设甲机床生产一件零件获得的利润为X 元,它的分布列为 (3)分则有()E X =3×0.8+1×0.14+(-1)×0.06=2.48(元).所以,甲机床生产一件零件的利润的数学期望为2.48元. ………6分(Ⅱ)由表中数据可知:甲机床优等品40个,非优等品10个;乙机床优等品30个,非优等品20个.制作29分11分 95%的把握床有18.解:(Ⅰ)在图1中,由平几知识易得DE BC ⊥,……1分 在图2中,∵,DE BE DE CE ⊥⊥,∴BEC ∠是二面角B DE C --的平面角, (2)分∵二面角B DE C --是直二面角,∴BE CE ⊥. (3)分∵DEBE E =,,DE BE ⊂平面ABED ,CE ∴⊥平面ABED , (4)分又CE ⊂平面AEC ,∴平面AEC ⊥平面ABED . (5)分(Ⅱ)由(Ⅰ)知,,DE BE CE 两两互相垂直,以E 为原点,分别以,,EB EC ED 为,,x y z 轴,建立空间直角坐标系E xyz -,如图所示.…6分则(0,0,0)E ,(1,0,3)A ,(2,0,0)B ,(0,1,0)C ,D ,(G,EA =,(0,1,0)EC =.,得(3,0,n =-8分(,,0)M x y ,则直线sin 60||||GM n ∴=︒⋅,……………………………………………………10分22|3(1)2(1)x x y ++⋅++11分 13分19.13分. 542p==+,∴2p =,…………………………………………2分 ∴抛物线C :24y x =.…………………………………………………3分 又()()4,0M t t >在抛物线C 上,∴244164t t =⨯=⇒=.∴()4,4M .…………………………………4分(Ⅱ)(ⅰ)设直线()11:44l y k x -=-,∵1l 与抛物线C 交于M 、A 两点,∴10k ≠.………………5分由()12444y k x y x⎧-=-⎪⎨=⎪⎩得:211416160k y y k -+-=,………………6分 设()11,A x y ,则111114416164y k k y k ⎧+=⎪⎪⎨-⎪=⎪⎩,……………………………7分∴()2111124144,k k y x --==,即()21124144,k k A ⎛⎫-- ⎪.………………8分 9分 ∴3121212121122k k k k k k k ==+-+-1321121k k k ∴+-=,1231112k k k +-=,即证得123111k k k +-为定值.……………13分20.本题主要考查函数、导数、零点、算法初步等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想.满分14分.解:(Ⅰ)∵()3331f x x x =--,∴()2333f x x '=-,……………1分当1x >时,()30f x '>;当01x <<时,()30f x '<.……………3分∴当1x =时,()3f x 取得极小值3-,无极大值 (4)分(Ⅱ)函数()n f x在区间上有且只有一个零点. ……………5分证明如下:∵3110nf =-=-<,3110nf =-=>,0n nf f ⋅<,∴函在零点. ∵(n f '20n>,∴(n f x 8分∴函数9分(Ⅲ)程序n a 满足n a ≥.10分∵31222n f n ⎛⎛=-- ⎝⎭⎝⎭18=-, ∴当03n <≤时,0()2n n n f f a ⎛<= ⎝⎭; 当4n ≥时,0()2n n n f f a ⎛⎫+>= ⎪ ⎪⎝⎭. ……11分 又()n f x 在区间上单调递增,∴当3n ≤n a <;当4n ≥n a >.……………13分∴输出的n 值为4. …………………………………………………………………14分21.(1)(本小题满分7分)选修4—2:矩阵与变换本小题主要考查矩阵与变换等基础知识,考查运算求解能力及函数与方程思想.满分7分.解:(Ⅰ)复合变换90R σ︒⋅对应的矩阵为0110-⎛⎫= ⎪⎝⎭AB 1010210012-⎛⎫⎛⎫⎪ ⎪= ⎪⎪⎝⎭⎝⎭,…………2分所以,复合变换R σ⋅的坐标变换公式为12x y y x '=-⎧⎪⎨'=⎪⎩.,)x y'',5分7分(2)思想.满分(Ⅰ)由x ⎧⎪⎨⎪⎩\3分(Ⅱ)当y 当0x =时,y =\点Q 的直角坐标为(0,.∴线段PQ 的中点M 的直角坐标为,∵2ρ==和tan 1θ==10,0x y =>=>,………5分∴M 的极坐标为(2,)3p, (6)分\直线OM 的极坐标方程为:()3R pq r =?. …………………………………7分(3)(本小题满分7分)选修4—5:不等式选讲本小题主要考查绝对值的含义、柯西不等式等基础知识,考查运算求解能力以及推理论证能力,考查函数与方程思想.满分7分.(Ⅰ)∵不等式21|x |->的解集为{|13}x x x <>或,……………………1分∴不等式20x ax b -+>的解集为{|13}x x x <>或.从而1,3为方程20x ax b -+=的两根,………………………………………2分10930a b a b -+=⎧∴⎨-+=⎩,3分≤号成立, 即25107=x。
5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
2013年安溪县初中学业质量检查数 学 试 题(满分:150分;考试时间:120分钟)学校 姓名 考生号一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答. 1.3-的相反数是( ) A .13 B .3 C .13- D .3-2.下列计算正确的是( )A .2a ·222a a = B .325()a a = C .623a a a ÷= D .2()a -·3a a = 3.如图是由两个长方体堆成的几何体,则该几何体的左视图是( )4.在一次数学质量检测中,某小组7位同学的成绩(单位:分)分别是86,91,84,75,91,76,92,则这七个数的中位数是( )A .75B .85C .86D .91 5.点P (3-,2)关于原点O 的对称点P ′ 的坐标是( )A .(3,2-)B .(3,2)C .(3-,2-)D .(2,3-) 6.如图,若AB 是⊙O 的直径,弦CD 交AB 于点E ,∠DCB =34°, ∠CDB =40°,则∠AEC =( )A .96°B .86°C .84°D .74°7.已知实数a 、b 满足ab >0,a +b <0,则一次函数y ax b =-的图象可能是( )A .B .C .D .二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
2013年福建省泉州市晋江市初中学业质量检查数学试卷(二)参考答案与试题解析一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分..2.(3分)(2013•晋江市)如图,已知直线a∥b,直线c与a、b分别交点于A、B,∠1=50°,则∠2=()325.(3分)(2013•晋江市)若反比例函数的图象上有两点P1(2,y1)和P2(3,y2),那么()反比例函数解析式6.(3分)(2013•晋江市)如图,是由一个长方体和一个圆锥体组成的立体图形,其正视图是()B.7.(3分)(2013•晋江市)如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.将△BCE绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转角是()二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.(4分)(2013•晋江市)化简:﹣(﹣2)=2.9.(4分)(2013•晋江市)因式分解:4﹣a2=(2+a)(2﹣a).10.(4分)(2013•晋江市)从2013年起,泉州市财政每年将安排50000000元用于建设“美丽乡村”.将数据50000000用科学记数法表示为5×107.11.(4分)(2013•晋江市)计算:=1.﹣==112.(4分)(2013•晋江市)不等式组的解集是﹣1<x≤2.13.(4分)(2013•晋江市)某班派5名同学参加数学竞赛,他们的成绩(单位:分)分别为:80,92,125,60,97.则这5名同学成绩的中位数是92分.14.(4分)(2013•晋江市)正六边形的每个内角的度数是120度.15.(4分)(2013•晋江市)如图,在△ABC中,AB=AC,△ABC的外角∠DAC=130°,则∠B=65°.B=×16.(4分)(2013•晋江市)若a+b=5,ab=6,则a﹣b=±1.17.(4分)(2013•晋江市)如图,在Rt△ABC中,∠C=90°,∠A=30°,.若动点D在线段AC上(不与点A、C重合),过点D作DE⊥AC交AB边于点E.(1)当点D运动到线段AC中点时,DE=;(2)点A关于点D的对称点为点F,以FC为半径作⊙C,当DE=或时,⊙C与直线AB相切.,AB=2,BC=,故答案为:;,,由三角形面积公式得:AC=DF=AD=∴=,∴,;∴=,∴,故答案为:或三、解答题(共89分)在答题卡上相应题目的答题区域内作答.18.(9分)(2013•晋江市)计算:.19.(9分)(2013•晋江市)先化简,再求值:(x+3)2﹣x(x﹣5),其中.时,)+9=20.(9分)(2013•晋江市)如图,BD是菱形ABCD的对角线,点E、F分别在边CD、DA上,且CE=AF.求证:BE=BF.,21.(9分)(2013•晋江市)一个不透明的口袋中装有4张卡片,卡片上分别标有数字1、﹣2、﹣3、4,它们除了标有的数字不同之外再也没有其它区别,小芳从盒子中随机抽取一张卡片.(1)求小芳抽到负数的概率;(2)若小明再从剩余的三张卡片中随机抽取一张,请你用树状图或列表法,求小明和小芳两人均抽到负数的概率.=22.(9分)(2013•晋江市)如图,在方格纸中(小正方形的边长为1),△ABC的三个顶点均为格点,将△ABC 沿x轴向左平移5个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)画出平移后的△A′B′C′,并直接写出点A′、B′、C′的坐标;(2)求出在整个平移过程中,△ABC扫过的面积.23.(9分)(2013•晋江市)为了创建书香校园,切实引导学生多读书、乐读书、会读书、读好书,某校开展“好书伴我成长”的读书活动,为了解全校学生读书情况,随机调查了50名学生读书的册数,并将全部调(1)表中的a=18,b=16,请你把条形统计图补充完整;(2)若该校共有2000名学生,请你根据样本数据,估计该校学生在本次活动中读书不少于3册的人数.(人)24.(9分)(2013•晋江市)为了让市民树立起“珍惜水、节约水、保护水”的用水理念,某市从2013年4月起,居民生活用水按阶梯式计算水价,水价计算方式如图所示,每吨水需另加污水处理费0.80元.已知小张家2013年4月份用水20吨,交水费49元;5月份用水25吨,交水费65.4元.(温馨提示:水费=水价+污水处理费)(1)m、n的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小张计划把6月份的水费控制在不超过家庭月收入的2%.若小张家的月收入为8190元,则小张家6月份最多能用水多少吨?,解得25.(13分)(2013•晋江市)将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为(3,4),点E的坐标为(0,1);(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.(3)如图,若点E的纵坐标为﹣1,抛物线(a≠0且a为常数)的顶点落在△ADE的内部,求a的取值范围.勾股定理可得则有即解得中,由勾股定理可得∴,∴解得∴,(∴,∵此抛物线的顶点必在直线抛物线的顶点落在解得的取值范围为26.(13分)(2013•晋江市)如图,在平面直角坐标系xOy中,一动直线l从y轴出发,以每秒1个单位长度的速度沿x轴向右平移,直线l与直线y=x相交于点P,以OP为半径的⊙P与x轴正半轴交于点A,与y轴正半轴交于点B.设直线l的运动时间为t秒.(1)填空:当t=1时,⊙P的半径为,OA=2,OB=2;(2)若点C是坐标平面内一点,且以点O、P、C、B为顶点的四边形为平行四边形.①请你直接写出所有符合条件的点C的坐标;(用含t的代数式表示)②当点C在直线y=x上方时,过A、B、C三点的⊙Q与y轴的另一个交点为点D,连接DC、DA,试判断△DAC 的形状,并说明理由.,∴,即∴,即相似比为四、附加题(共10分):在答题卡上相应题目的答题区域内作答. 27.(10分)(1)计算:2a2+3a2=5a2.(2)已知∠1与∠2互余,∠1=55°,则∠2=35°.。
2013年惠安县初中学业质量检测数 学 试 题一、选择题(每小题3分,共21分) 每小题有四个答案,其中有且只有一个答案是正确的.请在答题卡上相应题目的答题区域内作答,答对的得3分,答错、不答或答案超过一个的一律得0分.1.-2的倒数是( )A .2B .-2C .21 D .21- 2.计算55a a ⋅结果等于( )A .10a B .25a C . 52a D .102a3.五个学生进行投篮比赛,投进的个数分别为2、9、5、13、3,这五个数的中位数为( )A .3B .4C .5D .7 4.下图是某一立体图形的三视图,则这个立体图形是( )A .正三棱柱B .三棱锥C .圆锥D .圆柱5.如图,MN 为⊙O 的弦,若∠M =50°,则∠MON 等于( )A .50°B .55°C .65°D .80°6.现要选用两种不同的正多边形地砖铺地板,若已选择了正四边形,则可以..再选择的正多边形是( )A .正七边形B .正五边形C .正六边形D .正八边形 7.如图,在平面直角坐标系xOy 中,点A 为(0,3),点B 为(2,1),点C 为(2,-3).则经画图操作可知:△ABC 的外心坐标应是( ) A .(0,0) B .(1,0) C .(-2,-1) D .(2,0) 二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答. 8.比较大小:-2 -3.(用“>”、“<”或“=”号填空) 9.方程280x +=的解是 . 10.分解因式:24m -=____________________.(第5题图)(第7题图)主视图左视图俯视图11.地球的赤道半径约为6 370 000米,将6 370 000用科学记数法记为 . 12.计算:1112+-++m m m = . 13.如图,点C 在线段AB 的延长线上,∠DAC =15°,∠DBC =110°,则∠D = . 14.如图,在梯形ABCD 中,E 、F 分别为AB 、CD 边上的中点,AD =3,BC =5.则EF 的长为 .15.把函数y =x 2-1的图象沿y 轴向上平移1个单位长度,则得到图象的函数表达式为________________.16.如图所示,有一个直径是2米的圆形铁皮,从中剪出一个扇形ABC ,其中BC 是⊙O 的直径.那么被剪掉的阴影部分面积= 平方米.17.把两个全等的直角三角形ABC 和DEF 重叠在一起,其中∠A =60°,AC =1.固定△ABC 不动,将△DEF 进行如下操作:(1)如图1,将△DEF 沿线段AB 向右平移(即D 点在线段AB 内移动),当D 点移至AB 的中点时,连接DC 、CF 、FB ,四边形CDBF 的形状是 ;(2)如图2,将△DEF 的D 点固定在AB 的中点,然后绕D 点按顺时针方向旋转△DEF ,使DF 落在AB 边上,此时F 点恰好与B 点重合,连接AE ,则sin α的值等于 .三、解答题(共89分)在答题卡上相应题目的答题区域内作答. 18.(9分)计算:20130- -3 -12÷3+(21)-1.19.(9分)先化简,再求值:()()()112-+-+x x x x ,其中21-=x . 20.(9分)已知:如图,AB =AD ,AC =AE ,∠BAD =∠CAE .C F(第17题图2)(第17题图1) A DB E AB DEA DB (E')C (F') (F ) EA B DC (第13题图) AB C D E F (第14题图)求证:BC =DE .21.(9分)在一个不透明的箱子中放有三张形状完全相同的卡片,卡片上分别标有数字1,2,3.从箱子中任意取出一张卡片,用卡片上的数字作为十位数字,放回..后搅匀,再取出一张卡片,用卡片上的数字作为个位数字,这样组成一个两位数. (1)请你用画树状图或列表的方法表示所有等可能的结果; (2)求组成的两位数是偶数的概率.22.(9分)小丽同学学习了统计知识后,带领班级“课外活动小组”,随机调查了某辖区若干名居民的年龄,并将调查数据绘制成图1和图2两幅尚不完整的统计图.请你根据图中的信息,解答下列问题:⑴共调查了 名居民的年龄,扇形统计图中a = ,b = ; ⑵补全条形统计图;⑶若该辖区居民约有2600人,请估计年龄在15~59岁的居民人数.23.(9分)如图,正比例函数kx y =的图象与反比例函数xy 1=的图象相交于A 、B 两点,A 的坐标为(1,1).(1)求正比例函数的解析式;(2)已知M ,N 是y 轴上的点,若四边形AMBN 是矩形,0~14 15~40 41~59 60岁以上 年龄图260岁以上0~14岁15~40岁41~59岁20%45%b a 图1求点M 、N 的坐标.24.(9分)某旅行社为“五一”黄金周风景区旅游活动,特推出如下收费标准:某单位组织员工进行“五一”黄金周风景区旅游,一共支付给该旅行社旅游费用27000元. 请你根据以上收费标准及要求,求该单位参加这次风景区旅游的员工人数.25.(13分)如图,在平面直角坐标系xoy 中,矩形OABC 的两边分别在x 轴和y 轴上,OA =8,OC =4.现有两动点P 、Q 分别从O 、C 同时出发,点P 在线段OA 上沿OA 方向以每秒2个单位长的速度匀速运动,点Q 在线段CO 上沿CO 方向以每秒1个单位长的速度匀速运动.设运动时间为t 秒.(1)填空:OP = ,OQ = ;(用含t 的式子表示)(2)试证明:四边形OPBQ 的面积是一个定值,并求出这个定值;(3)当∠QPB =90°时,抛物线c bx x y ++=231经过B 、P 两点,过线段BP 上一动点M 作y 轴的平行线交抛物线于点N ,交线段CB 于点G ,交x 轴于点H ,连结PG ,BH ,试探究:当线段MN 的长取最大值时,判定四边形GPHB 的形状.如果人数不超过25人,人 均旅游费用为1000元.如果人数超过25人,每增加1人, 人均旅游费用降低20元,但人均 旅游费用不得低于700元。
亲爱的SANDY:请允许我最后一次用亲爱这两个字,为我们将近七年的感情划上一个句话。
大学时看《静静的顿河》,第一次接触到这样的文字:“格利高里的生活像被野火烧过的草原,他失去了在他心上认为最为珍贵的东西。
”,内心非常的震撼,我常常在想:如果一个人失去了心上认为最为珍贵的东西,会是什么样的感受。
酒吧外小胡告我她和你发生关系时,我想我的脸色一定很苍白,眼神却是空洞茫然的,嘴角歪斜着,狞笑着。
如果当时手上有一颗炸弹,我一定要把这个世界炸个千万次!!!!!那一刻最先涌上我心头的是什么?愤怒?绝望?伤痛?我只觉得我的世界轰然倒塌,我失去了心上认为最为珍贵的东西。
记得七年前牵着你的手从龙岩私奔回学校,你是如此的柔弱坚定,我却是忐忑不安。
对不可预知的前方的恐惧,占据了我一颗怯懦的心。
三年后,我毅然从学校辞职,依然牵着你的手,尽管前方依然充满着许许多多不确定的因素,我的内心却比第一次带着你走更加的坚定。
社会纵然复杂,远方纵然遥远,前行的路上纵然暗涛汹涌,我也会用我柔弱的肩膀给你依靠,我也会拼尽全力保护我们的家,为你遮风挡雨。
漂泊的生活尽管辛苦,生存的压力尽管无时不在,我们却甘之如饴。
当我们在龙岩买下第一个房子,我们是那样的欣喜苦狂。
我们尽量每年挤出两次时间去旅游,旅途上一草一木,一山一水,总是令我如此陶醉,因为心爱的人就在身边,因为爱情……可我万万想不到的是,被世人奉为最为纯净最为宝贵的爱情,居然也是世界上最为廉价龌龊的东西。
当你和小胡在床上激情的时候,一定也会爱语呢喃,说着最为相爱的话语。
当你跟她偷情的时候,有没有想过那个深爱你的人还在家里苦苦守候着你的归来。
你说你舍不得离开这个家,舍不得这个家破裂,可是当你和她肌肤相亲的时候,有没有想过你的舍不得……我们曾经憧憬着这个暑假把琪琪带到福州,让她在福州读书,憧憬着我们一家三口美好的生活。
你希望我教琪琪文学,给她美好的文学熏陶。
我希望你教琪琪音乐,让她在音乐的王国里体验那美妙的音符。
绝密★启用前试题类型:A 滨州市二〇一三年初中学生学业考试数学试题温馨提示:1.本试卷共8页,满分120分,考试时间为120分钟.2.请用蓝色或黑色钢笔、圆珠笔直接在试卷上作答(作图可用铅笔).3.答卷前请将密封线内的项目填写清楚,并将座号填写在右下角的座号栏内.一、选择题:本大题共12分小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将其字母标号填写在答题栏内.每小题选对得3分,错选、不选或多选均记0分,满分36分.题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.(2013山东滨州,1,3分)计算13-12,正确的结果为A.15B.-15C.16D.-16【答案】D.2.(2013山东滨州,2,3分)化简3aa,正确的结果为A.a B.a2C.a-1D.a-2【答案】B.3.(2013山东滨州,3,3分)把方程12x=1变形为x=2,其依据是A.等式的性质1 B.等式的性质2C.分式的基本性质D.不等式的性质1【答案】B.4.(2013山东滨州,4,3分)如图,在⊙O中圆心角∠BOC=78°,则圆周角∠BAC的大小为A.156°B.78°C.39°D.12°【答案】C.5.(2013山东滨州,5,3分)左图所示的几何体是由若干个大小相同的小正方体组成的.若从正上方看这个几何体,则所看到的平面图形是【答案】A.6.(2013山东滨州,6,3分)若点A(1,y1)、B(2,y2)都在反比例函数y=kx(k>0)的图象上,则y1、y2的大小关系为A.y1<y2B.y1≤y2C.y1>y2D.y1≥y2【答案】C.7.(2013山东滨州,7,3分)若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为A.6,32B .32,3 C.6,3 D .62,32【答案】B.8.(2013山东滨州,8,3分)如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形.其中正确的个数是A.0 B.1 C.2 D.3【答案】D.9.(2013山东滨州,9,3分)若从长度分别为3、5、6、9的四条线段中任取三条,则能组成三角形的概率为A.12B.34C.13D.14【答案】A.10.(2013山东滨州,10,3分)对于任意实数k,关于x的方程x2-2(k+1)x-k2+2k-1=0的根的情况为A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法确定【答案】C.11.(2013山东滨州,11,3分)若把不等式组2xx--3⎧⎨-1-2⎩≥,≥的解集在数轴上表示出来,则其对应的图形为A.长方形B.线段C.射线D.直线【答案】B.12.(2013山东滨州,12,3分)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(-1,0).则下面的四个结论:①2a+b=0;②4a-2b+c<0;③ac>0;④当y<0时,x<-1或x>2.其中正确的个数是A.1 B.2 C.3 D.4【答案】B.二、填空题:本大题共6各小题,每小题填对最后结果得4分,满分24分.13.(2013山东滨州,13,4分)分解因式:5x2-20=______________.【答案】5(x+2)(x-2).14.(2013山东滨州,14,4分)在△ABC中,∠C=90°,AB=7,BC=5,则边AC的长为______________.【答案】2615.(2013山东滨州,15,4分)在等腰△ABC中,AB=AC,∠A=50°,则∠B=______________.【答案】65°16.(2013山东滨州,16,4分)一元二次方程2x2-3x+1=0的解为______________.【答案】x1=1,x2=1 2 .17.(2013山东滨州,17,4分)在ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,且AB=6,BC=10,则OE=______________.【答案】A.18.(2013山东滨州,18,4分)观察下列各式的计算过程:5×5=0×1×100+25,15×15=1×2×100+25,25×25=2×3×100+25,35×35=3×4×100+25,…………请猜测,第n个算式(n为正整数)应表示为____________________________.【答案】[10(n-1)+5]×[10(n-1)+5]=100n(n-1)+25.三、解答题:本大题共7个小题,满分60分.解答时请写出必要的演推过程.19.(2013山东滨州,19,6分)(本小题满分6分,请在下列两个小题中,任选其一完成即可)(1)解方程组:3419 x yx y+=⎧⎨-=4.⎩,(2)解方程:352. 23x x+-1=【解答过程】解:(1)3419x yx y+=⎧⎨-=4.⎩,①②.由②,得x=4+y,③把③代入①,得3(4+y)+4y=19,12+3y+4y=19,y=1.把y=1代入③,得x=4+1=5.∴方程组的解为5 xy=⎧⎨=1.⎩,(2)去分母,得3(3x+5)=2(2x-1).去括号,得9x+15=4x-2.移项、合并同类项,得5x=-17.系数化为1,得x=-175.20.(2013山东滨州,20,7分)(计算时不能使用计算器)计算:33-(3)2+0(3)π+-27+32-.【解答过程】解:原式=3-3+1-33+2-3=-33.21.(2013山东滨州,21,8分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如下两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型校服的学生有多少?(2)在条形统计图中,请把空缺的部分补充完整;(3)在扇形统计图中,请计算185型校服所对应扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.【解答过程】解:(1)15÷30%=50(人),50×20%=10(人),即该班共有50名学生,其中穿175型校服的学生有10人.(2)补充如下:(3)185型的人数是50-3-15-15-10-5=2(人),圆心角的度数为360°×250=14.4°.(4)165型和170型出现的次数最多都是15次,故众数是165和170;共50个数据,第25和第26个数据都是170,故中位数是170.22.(2013山东滨州,22,8分)如图,在△ABC中,AB=AC,点O在边AB上,⊙O过点B且分别与边AB、BC相交于点D、E,EF⊥AC,垂足为F.求证:直线EF是⊙O的切线.【解答过程】证明:连接OE,∵OB=OE,∴∠B=∠OEB.∵AB=AC,∴∠B=∠C.∴∠OEB=∠C.∴OE∥AC.∵EF⊥AC,∴OE⊥EF.∴直线EF是⊙O的切线.23.(2013山东滨州,23,9分)某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体形,抽屉底面周长为180cm,高为20cm.请通过计算说明,当底面的宽x为何值时,抽屉的体积y最大?最大为多少?(材质及其厚度等暂忽略不计)【解答过程】解:根据题意,得y=20x(1802-x),整理,得y=-20x2+1800x.∵y=-20x2+1800x=-20(x2-90x+2025)+40500=-20(x-45)2+40500,∵-20<0,∴当x=45时,函数有最大值,y最大值=40500,即当底面的宽为45cm 时,抽屉的体积最大,最大为40500cm 2. 24.(2013山东滨州,24,10分)某高中学校为高一新生设计的学生板凳的正面视图如图所示.其中BA=CD ,BC=20cm ,BC 、EF 平行于地面AD 且到地面AD 的距离分别为40cm 、8cm ,为使板凳两腿底端A 、D 之间的距离为50cm ,那么横梁EF 应为多长?(材质及其厚度等暂忽略不计)【解答过程】 解:过点C 作CM ∥AB ,交EF 、AD 于N 、M ,作CP ⊥AD ,交EF 、AD 于Q 、P .由题意,得四边形ABCM 是平行四边形, ∴EN=AM=BC=20(cm).∴MD=AD -AM=50-20=30(cm). 由题意知CP=40cm ,PQ=8cm , ∴CQ=32cm . ∵EF ∥AD ,∴△CNF ∽△CMD .∴NF MD =CQCP , 即30NF =3240. 解得NF=24(cm).∴EF=EN+NF=20+24=44(cm). 答:横梁EF 应为44cm .25.(2013山东滨州,25,12分) 根据要求,解答下列问题:(1)已知直线l 1的函数解析式为y=x ,请直接写出过原点且与l 1垂直的直线l 2的函数表达式;(2)如图,过原点的直线l 3向上的方向与x 轴的正方向所成的角为30°. ①求直线l 3的函数表达式;②把直线l 3绕原点O 按逆时针方向旋转90°得到直线l 4,求直线l 4的函数表达式.(3)分别观察(1)、(2)中的两个函数表达式,请猜想:当两直线互相垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过原点且与直线y=-1 5 x垂直的直线l5的函数表达式.【解答过程】解:(1)y=-x.(2)①如图,在直线l3上任取一点M,作MN⊥x轴,垂足为N.设MN的长为1,∵∠MON=30°,∴ON=3.设直线l3的表达式为y=kx,把(3,1)代入y=kx,得1=3k,k=33.∴直线l3的表达式为y=33x.②如图,作出直线l4,且在l4取一点P,使OP=OM,作PQ⊥y轴于Q,同理可得∠POQ=30°,PQ=1,OQ=3,设直线l4的表达式为y=kx,把(-1,3)代入y=kx,得3=-k,∴k=-3.∴直线l4的表达式为y==-3x.(3)当两直线互相垂直时,它们的函数表达式中自变量的系数互为负倒数,即两系数的乘积等于-1.∴过原点且与直线y=-15x垂直的直线l5的函数表达式为y=5x.。
2013年惠安县初中学业质量检查数 学 试 题(考试时间:120分钟 试卷满分:150分)温馨提示:所有答案必须填写到答题卡相应的位置上,答在本试卷上一律无效.毕业学校 姓名 考生号一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错、不答或答案超过一个的一律得0分.1.下面四个数中是有理数的是( ).A .πB .0 CD .3.171171117…… 2.下列计算正确的是( ).A .523a a a =+ B .a a a =-23C .842a a a =⋅ D .a a a =÷233.如图,数轴上表示的是下列哪个不等式组的解集( ). A .3x x ≥-5⎧⎨>-⎩ B .3x x >-5⎧⎨≥-⎩C .3x x <-5⎧⎨≤-⎩D .3x x <5⎧⎨>-⎩ 4.如图是由若干个小正方体堆成的几何体的正视图,这个几何体是( ).5.已知两圆半径分别为1与5,圆心距为4,则这两圆的位置关系是( ). A .内切 B .相交 C .外切 D .外离 6.将一副直角三角板,按如图所示叠放在一起, 则图中α的度数是( ).A .45oB .60oC .75oD .90o7.如图,边长为12的大正方形中有两个小正方形,若两个小正方形 的面积分别为S 1、S 2,则S 1 + S 2的值为( ). A .52 B .60 C .68 D .72B .C .D .A . 正视图S 2S 1450600α二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答. 8.4的平方根是______.9.分解因式:4x - 2x 2 = ___________.10.已知H7N9病毒的最小直径大约是0.000 000 08米,用科学记数法表示为___________米. 11.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,方差分别是2S 甲= 0.90,2S 乙= 1.22,2S 丙= 0.43,2S 丁= 1.68. 在本次射击测试中,甲、乙、丙、丁四人成绩最稳定的是______.12.请写出能单独铺满地面的正多边形:______________________.(至少写出2.种.) 13.计算:111a a a ---=_______. 14.如图,在等边..三角形ABC 中,AB = 6,D 是BC 上一点, 且BC = 3BD ,△ABD 绕点A 旋转后得到△ACE ,则CE 的长度为 .15.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为 .16.如图,已知点A (1,1)、B (3,2),且P 为x 轴上一动点,则△ABP的周长..的最小值为 . 17.如图,在直角梯形ABCD 中,∠A = 90°,∠B = 120°,ADAB = 6. 在底边AB 上取点E ,在射线DC 上取点F ,使得∠DEF = 120°. (1)当点E 是AB 的中点时,线段DF 的长度是______;(2)若射线EF 经过点C ,则AE 的长是 .(第16题图) (第17题图)三、解答题(共89分)在答题卡上相应题目的答题区域内作答. 18.(9201321|5|(1)()3--+--. 19.(9分)先化简,再求值:(2x + 3)(2x ﹣3)﹣4x (x ﹣1),其中x=2.20.(9分)已知:如图,点C 是线段AB 的中点,CE = CD ,∠ACD =∠BCE . 求证:AE = BD .(第14题图)ABD CEACBDE21.(9分)学生骑电动车上学的现象越来越受到社会的关注. 为此,某媒体记者小李随机调查了某城区若干名学生家长对这种现象的态度(分为:A :无所谓;B :反对;C :赞成)并将调査结果绘制成图①和图②的统计图(不完整)请根据图中提供的信息,解答下列问题:(1)此次抽样调査中,共.调査了 名学生家长; (2)将图①补充完整,并填写:如图②中扇形B 区域的圆心角是______度;(3)根据抽样调查结果,请你估计我市城区80000名学生家长中有多少名家长持反对态度?22.(9分)在一个口袋中有-1、0、1、2无其他区别.(1)随机地从口袋中取出一小球,则取出的小球上标的数字为非负数...的概率是多少? (2)随机地从口袋中取出一小球,不放回...后再取出第二个小球,请用画树状图或列表的方式表示出所有可能的结果,并求出两次取出的数字的积.等于0的概率是多少?23.(9分)已知:如图,抛物线y 1 = a (x - h ) 2 + k 与直线y 2 = k′x + b 分别交于x 轴和y 轴上的点A (-3,0)和点C (0,3),已知抛物线的对称轴为直线x = - 2. (1)请写.出点B 的坐标,并求抛物线的解析式; (2)观察图象,请分别写出符合下列条件的结论:① 当y 1 < y 2时x 的取值范围;② 在平面内以A 、B 、C 、D 为顶点的四边 形是平行四边形时,写出点D 的坐标.24.(9会合. 已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 min 才乘上缆车,缆车的平均速度为180 m /min. 设小亮出发x min 后行走的路程为y m. 图中的折线表示小亮在整个行走过程中y 与x 的函数关系.(1)小亮行走的总路程是________m ,他途中休息了______min ,休息后继续行走的速度为______m /min ;(2)① 当50≤x ≤80时,求y 与x 的函数关系式; ② 当小颖到达缆车终点时,小亮离缆车终点 的路程是多少?y25.(12分)已知双曲线ky x=(x >0)经过点(2,. (1)填空:k = _______;(2)如图,已知y 轴上一点A (. 若点P 在双曲线ky x=(x >0)上,过点P 作PB ⊥x 轴,垂足为B 若△P AB 恰为等边三角形,求点P 的坐标; (3)在(2)的条件下,已知点M 当△P AB 面积与△P AM 面积相等时,求点M 坐标.26.(14分)在等腰梯形ABCD 中,AD ∥BC ,AD = 2中,建立如图所示的平面直角坐标系,已知A (0,,B (-2,0) .(1)分别写出C 、D 两点的坐标:C ( , )、D ( , );(2)若动点O 1在线段CD 上运动(O 1不与端点C 、D 重合),以O 1C 为半径作圆.① 如图1,以CD 为直径的⊙O 1交BC 于点E ,试求线段CE 的长,并判断此时 ⊙O 1与y 轴的位置关系;② 如图2,若点F 为AB 中点,设点O 1(a ,b ),试探索:点O 1在线段CD 上运动 过程中,当⊙O 1与直线EF 相离时,求a 的取值范围.四、附加题(共10分)在答题卡上相应题目的答题区域内作答.友情提示:请同学们做完上面考题后,再认真检查一遍,估计一下你的得分情况.如果你全卷得分低于90分(及格线),则本题的得分将计入全卷总分,但计入后全卷总分最多不超过90分;如果你全卷总分已经达到或超过90分,则本题的得分不计入全卷总分.1.(5分)比较大小:-2 0(填>,<或=).(图1)2.(5分)三角形的外角和等于 度.2013年惠安县初中学业质量检查数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确做完该步应得的累计分数.一、选择题(每小题3分,共21分)1. B 2. D 3. B 4. D 5. A 6. C 7. C. 二、填空题(每小题4分,共40分)8.±2 9.2x (2 - x ) 10.8×10-8 11.丙 12.正三角形、正方形、正六边形 13.1 14.2 15.32 1617.(1)6 ;(2)2或5. 三、解答题(9个小题,共89分) 18.(9201321|5|(1)()3--+--. 解:原式 = 2 + 5-1-9 ………………………………………………………………8分 = -3 ………………………………………………………………………9分19.(9分)先化简,再求值:(2x + 3)(2x ﹣3)﹣4x (x ﹣1),其中x=2.解:原式 = 4x 2 - 9 - 4x 2 + 4x ………………………………………………………4分= -9 + 4x …………………………………………………………………6分 当x= 2 原式= -9 + 4(2…………………………………………7分 = -1 -9分20.证明:∵点C 是线段AB 的中点,∴AC = BC , ………………………………………………………1分 ∵∠ACD =∠BCE ,∴∠ACD +∠DCE =∠BCE +∠DCE ,即∠ACE =∠BCD , ………………………………………………3分在△ACE 和△BCD 中,AC BC ACE BCD CE CD ⎧=⎪∠=∠⎨⎪=⎩,……………………6分∴△ACE ≌ △BCD , ………………………………………8分 ∴AE = BD . ……………………………………………………9分(方法2)提示:连结AD 、BE .先证明△ACD ≌ △BCE ,再证明△ABD ≌ △BAE . 21.(1)200名;(2)图略,216度;(3)持反对态度有80000×120200= 48000人.22.解:(1)34………………………………………………………………………………4分(2)第一次-1 0 1 2 第二次0 1 2 -1 1 2 -1 02 -1 0 1………………………………………………………………………………8分取两次出现所有机会均等的结果有12种,其中两数积等于0的情况有6种∴P(两数积为0)=21126=.........................................................................9分23.解:(1)B(-1,0) (2)依题可知h = -2 a = 1a(0 -h)2 + k = 3 解得h = -2a(-1 -h)2 + k = 0 k = -1∴抛物线的解析式为y = (x + 2)2–1……………………………4分(2)①-3<x <0 (6)②D(2,3)或D(-2,3)或D(-4,-3) (9)24.(1)3600m;20min;55m∕min …………………………………………………………4分(2)①设函数关系式为y = kx + b由图象知点(50,1950)与点(80,3600)在直线上50k + b = 1950 k = 55∴即80k + b = 3600 b = -800∴当50≤x≤80时,y与x的函数关系式为y = 55x– 800…………………7分②方法1:小颖到达终点所用的时间为1800180= 10分钟∴小颖到达终点时小亮已用时50 + 10 = 60分钟∴小亮离缆车终点的路程为3600–(55×60 - 800)= 1100m………9分方法2:小颖到达终点所用的时间为1800180= 10分钟∴小颖到达终点时小亮已用时50 + 10 = 60分钟∴小亮离缆车终点的路程为55 ×(80 - 60)= 1100m.25.解:(1)k=3分(2)(方法1)如图所示,依题意知PB⊥x轴,△P AB为等边三角形∴∠ABO = 300由(1)知双曲线解析式y=设点P (a,则AB = PB = OB = a ………………4分在Rt△AOB中,cos300=OBAB=…………………6分解得a1 = 3,a2 = -3(不合舍去)当a = 3时,a=∴P………………………………………………………7分(方法2)略解:由三线合一知识得PB=即y p=∴px=x p= 3∴P .(3)由(2)知P ,易得A(0设直线AP的解析式y kx=(k≠0)则3k,∴3k=即直线AP为y x=+8分①设过点B且平行于直线AP的直线l1:解析式为'y x b=+∵点B(3,0)∴'033b=⋅+,解得'b=∴3y x=-9分∴P(610分②设平行直线AP的另一直线l2:''y b=+y x=-y=解得6x=y3x=-y=-或(不合舍去)当直线l 1与直线AP 的距离,与直线AP 与直线l 2的距离相等时, 得l 2:y x =+11分∴P 9(,22-+………………………………………………………12分 综上所述:P (6P26.解:(1)C (4,0)、D (2,3分 (2)连结DE∵CD 是⊙O 1的直径,∴∠DEC = 900 ……………4分 在Rt △AOB 中,tam ∠ABO =AO BO =2∴∠ABO = 600 …… …………………………………5 又四边形ABCD 是等腰梯形,∴∠DCE = ∠ABO = 60 ∴cot ∠DCE =CE DE ,即cot600 = ∴CE = 2 …………… …………………………………6又CD = 2 CE = 4∴⊙O 1的半径r =2CD= 2 又O 1(3,∴点O 1到y 轴的距离d = 3∵d > r ,∴⊙O 1与y 轴相离…………………………(3)(方法1)如图,延长DC 交直线EF 于点G ,连结AE 过圆心O 1作O 1H ⊥EF 垂足为H 由(2)知CE = 2,则BE = 4 又AB = BE = 4,∠ABO = 600, ∴△ABE 是正三角形 ∵点F 是AB 的中点 ∴∠1 = ∠2 = 300 ∴∠3 = ∠2 = 300y x =+y =解得 x =y = 或x =y =(不合舍去)(图1)又∠DCE = ∠3 + ∠4= 600,∴∠4 = 300,即∠3 = ∠4 ∴CG = CE = 2∵O1–2a ………………………10分∴O1G = O1C + CG = 10–2a …………………………………………11分∴O1H =12O1G = 5–a ………………………………………………12分若⊙O1与直线EF相离,则O1H >O1C即5–a >8–2a,解得a >3 ……………………………………13分又点O1在线段CD上运动∴a <4∴3<a <4 ………………………………………………………14分(方法2)略解,设O1C = r如方法1可得O1G= r+2O1H =2 2 r+若⊙O1与直线EF相切,则O1H =O1C= r即22r+= r,解得r=2若⊙O1与直线EF相离,则0<r<2又r=O1C = 8–2a,即0<8–2a<2∴3<a <4四、附加题1.<2.3600。
福建省泉州市2013年初中学业质量检查数学试卷一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分. 1.(3分)(2013•泉州质检)下列各数中,属于负数的是()A.0B.3C.﹣3 D.﹣(﹣3)考点:正数和负数专题:计算题.分析:根据比0小的数是负数即可作出判断.解答:解:∵﹣(﹣3)=3,∴在0,3,﹣3,3中比0小的数是﹣3.故选C.点评:此题考查了正数与负数,掌握负数的定义是解本题的关键.2.(3分)(2013•泉州质检)计算:a3•a4等于()A.a7B.a12C.3a4D.4a3考点:同底数幂的乘法专题:计算题.分析:院士利用同底数幂的乘法法则计算得到结果,即可作出判断.解答:解:a3•a4=a7.故选A点评:此题考查了同底数幂的乘法,熟练掌握法则是解本题的关键.3.(3分)(2013•泉州质检)把不等式组的解集在数轴上表示出来,正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解不等式组得:,再分别表示在数轴上即可得解.解答:解:,由①得x>﹣1,由②得又x≤1,则不等式组的解集为﹣1<x≤1.表示在数轴上为:故选D.点评:本题考查了在数轴上表示不等式的解集、解一元一次不等式组.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.(3分)(2013•泉州质检)一组数据35、38、37、36、37、36、35、36的众数是()A.35 B.36 C.37 D.38考点:众数分析:众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.解答:解:36出现了3次,次数最多,所以众数是36.故选B.点评:本题考查了众数的概念.注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.5.(3分)(2013•泉州质检)若n边形的内角和是720°,则n的值是()A.5B.6C.7D.8考点:多边形内角与外角分析:根据多边形的内角和公式(n﹣2)•180°列式计算即可得解.解答:解:根据题意,(n﹣2)•180°=720°,解得n=6.故选B.点评:本题考查了多边形的内角和公式,是基础题,熟记公式是解题的关键.6.(3分)(2013•泉州质检)如图,由6个形状相同的小正方体搭成的一个几何体,此几何体的左视图是()A.B.C.D.考点:简单组合体的三视图分析:根据左视图是从左面看到的图判定则可.解答:解:从左面看得到1列上下3个正方形.故选A.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.7.(3分)(2013•泉州质检)如图,两个平行四边形的面积分别为18、12,两阴影部分的面积分别为a、b(a>b),则(a﹣b)等于()A.4B.5C.6D.7考点:平行四边形的性质分析:设设重叠部分面积为c,则a﹣b=(a+c)﹣(b+c)问题得解.解答:解:设重叠部分面积为c,a﹣b=(a+c)﹣(b+c)=18﹣12=6,故选C,点评:本题考查了平行四边形的性质和其面积的有关计算,解题的关键是设出设重叠部分面积为c,有整体减部分即可求出问题的答案.二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.(4分)(2013•泉州质检)﹣2013的相反数是2013 .考点:相反数分析:根据相反数的概念解答即可.解答:解:﹣2013的相反数是﹣(﹣2013)=2013.故答案是:2013.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.9.(4分)(2013•泉州质检)分解因式:2m2﹣m= m(2m﹣1).考点:因式分解-提公因式法分析:直接把公因式m提出来即可.解答:解:2m2﹣m=m(2m﹣1).故答案为:m(2m﹣1).点评:本题主要考查了提公因式法分解因式,准确找出公因式m是解题的关键.10.(4分)(2013•崇左)据军事网站报道,辽宁号航空母舰,简称“辽宁舰”,舷号16,是中国人民解放军海军第一艘可以搭载固定翼飞机的航空母舰.辽宁舰的满载排水量67500吨,将数据67500用科学记数法表示为 6.75×104.考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:67500=6.75×104,故答案为:6.75×104.点评:此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(4分)(2013•泉州质检)计算:+= 1 .考点:分式的加减法分析:根据同分母分式的加法法则:分母不变,分子相加,即可求解.解答:解:原式==1.故答案是:1.点评:本题考查了分式的加法法则,理解法则是关键.12.(4分)(2013•泉州质检)方程2x﹣3=5的解是x=4 .考点:解一元一次方程专题:计算题.分析:方程移项合并,将x系数化为1,即可求出解.解答:解:2x﹣3=5,移项合并得:2x=8,解得:x=4.故答案为:x=4点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.13.(4分)(2013•泉州质检)如图,Rt△ACB中,∠ACB=90°,DE∥AB,若∠BCE=30°,则∠A= 60 度.考点:平行线的性质;余角和补角专题:计算题.分析:此题要求∠A的度数,根据平行线的性质,只需求得其内错角∠ACD的度数,再根据平角的定义就可求解.解答:解:∵DE∥AB,∴∠A=∠ACD=180°﹣∠ACB﹣∠BCE=180°﹣90°﹣30°=60°.点评:本题应用的知识点有平行线的性质以及平角的定义.14.(4分)(2013•泉州质检)写出一个你所学过的既是轴对称又是中心对称图形的图形:圆.考点:轴对称图形;中心对称图形专题:开放型.分析:根据轴对称图形和中心对称图形的概念,分析总结所学过的图形即可作答.解答:解:两者都是的有线段、直线、相交线、矩形、菱形、正方形、圆等.点评:能够根据概念总结所学过的图形的对称性.15.(4分)(2013•泉州质检)一个扇形的弧长是38πcm,面积是190πcm2,这个扇形的半径是10 cm.考点:扇形面积的计算;弧长的计算分析:根据扇形的面积公式求出半径,扇形的面积公式:S=lr.解答:解:根据题意得190π=×38πr,解得r=10.故答案是10.点评:本题主要考查扇形的面积公式,熟练掌握扇形的面积公式是解题的关键.16.(4分)(2013•泉州质检)如图,E是△ABC的重心,AE的延长线交BC于点D,则AE:AD= 2:3 .考点:三角形的重心分析:重心到顶点的距离与重心到对边中点的距离之比为2:1.解答:解:∵E是△ABC的重心,AE的延长线交BC于点D,∴AE:ED=2:1,∴AE:AD=2:3.故答案是:2:3.点评:此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.17.(4分)(2013•泉州质检)在平面直角坐标系中,A、B两点的坐标分别为A(3,2),B (1,5).(1)若点P的坐标为(0,m),当m= 时,△PAB的周长最短;(2)若点C、D的坐标分别为(0,a)、(0,a+4),则当a= 时,四边形ABDC的周长最短.考点:轴对称-最短路线问题;坐标与图形性质分析:(1)如图1,AB的长度一定,要使△PAB的周长取最小值,需要满足PA+PB取最小值,利用轴对称的性质确定点P的位置,求出A'B的函数解析式后即可得出点P的坐标;(2)如图2,作点A关于x轴的对称点A′,则A′的坐标为(﹣3,2),把A′向上平移4个单位得到点B'(﹣3,6),连接BB′,与y轴交于点D,易得四边形A′B′DC为平行四边形,得到CA′=DB′=CA,则AC+BD=BB′,根据两点之间线段最短得到此时(AC+BD)最小,即四边形ABDC的周长最短.然后用待定系数法求出直线BB′的解析式y=4x﹣17,易得D点坐标为(0,),则有a+4=,即可求出a的值.解答:解:(1)如图,过点A作关于y轴的对称点A',连接A'B,则A'B与y轴的交点即为点P的位置,∵点A的坐标为(3,2),∴点A'的坐标为(﹣3,2),设直线A'B的解析式为y=kx+b,则,解得,即直线A'B的解析式为y=x+,∵点P的坐标为(0,m),且点P在直线A′B上,∴m=.(2)解:如图2,作点A关于x轴的对称点A′,则A′的坐标为(﹣3,2),把A′向上平移4个单位得到点B'(﹣3,6),连接BB′,与y轴交于点D,∴CA′=CA,又∵点C、D的坐标分别为(0,a)、(0,a+4),∴CD=4,∴A′B′∥CD,∴四边形A′B′DC为平行四边形,∴CA′=DB′,∴CA=DB′,∴AC+BD=BB′,此时AC+BD最小,而CD与AB的长一定,∴此时四边形ABDC的周长最短.易得直线BB′的解析式为y=﹣x+,∵点D在直线BB′上,且D(0,a+4),∴a+4=.解得a=.故答案是:;.点评:本题考查了轴对称﹣最短路线问题:通过对称,把两条线段的和转化为一条线段,利用两点之间线段最短解决问题.也考查了坐标变换以及待定系数法求一次函数的解析式.三、解答题(共89分)在答题卡上相应题目的答题区域内作答.18.(9分)(2013•泉州质检)计算:.考点:负整数指数幂;绝对值;零指数幂专题:计算题.分析:根据负整数指数幂、零指数幂和绝对值的知识点进行解答.解答:解:()﹣1=2;(﹣1)0=1;|﹣3|=3;∴原式=2﹣1+3=4.故答案为4.点评:本题需注意的知识点是:a﹣p=任何不等于0的数的0次幂是1,负数的绝对值是正数.19.(9分)(2013•泉州质检)先化简,再求值:(3+x)(3﹣x)+(x﹣2)2,其中x=﹣2.考点:整式的混合运算—化简求值专题:计算题.分析:原式第一项利用平方差公式化简,第二项利用完全平方公式展开,去括号合并得到最简结果,将x的值代入计算即可求出值.解答:解:原式=9﹣x2+x2﹣4x+4=﹣4x+13,当x=﹣2时,原式=﹣4×(﹣2)+13=8+13=21.点评:此题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.20.(9分)(2013•泉州质检)如图,四边形ABCD是菱形,DE⊥AB交BA的延长线于E,DF ⊥BC交BC的延长线于F.求证:DE=DF.考点:菱形的性质;角平分线的性质专题:证明题.分析:首先连接BD,由四边形ABCD是菱形,则可得∠CBD=∠ABD,又由DE⊥AB,DF⊥BC,根据角平分线的性质,即可证得DE=DF.解答:证明:连接BD,∵四边形ABCD是菱形,∴∠CBD=∠ABD,∵DE⊥AB,DF⊥BC,∴DE=DF.点评:此题考查了菱形的性质与角平分线的性质.此题难度适中,解题的关键是准确作出辅助线,注意数形结合思想的应用.21.(9分)(2013•泉州质检)《泉州市建设“美丽乡村”五年行动计划(2012年~2016年)》提出:从2013年起,泉州花5年时间把泉州农村建设成为“村庄秀美、环境优美、生活甜美、社会和美”的宜居、宜业、宜游“美丽乡村”.某村从2名女村民和2名男村民中随机抽取环境卫生督查员若干名.(1)若随机抽取1名,求恰好是女村民的概率;(2)若随机抽取2名,请你用画树状图或列表的方法表示所有等可能的结果,并求恰好是1名女村民和1名男村民的概率.考点:列表法与树状图法分析:(1)根据从2名女村民和2名男村民中随机抽取1名,直接求出恰好是女村民的概率即可;(2)利用树状图或列表法分别列举出所有可能,进而求出概率即可.解答:解:(1)抽1名恰好是女村民的概率是;(2)方法一:列举所有等可能的结果,画树状图如下:则P(一女一男)==.即抽取2名恰好是一女一男村民的概率是.方法二:列举所有等可能的结果,列表法如下:女1女2男1男2女1(女1,女2)(女1,男1)(女1,男2)女2(女2,女1)(女2,男1)(女2,男2)男1(男1,女1)(男1,女2)(男1,男2)男2(男2,女1)(男2,女2)(男2,男1)P(一女一男)==,即抽取两名一女一男村名的概率为.点评:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.22.(9分)(2013•泉州质检)如图,在方格纸中(小正方形的边长为1),直线AB与两坐标轴交于格点A、B,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)分别写出点A、B的坐标,画出直线AB绕着点O逆时针旋转90°的直线A′B′;(2)若线段A′B′的中点C在反比例函数的图象上,请求出此反比例函数的关系式.考点:反比例函数与一次函数的交点问题;一次函数图象与几何变换专题:计算题.分析:(1)根据网格得出A与B的坐标,直线AB绕着点O逆时针旋转90°的直线A′B′即可;(2)由旋转的性质得出A′与B′的坐标,求出A′B′的中点坐标,代入反比例解析式中求出k的值,即可确定出反比例解析式.解答:解:(1)根据网格得:A(6,0)、B(0,4),旋转后的直线A′B′如图所示;(2)由旋转的性质可知:A′(0,6)与B′(﹣4,0),∴点C的坐标为(﹣2,3),把(﹣2,3)代入反比例函数的关系式y=可得,=3,解得:k=﹣6,则所求的反比例函数的关系式为y=﹣.点评:此题考查了一次函数与反比例函数的交点问题,涉及的知识有:作图﹣旋转变换,反比例函数的图象与性质,待定系数法确定函数解析式,熟练掌握待定系数法是解本题的关键.23.(9分)(2013•泉州质检)世界卫生组织决定从1989年起将每年的5月31日定为世界无烟日,中国也将该日作为中国的无烟日.为宣传“吸烟危害健康”,提倡“戒烟”,某校组织同学们在社区开展了“你支持哪种戒烟方式”的随机问卷调查,并将调查结果绘制成两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)同学们一共调查了500 名市民,扇形统计图中“药物戒烟”部分的圆心角是45 度,请你把折线统计图补充完整;(2)若该社区有1万名市民,请你估计该社区有多少名市民支持“警示戒烟”方式?考点:折线统计图;用样本估计总体;扇形统计图分析:(1)用强制戒烟人数÷强制戒烟百分数,可得一共调查人数;用药物戒烟人数÷调查人数×360°,得出强制戒烟的圆心角,再求其它戒烟的人数,补充统计图;(2)用10000×支持“警示戒烟”的百分数,得出结论.解答:解:(1)200÷40%=500名,75÷500×360°=54度,折线统计图如图所示:(2)解:由(1)知,同学们一共调查了500名市民,×10000=2500(名).答:该社区有2500名市民支持“警示戒烟”方式.故答案为:500,45.点评:本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.24.(9分)(2013•泉州质检)某工厂生产甲、乙两种不同的产品,所需原料为同一种原材料,生产每吨产品所需原材料的数量和生产过程中投入的生产成本的关系如表所示:产品甲乙原材料数量(吨) 1 2生产成本(万元) 4 2若该工厂生产甲种产品m吨,乙种产品n吨,共用原材料160吨,销售甲、乙两种产品的利润y(万元)与销售量x(吨)之间的函数关系如图所示,全部销售后获得的总利润为200万元.(1)求m、n的值;(2)试问:该工厂投入的生产成本多少万元?考点:一次函数的应用分析:(1)求出甲、乙两种产品的每吨的利润,然后根据两种原材料的吨数和全部销售后的总利润,列出关于m、n的二元一次方程组,求解即可;(2)根据生产成本=甲的成本+乙的成本,列式计算即可得解.解答:解:(1)由图可知:销售甲、乙两种产品每吨分别获利6÷2=3万元、6÷3=2万元,根据题意可得:,解得;(2)由(1)知,甲、乙两种产品分别生产20吨、70吨,所以,总利润=20×4+70×2=220(万元).答:该工厂投入的生产成本为220万元.点评:本题考查了一次函数的应用,主要利用了列二元一次方程组解决实际问题,根据表格求出两种产品每吨的利润,然后列出方程组是解题的关键.25.(13分)(2013•泉州质检)抛物线y=x2﹣4x+k与x轴交于A、B两点(点B在点A的右侧),与y轴交于点C(0,6),动点P在该抛物线上.(1)求k的值;(2)当△POC是以OC为底的等腰三角形时,求点P的横坐标;(3)如图,当点P在直线BC下方时,记△POC的面积为S1,△PBC的面积为S2.试问S2﹣S1是否存在最大值?若存在,请求出S2﹣S1的最大值;若不存在,请说明理由.考点:二次函数综合题分析:(1)把点C的坐标代入已知函数解析式y=x2﹣4x+k来求k的值;(2)利用等腰三角形的“三合一”性质可知,点P是线段OC的垂直平分线与抛物线的交点;(3)需要分类讨论,如图2、图3,根据点P所处的位置不同,可求得S2﹣S1=﹣m2+6m=﹣(m﹣2)2+6,然后由抛物线的开口方向,顶点坐标可以求得它的最值.解答:解:(1)⊙抛物线y=x2﹣4x+k经过点C(0,6)∴×02﹣4×0+k=6解得k=6;(2)如图1,过OC的中点D作y轴的垂线,当△POC是以OC为底的等腰三角形时,由OD=×6=3可知,点P的纵坐标为3.由(1)可知,抛物线的解析式为y=x2﹣4x+6,令y=3得x2﹣4x+6=3,解得x=4∴点P的横坐标为4;(3)∵由(1)可知,抛物线的解析式为y=x2﹣4x+6令x=0,得y=6;令y=0,得x2﹣4x+6=0,解得 x1=2,x2=6.∴点A、B、C坐标分别为(2,0)、(6,0)、(0,6),则OA=2,OB=OC=6设点P为(m,m2﹣4m+6),当点P在直BC下方时0<m<6,过点P作PE⊥y轴于E,作直PG⊥x轴于G.当2≤m<6时,如图2,PE=m,PG=m2+4m﹣6,S2=S四边形COPB﹣S△POC,∵S四边形COPB=S△BOC+S△POB=×OB×(OC+PG)=﹣m2+12m,2S1=OC×PE=6∴S2﹣S1=S四边形COPB﹣2S1=﹣+12m﹣6m=﹣m2+6m;当0<m<2时,如图3.PE=m,PG=m2+4m﹣6,S2=S△BOC+S△POB﹣S1同理可求S2﹣S1=﹣m2+6m综上所述,当0<m<6时,S2﹣S1=﹣m2+6m=﹣(m﹣2)2+6.∵抛物线S2﹣S1=﹣(m﹣2)2+6的开口方向向下,∴当m=2时,它有最大值.∵m=2满足0<m<6,∴当m=2时,S2﹣S1存在最大值6.点评:本题综合考查了等腰三角形的性质、待定系数法求二次函数解析式以及三角形面积的求法.解答(2)题时,一定要分类讨论,以防漏解或错解.26.(13分)(2013•泉州质检)如图,在Rt△ABC中,∠ACB=90°,AC=10cm,BC=5cm,点P 从点C出发沿射线CA以每秒2cm的速度运动,同时点Q从点B出发沿射线BC以每秒1cm的速度运动.设运动时间为t秒.(1)填空:AB= 5cm;(2)若0<t<5,试问:t为何值时,△PCQ与△ACB相似;(3)若∠ACB的平分线CE交△PCQ的外接圆于点E.试探求:在整个运动过程中,PC、QC、EC三者存在的数量关系式,并说明理由.考点:相似形综合题分析:(1)根据勾股定理求出即可;(2)要使△PCQ与△ACB相似,必须有∠PQC=∠B或∠PQC=∠A成立.当∠PQC=∠A 时,△PCQ∽△BCA,得出,代入求出即可;当∠PQC=∠B时,△PCQ∽△ACB,得出,代入求出即可;(3)分为两种情况:画出图形,当0<t<5时,过点E作HE⊥CE交AC于H,求出∠HEP=∠CEQ,∠QCE=∠PCE=45°,PE=QE,证△QCE≌△PHE,推出QC=PH,根据勾股定理求出即可;当t≥5时,过点E作ME⊥CE交AC于M,同法可证△QCE≌△PME,根据勾股定理求出即可.解答:解:(1)在Rt△ABC中,∠ACB=90°,AB=10cm,BC=5cm,由勾股定理得:AB==5(cm)(2)如图1,由题意可知:PC=2t,QB=t,QC=5﹣t.∵∠PCQ=∠ACB,∴要使△PCQ与△ACB相似,必须有∠PQC=∠B或∠PQC=∠A成立.当∠PQC=∠A时,△PCQ∽△BCA,由可得,解得:t=1,当∠PQC=∠B时,△PCQ∽△ACB,由可得,解得,∴当t=1或秒时,△PCQ与△ACB相似;(3)当0<t<5时,如图2,过点E作HE⊥CE交AC于H,则∠HEP+∠PEC=90°,∵∠ACB=90°,∴PQ为△PCQ的外接圆的直径,∴∠QEP=90°,即∠QEC+∠PEC=90°,∴∠HEP=∠CEQ,又∵CE平分∠ACB且∠ACB=90°,∴∠QCE=∠PCE=45°,∴,∴PE=QE,∴∠QCE=∠PHE=45°,∵在△QCE和△PHE中∴△QCE≌△PHE(AAS)∴QC=PH,在Rt△HEC中,EC2+EH2=HC2,EC=EH,即2EC2=(CP+CQ)2∴;当t≥5时,如图3,过点E作ME⊥CE交AC于M,同法可证△QCE≌△PME,∴,综上所述,当0<t<5时,;当t≥5时,.故答案为:5;.点评:本题考查了等腰直角三角形,三角形的外接圆,相似三角形的性质和判定的应用,主要考查学生综合运用性质进行计算的能力,题目综合性比较强,难度偏大.四、附加题(共10分):在答题卡上相应题目的答题区域内作答.友情提示:请同学们做完上面考题后,再认真检查一遍,估计一下你的得分情况.如果你全卷得分低于90分(及格线),则本题的得分将计入全卷总分,但计入后全卷总分不超过90分;如果你全卷已经达到或超过90分,则本题的得分不计入全卷总分.27.(5分)(2013•泉州质检)计算:3x2﹣5x2= ﹣2x2.考点:合并同类项.专题:计算题.分析:合并同类项只把系数相减,字母与字母的指数不变即可得到结果.解答:解:原式=(3﹣5)x2=﹣2x2.故答案为:﹣2x2.点评:此题考查了合并同类项,熟练掌握合并同类项法则是解本题的关键.28.(5分)(2013•泉州质检)已知∠A=35°,则∠A的补角是145 度.考点:余角和补角分析:根据互补两角之和为180°即可求解.解答:解:∵∠A=35°,∴∠A的补角=180°﹣35°=145°.故答案为:145.点评:本题考查了补角的知识,掌握互补两角之和等于180°是解题的关键.。
2013年永春县初中学业质量检查数 学 试 题(试卷满分:150分;考试时间:120分钟)友情提示:请认真作答,把答案准确地填写在答题卡上.一、选择题(每小题3分,共21分)每小题只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错、不答或答案超过一个的一律得0分. 1.-2的相反数是( ) A . 2; B .-2; C .21; D .21-. 2. 计算()32a 的结果是( )A .2a ; B .3a ; C .5a ; D .6a .3.把不等式组110x x +⎧⎨-⎩≤的解集表示在数轴上,正确的是 ( )A .B .C .D . 4.如图,AB ∥CD ,若∠1=40°, 则∠2的度数为( ) A .160º; B .150º; C . 140º; D .130º.5.一个正方体的每个面都写有一个汉字.其平面展开图如图所示,那么在该正方体中,“生”相对的字是( )A .活;B .的;C .数;D .学.6.已知⊙1O 与⊙2O 的半径分别为3和2,1O 2O =4,则⊙1O 与⊙2O 的位置关系是 ( ) A .外切; B .相交; C .内切; D .内含.7.将如图所示的矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 上的点E 处,还原 后,再沿过点E 的直线折叠,使点A 落在BC 上的点F 处,则ABBF的值是 ( ) A .2+1; B .3+1; C .2.5 ; D . 5.BC DEFA21D C B A第4题第5题二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答. 8.比较大小:-2 0.01(用“>”、“<”或“=”号填空). 9.分解因式:42-x = .10.我国稀土资源总储量约为1 050 000 000吨,将“1 050 000 000”这个数用科学记数法表示为 .11.小明五次数学考试的成绩如下(单位:分):84,87,88,90,95,则这组数据的中位数是 .12.一个n 边形的内角和等于720︒,那么这个多边形的 边数n = .13.如图,AB 是⊙O 的直径,AC 是弦,∠COB=70°, 则∠A= 度. 14.已知关于y x ,的方程组⎩⎨⎧=+=+ay x ay x 252的解满足10>+y x ,则a 的取值范围是 .15.已知等腰△ABC 的两边长分别为8cm 和3cm ,则它的周长为 cm . 16.一扇形的半径为60cm ,圆心角为150°,若用它做成一个圆锥的侧面,则这个 圆锥的底面半径为 cm .17.如图所示,直线AB 与x 轴交于点A(3,0),与y 轴交 于点B(0,4),点P 为双曲线xy 6=(x >0)上的一点, 过点P 分别作x 轴、y 轴的垂线段PE 、PF ,当PE 、PF 分别与线段AB 交于点C 、D 时. (1)AB= ; (2)AD ·BC=________.三、解答题(共89分)在答题卡上相应题目的答题区域内作答. 18.(9分)计算:│-3│-18÷2+20130-(41)-1yDxAB PE FC O第13题ABCDE F P19.(9分)先化简,再求值:)1)(1()3(2-+-+a a a ,其中23-=a .20.(9分)如图,点E 为□ABCD 的边AD 上一点,点P 为CD 中点,连结EP 并延长与BC的延长线交于点F . 求证:DE=CF .21.(9分)一个不透明的口袋里装有红、白、黄三种颜色的小球(除颜色外其余都相同), 其中白球有2个,黄球有1个.若从中任意摸出一个球,这个球是白球的概率为21. (1)求口袋中红球的个数;(2)把口袋中的球搅匀后先摸出一个球,不放回,再摸出第二个球,请你用画树状图或列表的方法表示所有等可能的结果,并说明摸出‘一黄一白’和摸出‘两个 白球’这两个事件发生的概率相等吗?为什么?22.(9分)某中学志愿者在学校周边社区发起“光盘行动”倡议,倡议大家在饭店就餐时减少浪费.倡议后一段时间,他们对就餐情况进行了统计,并制作了两幅不完整 的统计图(A :有浪费;B :多余的打包带走;C :正好;D :其它.),请你根据统计 图提供的信息解答以下问题: (1)共调查了多少名顾客?(2)将图甲中“B ”部分的图形补充完整;(3)如果调查了1000名顾客,请你估计就餐 “正好”的约有多少人?甲乙23.(9分)商场某种商品平均每天可销售30件,每件盈利50元. 节日期间商场决定采取降价促销. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件. 设每件商品降价x 元.(1)商场日销售量增加 件,每件商品盈利 元(用含x 的代数式表示); (2)为尽量减少库存,当每件商品降价多少元时,商场日盈利为2100元?24.(9分)已知正比例函数x y =和反比例函数xky =的图象都经过点A (3,3). (1)求反比例函数的解析式;(2)将直线OA 绕点O 顺时针旋转得到直线l ,当直线l 过点B (3,3)时,求∠AOB 的度数;(3)点P 在y 轴上,若△AOP 是等腰三角形,请直接写出P 点的坐标.25.(13分)如图,抛物线c x x y ++-=2与x 轴交于A,B 两点,与y 轴交于点C ,且点B 的坐标为B(-2,0).(1)求抛物线解析式;(2)点P 在抛物线上,且点P 的横坐标为x (-2<x <0),设△PBC 的面积为S ,求S 与x 之间的函数关系式,并求S 的最大值;(3)点M (m ,n )是直线AC 上的动点。
-1 0 1 -1 01 -1 01-1 01 A . B. C. D. 2013年福建省泉州市初中学业质量检查数 学 试 卷(试卷满分:150分;考试时间:120分钟)友情提示:所有答案必须填写到答题卡相应的位置上.一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分. 1.下列各数中,属于负数的是( ).A.0B.3C.3-D. )3(-- 2.计算:43a a ⋅等于( ).A. 7aB.12aC. 43aD. 34a 3.把不等式组⎩⎨⎧≤->+01242x x 的解集在数轴上表示出来,正确的是().4.一组数据35、38、37、36、37、36、35、36的众数是( ). A. 35 B. 36 C. 37 D. 385.若n 边形的内角和是︒720,则n 的值是( ).A.5B.6C.7D. 86.如图1,由6个形状相同的小正方体搭成的一个几何体,此几何体的左视图是( ).7.如图2,两个平行四边形的面积分别为18、12,两阴影部分的面积分别为a 、b )(b a >,则)(b a -等于( ).A .4 B.5 C.6 D.7二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答. 8.2013-的相反数是 . 9.分解因式:_________22=-m m .10.据军事网站报道,辽宁号航空母舰,简称“辽宁舰”,舷号16,是中国人民解放军海军第一艘可以搭载固定翼飞机的航空母舰.辽宁舰的满载排水量67500吨,将数据67500用科学记数法表A. B. C. D. (图3)ABE C D(图1)正面(图2) ba示为 . 11.计算:=+++aa a 222 . 12.方程532=-x 的解是 .13.如图3,ABC Rt ∆的顶点C 在DE 上,︒=∠90ACB ,AB DE //.若︒=∠30BCE ,则=∠A ︒.14.写出一个你熟悉的既是轴对称又是中心对称的几何图形: .15.一个扇形的弧长是cm π38,面积是2190cm π,这个扇形的半径是 cm . 16.如图4,E 是ABC ∆的重心,AE 的延长线交BC 于点D ,则=AD AE : . 17.在平面直角坐标系中,A 、B 两点的坐标分别为)2,3(A ,)5,1(B . (1)若点P 的坐标为),0(m ,当=m 时,PAB ∆的周长最短;(2)若点C 、D 的坐标分别为),0(a 、)4,0(+a ,则当=a 时,四边形ABDC 的周长最短. 三、解答题(共89分)在答题卡上相应题目的答题区域内作答. 18.(9分)计算:3)13(5252801-+--⨯+÷-.19.(9分)先化简,再求值:2)2()3)(3(-+-+x x x ,其中2-=x .20.(9分)如图5,四边形ABCD 是菱形,AB DE ⊥交BA 的延长线于点E ,BC DF ⊥交BC 的延长线于点F .求证:DF DE =.21.(9分)《泉州市建设“美丽乡村”五年行动计划(2012年~2016年)》提出:从2013年起,泉州花5年时间把泉州农村建设成为“村庄秀美、环境优美、生活甜美、社会和美”的宜居、宜业、宜游“美丽D (图5) A BE C F乡村”.某村从2名女村民和2名男村民中随机抽取环境卫生督查员若干名. (1)若随机抽取1名,求恰好是女村民的概率;(2)若随机抽取2名,请你用画树状图或列表的方法表示所有等可能的结果,并求恰好是1名女村民和1名男村民的概率.22.(9分)如图6,在方格纸中(小正方形的边长为1),直线AB 与两坐标轴交于格点A 、B ,根据所给的直角坐标系(O 是坐标原点),解答下列问题: (1)分别写.出点A 、B 的坐标,画.出直线AB 绕着点O 逆时针旋转︒90的直线''B A ;(2)若线段''B A 的中点C 在反比例函数)0(≠=k xky 的图象上,请求出此反比例 函数的关系式.23.(9分)世界卫生组织决定从1989年起将每年的5月31日定为世界无烟日,中国也将该日作为中国的无烟日.为宣传“吸烟危害健康”,提倡“戒烟”,某校组织同学们在社区开展了“你支持哪种戒烟方式”的随机问卷调查,并将调查结果绘制成两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)同学们一共调查了 名市民,扇形统计图中“药物戒烟”部分的圆心角是 度,请你把折线统计图补充完整;(2)若该社区有1万名市民,请你估计该社区有多少名市民支持“警示戒烟”方式?o (图6) A By x24.(9分)某工厂生产甲、乙两种不同的产品,所需原料为同一种原材料,生产每吨产品所需原材料的数量和生产过程中投入的生产成本的关系如右表所示:若该工厂生产甲种产品m 吨,乙种产品n 吨,共用原材料160吨,销售甲、乙两种产品的利润y (万元)与销售量x (吨)之间的函数关系如图7所示,全部销售后获得的总利润为200万元. (1)求m 、n 的值;(2)试问:该工厂投入的生产成本多少万元?被抽查的人数折线统计图2007512550100150200250强制戒烟警示戒烟药物戒烟其它戒烟戒烟方式人被抽查的人数扇形统计图强制戒烟40%其它戒烟20%药物戒烟警示戒烟24生产成本(万元) 2 1 原材料数量(吨) 乙 甲 产 品乙632 xy(图7)利润y 与销售量x 之间的函数关系图O甲25.(13分)抛物线k x x y +-=4212与x 轴交于A 、B 两点(点B 在点A 的右侧),与y 轴交于点C )6,0(,动点P 在该抛物线上. (1)求k 的值;(2)当POC ∆是以OC 为底的等腰三角形时,求点P 的横坐标;(3)如图8,当点P 在直线BC 下方时,记POC ∆的面积为1S ,PBC ∆的面积为2S .试问12S S -是否存在最大值?若存在,请求出12S S -的最大值;若不存在,请说明理由.26.(13分)如图9,在ABC Rt ∆中,︒=∠90ACB ,cm AC 10=,cm BC 5=,点P 从点C 出发沿射线..CA 以每秒cm 2的速度运动,同时点Q 从点B 出发沿射线..BC 以每秒cm 1的速度运动.设运动时间为t 秒. (1)填空:=AB cm ;(2)若50<<t ,试问:t 为何值时,PCQ ∆与ACB ∆相似;xy(图8)OABPC(3)若AC B ∠的平分线CE 交PCQ ∆的外接圆于点E .试探求:在整个运动过程中,PC 、QC 、EC 三者存在的数量关系式,并说明理由.四、附加题(共10分):在答题卡上相应题目的答题区域内作答.友情提示:请同学们做完上面考题后,再认真检查一遍,估计一下你的得分情况.如果你全卷得分低于90分(及格线),则本题的得分将计入全卷总分,但计入后全卷总分不超过90分;如果你全卷已经达到或超过90分,则本题的得分不计入全卷总分. 1.(5分)计算:2235x x -= .2.(5分)已知35A ∠=︒,则A ∠的补角是 度.2013年福建省泉州市初中学业质量检查数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分. (二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确做完该步应得的累计分数.一、选择题(每小题3分,共21分)1. C ;2. A ;3. D ;4.B ;5. B ;6.A ;7. C.二、填空题(每小题4分,共40分)8. 2013; 9. )12(-m m ; 10. 41075.6⨯; 11. 1; 12. 4=x ; 13.60;14. 正方形等(答案不(图9) ABC唯一); 15. 10; 16.3:2;17. (1)417;(2)45.三、解答题(共89分)18.(本小题9分) 解:原式3151252+-⨯+= …………………………………………………………8分 3152+-+=9= ………………………………………………………………………………9分19.(本小题9分)解:原式=44922+-+-x x x ……………………………………………………………4分=134+-x ………………………………………………………………………6分当2-=x 时, 原式=13)2(4+-⨯- =138+21= …………………………………………………………………………………9分20.(本小题9分) 证明:方法一:∵四边形ABCD 是菱形,∴DC DA =,BCD DAB ∠=∠, ……………………………………………………2分 ∵︒=∠+∠180DAE DAB ,︒=∠+∠180DCF BCD∴DCF DAE ∠=∠ …………………………………………………………………4分 又∵AB DE ⊥,BC DF ⊥,∴︒=∠=∠90DFC DEA , ……………………………………………………………6分 在ADE ∆和CDF ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠DC DA DCF DAE DFC DEA ∴ADE ∆≌CDF ∆(AAS ), ………………8分 ∴DF DE =.…………………………………9分 方法二:∵四边形ABCD 是菱形,∴BC AB =,…………………………………4分 又∵AB DE ⊥,BC DF ⊥,∴DF BC DE AB S ABCD ⋅=⋅=菱形 ……………………………………………………8分 ∴DF DE =. ……………………………………………………………………………9分 方法三:连接DB …………………………………………………………………………2分 ∵四边形ABCD 是菱形,∴DBC DBA ∠=∠, ……………………………………………………………………6分 又∵AB DE ⊥,BC DF ⊥,∴DF DE =. ……………………………………………………………………………9分 21.(本小题9分)D(图5)ABECF解:(1)抽取1名恰好是女村民的概率是12;……………………………………………4分 (2)方法一:列举所有等可能的结果,画树状图如下:………………………………………………………………………………8分∴P (一女一男)32128==. …………………………………………………………9分 即抽取2名恰好是一女一男村民的概率是23.方法二:列举所有等可能的结果,列表法如下:……………………………………………………………………………………8分∴P (一女一男)32128==. ……………………………………………………………9分 即抽取2名恰好是一女一男村民的概率是23.22.(本小题9分)解:(1)(6,0)A 、(0,4)B , 旋转后的直线B A ''如图6所示;……………………………………4分(2) 由(1)可知:点C 的坐标为(2,3)-,……………………………………6分把(2,3)-代入反比例函数的关系式ky x=可得, 32k=-,解得6k =- 故所求的反比例函数的关系式为6y x=-. …………………………………………9分女1女2男1男2女1 (女1,女2) (女1,男1) (女1,男2) 女2 (女2,女1)(女2,男1) (女2,男2) 男1 (男1,女1) (男1,女2)(男1,男2) 男2(男2,女1)(男2,女2)(男2,男1)男2女1第二次女2女2女2男1女1女1男1男1男2男2男2男1女2女1第一次(图6)xy B'A'OBA C23.(本小题9分)(1) 500名,54度,折线统计图如图所示:…………………………………………………………………………………6分(2)解:由(1)知,同学们一共调查了500名市民,250010000500125=⨯(名) 答:该社区有2500名市民支持“警示戒烟”方式.……………………………9分24.(本小题9分)解:(1)由图7可知:销售甲、乙两种产品每吨分别获利3万元、2万元.……………………………………………………………………………………2分 根据题意可得:⎩⎨⎧=+=+200231602n m n m 解得⎩⎨⎧==7020n m ……………………………………………6分 (2)由(1)知,甲、乙两种产品分别生产20吨、70吨 220270420=⨯+⨯(万元)答:该工厂投入的生产成本为220万元.……………………………………………9分25.(本小题13分)解:(1) 抛物线k x x y +-=4212经过点C )6,0( ∴6040212=+⨯-⨯k 解得6=k ……………………………………………………………………………3分 (2)如图8-1,过OC 的中点D 作y 轴的垂线,当POC∆是以OC为底的等腰三角形时, 由362121=⨯==OC OD 可知,点P 的纵坐标为3. ……………………………5分由(1)可知,抛物线的解析式为64212+-=x x y ,被抽查的人数折线统计图20010012575050100150200250强制戒烟警示戒烟药物戒烟其它戒烟戒烟方式人xyOABC GD令3=y 得364212=+-x x ,解得104±=x ∴点P 的横坐标为104±.………………………7分(3)由(1)可知,抛物线的解析式为64212+-=x x y 令0=x 得6y =;令0=y 得064212=+-x x , 解得 21=x ,62=x .则点A 、B 、C 坐标分别为(2,0)、)0,6(、)6,0(,OA =2,6OB OC == …8分设点P 为)6421,(2+-m m m ,当点P 在直线BC 下方时,60<<m , …………9分 解法一:过点P 作y PE ⊥轴于点E ,作直线x PG ⊥轴于点G . 当62<≤m 时,如图8-1,m PE =,64212-+-=m m PG ,12S S S CO PB -=四边形,PO B BO C CO PB S S S ∆∆+=四边形 =)(21PG OC OB +⨯⨯=m m 12232+-,m PE OC S 621=⨯=∴2112COPB S S S S -=-四边形m m m 612232-+-=m m 6232+-= …………10分当20<<m 时,如图8-2,m PE =,64212+-=m m PG ,12S S S S PO B BO C --=∆∆同理可求21S S -m m 6232+-= ………………………………………………11分综上所述,当60<<m 时,2221336(2)622S S m m m -=-+=--+………12分2=m 满足60<<m∴当2=m 时,21S S -存在最大值6. …………………………………………13分解法二:设直线BC 的解析式为)0(≠+=a b ax y ,则⎩⎨⎧=+=+⨯0660b a b a 解得⎩⎨⎧=-=61b a ∴直线BC 的解析式为6+-=x y . …………10分如图8-3,过点P 作y PE ⊥轴于点E ,作直线x PG ⊥轴于点G ,直线PG 交直线BC 于点F ,可xy(图8-2)O A B PC G E设点P 为)6421,(2+-m m m ,则点F 坐标为)6,(+-m m ,∴PE OG m ==,m m m m m PF 321)6421()6(22+-=+--+-=,2111222PCF PBF S S S PF OG PF BG PF OB ∆∆∴=+=⋅+⋅=⋅22113(3)69222m m m m =⨯-+⨯=-+ …………………………………11分 又m m PE OC S 3621211=⨯⨯=⋅=2221336(2)622S S m m m ∴-=-+=--+ …………………………………12分2=m 满足60<<m∴当2=m 时,21S S -存在最大值6. …………………………………………13分26.(本小题13分)解: (1)cm AB 55=; …………………………………………………………3分 QB t =,(2)如图9-1,由题意可知:2PC t =,t QC -=5. …………………4分方法一:ACB PCQ ∠=∠∴要使P CQ ∆与ACB ∆相似,则必须有BPQC ∠=∠或A PQC ∠=∠成立.当A PQC ∠=∠时,PCQ ∆∽BCA ∆ 由BC PC CA CQ =可得52105tt =- 解得1=t ……………………………6分当B PQC ∠=∠时,PCQ ∆∽ACB ∆,由AC PC CB CQ =可得10255tt =- 解得25=t ………………………………………………………………………7分∴当1=t 或25秒时,PCQ ∆与ACB ∆相似; ……………………………………8分方法二:ACB PCQ ∠=∠∴要使PCQ ∆与ACB ∆相似,则必须有BC PC CA CQ =或ACPCCB CQ =成立 AQ PCB(图9-1)当BC PC CA CQ =时,52105tt =-,解得1=t , …………………………………………6分 当AC PC CB CQ =时,10255t t =-,解得25=t , ……………………………………7分 ∴当1=t 或25秒时,PCQ ∆与ACB ∆相似; …………………………………8分(3)当50<<t 时,如图9-2,过点E 作HE CE ⊥交AC 于H ,则=90HEP PEC ︒∠∠+︒=∠90ACB ,∴PQ 为PCQ ∆的外接圆的直径∴90QEP ∠=︒即C C=90QE PE ︒∠∠+ 又∵CE 平分ACB ∠且︒=∠90ACB ∴=45QCE PCE ︒∠∠=∴⌒PE =⌒QE从而可得PE QE = ∴=45QCE PHE ︒∠∠= ∴QCE PHE ∆∆≌(AAS )∴PH QC =……………………………9分在Rt HEC ∆中,222EC EH HC +=,EH EC =即222()EC CP CQ =+ ∴2CP CQ EC +=………………………………………………………………………11分当t ≥5时,如图9-3,过点E 作ME CE ⊥交AC 于M ,仿上可证Q C EP M E ∆∆≌,∴2CP CQ EC -=综上所述,当50<<t 时,2CP CQ EC +=;当t ≥5时,2CP CQ EC -=.…………………………………………………………………………………………13分四、附加题(共10分) (1)22x -; (2)145AP CBHE(图9-2)QAQ PCM E(图9-3)B。