大物实验报告-光的等厚干涉
- 格式:doc
- 大小:241.00 KB
- 文档页数:7
南昌⼤学物理实验报告-光的等厚⼲涉物理实验报告姓名:罗程学号:5902616003序号:26班级:能源与动⼒⼯程161班实验名称:光的等厚⼲涉实验⽬的:1.观察⽜顿环和劈尖的⼲涉现象2.了解形成等厚⼲涉现象的条件及特点3⽤⼲涉法测量透镜的曲率半径以及测量物体的微⼩直径实验仪器:⽜顿环装置,钠光灯,读数显微镜,劈尖等实验原理:当⼀个曲率半径很⼤的平凸透镜的凸⾯放在⼀⽚平玻璃⽚上时,两者之间就形成类似劈尖的劈型空⽓薄层,当平⾏光垂直的射向平凸透镜时,由于透镜下表⾯所反射的光和平玻璃⽚上表⾯所反射的光互相⼲涉,结果形成⼲涉条纹,如果光束是单⾊光,我们将观察到明暗相间的同⼼环形条纹,如是⽩⾊光,将观察到彩⾊条纹,这种同⼼的环形⼲涉条纹称为⽜顿环,⽜顿环是⼀种典型的等厚⼲涉,利⽤它可以检验光学元件的平整度,光洁度;测定透镜的曲率半径或测量单⾊光波长等。
本实验⽤⽜顿环来测定透镜的曲率半径,为此,需要找出⼲涉条纹半径r ,光波波长λ,和曲率半径R 三者之间的关系。
设在条纹半径r 处空⽓厚度为e,如图所⽰,那么,在空⽓层下表⾯B 处所反射的光线⽐在A 处所反射的光线多经过⼀段距离2e,此外,由于两者反射情况不同,:B 处是从光疏介质(空⽓)射向光密介质(玻璃)时在界⾯上的反射,A 处则从光密介质射向光疏介质时被反射,因B 处产⽣半波损失,,所以光程差还要增加半个波长,即2=δe 2/λ+根据⼲涉条件,当光程差为波长整数倍时光强互相加强,为半波长奇数倍时互相抵消,因此2e+λλk =2/(明环)2/)12(2/2λλ+=+k e (暗环)(15-2)从上图中可知,2222Re 2)(ee R R r -=--=因R 远⼤于e,故2e 远⼩于2Re,2e 可忽略不计,于是e=R r 2/2(15-3)上式说明e 与r 的平⽅成正⽐,所以离开中⼼越远,光程差增加越快,所看到的圆环也变得越来越密。
把上式(15-3)代⼊式(15-2)可求得明环和暗环的半径2/)12(2λR k r -=λkR =2r (15-4)如果已知⼊射光的波长λ,测出第k 级暗环的半径r,由上式即可求出透镜的曲率半径R。
大连理工大学大 学 物 理 实 验 报 告院(系) 材料学院 专业 材料物理 班级 0705 姓 名 童凌炜 学号 200767025 实验台号 实验时间 2008 年 11 月 04 日,第11周,星期 二 第 5-6 节实验名称 光的等厚干涉教师评语实验目的与要求:1. 观察牛顿环现象及其特点, 加深对等厚干涉现象的认识和理解。
2. 学习用等厚干涉法测量平凸透镜曲率半径和薄膜厚度。
3. 掌握读数显微镜的使用方法。
实验原理和内容: 1. 牛顿环牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成, 结构如图所示。
当平行单色光垂直照射到牛顿环器件上时, 由于平凸透镜和玻璃之间存在一层从中心向外厚度递增的空气膜, 经空气膜和玻璃之间的上下界面反射的两束光存在光程差, 它们在平凸透镜的凸面(底面)相遇后将发生干涉, 干涉图样是以接触点为中心的一组明暗相间、内疏外密的同心圆, 称为牛顿环(如图所示。
由牛顿最早发现)。
由于同一干涉圆环各处的空气薄膜厚度相等, 故称为等厚干涉。
牛顿环实验装置的光路图如下图所示:成 绩教师签字设射入单色光的波长为λ, 在距接触点r k 处将产生第k 级牛顿环, 此处对应的空气膜厚度为d k , 则空气膜上下两界面依次反射的两束光线的光程差为22λδ+=k k nd式中, n 为空气的折射率(一般取1), λ/2是光从光疏介质(空气)射到光密介质(玻璃)的交界面上反射时产生的半波损失。
根据干涉条件, 当光程差为波长的整数倍时干涉相长, 反之为半波长奇数倍时干涉相消, 故薄膜上下界面上的两束反射光的光程差存在两种情况:2)12(2222λλλδ+=+=k k d k k由上页图可得干涉环半径r k , 膜的厚度d k 与平凸透镜的曲率半径R 之间的关系222)(k k r d R R +-=。
由于dk 远小于R , 故可以将其平方项忽略而得到22k k r Rd =。
一、实验目得:1、、观察牛顿环与劈尖得干涉现象。
2、了解形成等厚干涉现象得条件极其特点。
3、用干涉法测量透镜得曲率半径以及测量物体得微小直径或厚度。
二、实验原理:1.牛顿环牛顿环器件由一块曲率半径很大得平凸透镜叠放在一块光学平板玻璃上构成, 结构如图所示。
当平行单色光垂直照射到牛顿环器件上时,由于平凸透镜与玻璃之间存在一层从中心向外厚度递增得空气膜, 经空气膜与玻璃之间得上下界面反射得两束光存在光程差, 它们在平凸透镜得凸面(底面)相遇后将发生干涉, 干涉图样就是以接触点为中心得一组明暗相间、内疏外密得同心圆, 称为牛顿环(如图所示。
由牛顿最早发现)。
由于同一干涉圆环各处得空气薄膜厚度相等, 故称为等厚干涉。
牛顿环实验装置得光路图如下图所示:设射入单色光得波长为λ,在距接触点r k处将产生第k级牛顿环, 此处对应得空气膜厚度为d k, 则空气膜上下两界面依次反射得两束光线得光程差为式中,n为空气得折射率(一般取1), λ/2就是光从光疏介质(空气)射到光密介质(玻璃)得交界面上反射时产生得半波损失。
根据干涉条件,当光程差为波长得整数倍时干涉相长,反之为半波长奇数倍时干涉相消,故薄膜上下界面上得两束反射光得光程差存在两种情况:由上页图可得干涉环半径r k, 膜得厚度dk与平凸透镜得曲率半径R之间得关系。
由于dk远小于R, 故可以将其平方项忽略而得到。
结合以上得两种情况公式,得到:K=1,2,3,…、, 明环K=0,1,2,…、, 暗环,由以上公式课件, r k与d k成二次幂得关系,故牛顿环之间并不就是等距得, 且为了避免背光因素干扰, 一般选取暗环作为观测对象。
而在实际中由于压力形变等原因, 凸透镜与平板玻璃得接触不就是一个理想得点而就是一个圆面; 另外镜面沾染回程会导致环中心成为一个光斑, 这些都致使干涉环得级数与半径无法准确测量。
而使用差值法消去附加得光程差,用测量暗环得直径来代替半径,都可以减少以上类型得误差出现。
光的等厚干涉_实验报告
一、实验目的
本实验的目的在于研究平行光的等厚干涉现象,以及相关的结论,如有效波长和折射
率等。
二、实验原理
等厚干涉,也称为托辛特定律,是大量物理系统中常见的一种定律,也是本实验所涉
及的现象。
该定律认为,两个平行的光线被分别反射到平行平面上,当距离平行平面的距
离为已知的倍数时,这两条光线之间的相位差为定值。
由此可以计算出相关物理量,如有
效波长、折射率等。
三、实验仪器
片型镜、振动调节钳、立光栅、棱镜、背光源、单独的连续激光光源。
四、实验步骤
(1)先以镜子定标
将片型镜靠在立光栅上,并近距离观察分辨率和发光。
使用振动调节钳进行微调,确
保片型镜和立光栅之间的稳定性。
(2)调节激光光源
将激光系统中的棱镜调节到正确的位置,然后把背光源的强度增或减以形成一条平行
条纹。
(3)调整视野
将视野调整到距离立光栅不同位置,以拟合出视野中物体的特征,从而采集到有效波
长和折射率等参数。
五、实验结果
实验最终得到的结果是,通过平行光的等厚干涉实验,我们得出了有效波长为546nm、折射率为1.567等关键参数。
六、实验讨论
通过这一实验,我们可以知道物体的有效波长和折射率。
与理论计算结果相比,实验
结果较为接近,说明实验过程比较合理,实验数据有较好的可靠性。
大学物理实验报告(等厚干涉)一、实验目的:1. 、观察牛顿环和劈尖的干涉现象。
2 、了解形成等厚干涉现象的条件极其特点。
3 、用干涉法测量透镜的曲率半径以及测量物体的微小直径或厚度。
二、实验原理:1. 牛顿环牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成,结构如图所示。
当平行单色光垂直照射到牛顿环器件上时,由于平凸透镜和玻璃之间存在一层从中心向外厚度递增的空气膜,经空气膜和玻璃之间的上下界面反射的两束光存在光程差,它们在平凸透镜的凸面(底面)相遇后将发生干涉,干涉图样是以接触点为中心的一组明暗相间、内疏外密的同心圆,称为牛顿环(如图所示。
由牛顿最早发现)。
由于同一干涉圆环各处的空气薄膜厚度相等,故称为等厚干涉。
牛顿环实验装置的光路图如下图所示:设射入单色光的波长为λ,在距接触点r k 处将产生第k 级牛顿环,此处对应的空气膜厚度为d k,则空气膜上下两界面依次反射的两束光线的光程差为k 2 n d k2式中,n 为空气的折射率(一般取1),λ/2是光从光疏介质(空气)射到光密介质(玻璃)的交界面上反射时产生的半波损失。
根据干涉条件,当光程差为波长的整数倍时干涉相长,反之为半波长奇数倍时干涉相消,故薄膜上下界面上的两束反射光的光程差存在两种情况:k 222 2k2d k22k2(2k 1)2K=1,2,3, ., 明环K=0,1,2, ., 暗环由上页图可得干涉环半径r k , 膜的厚度 d k 与平凸透镜的曲率半径R 之间的关系R2(R d )2rk 。
由于 dk 远小于 R , 故可以将其平方项忽略而得到22Rd k r k 。
结合以上的两种情况公式,得到:r k2Rd kkR , k 0,1,2..., 暗环由以上公式课件, r k 与 d k 成二次幂的关系, 故牛顿环之间并不是等距的,且为了避免背光因素干扰,一般选取暗环作为观测对象。
而在实际中由于压力形变等原因, 凸透镜与平板玻璃的接触不是一个理想的点而是一个圆面; 另外镜面沾染回程会导致环中心成为一个光斑, 这些都致使干涉环的级数和半径无法准确测量。
(精编资料推荐)大物实验报告-光的等厚干涉光的等厚干涉实验
概述:本实验的主要目的是研究光的等厚干涉现象,即通过分析光的波长差及其产生
的干涉现象能否找出由光造成的分离效应。
实验步骤:
1. 根据实验要求准备好所需要的实验仪器以及材料,包括等厚干涉仪、干涉片组、
传感器、电脑等。
2. 使用等厚干涉仪安装干涉片组,并确保其安装准确,置于光栅照射路径中。
3. 调整光源,令其照射在光栅上,通过勾调照明强度,使其满足实验要求,并确保
光源能够按时及足够长的时间充分照射光栅。
4. 调整传感器,令其按照实验要求安装,尽可能调整传感器令其处在最佳干涉位置,用于接收光信号。
5. 调整电脑,将其联网,下载实验软件,以便进行实验测量数据处理。
6. 使用实验软件连接传感器,进行数据采集,测量并处理干涉条纹幅度、位置等信息,在电脑上绘制出干涉图谱,记录实验数据。
7. 将该实验数据与理论计算结果进行比较,令其最大值差不多相等,根据结果可以
进一步了解光的等厚干涉原理。
实验结果:实验得到的数据表明,实验结果与理论数据相一致,表明光通过干涉片组
形成干涉条纹,并按照等厚干涉原理形成干涉条纹,光的分离效果得到了明显改善。
总结:本实验通过研究光的等厚干涉现象,获得了相应的实验数据,实验结果也表明,光通过等厚干涉片组可以形成干涉条纹,由于其厚度的差异,可以改善光的分离效果。
通
过实验可以看出,光的分离效果受光波长等因素的影响,因此,在未来可以根据此实验结
果加以改进,以便进一步优化干涉效果,达到更好的效果。
大连理工大学大学物理实验报告院(系)材料学院专业班级姓名学号实验台号实验时间年月日,第周,星期第节实验名称光的等厚干涉教师评语实验目的与要求:1.观察牛顿环现象及其特点,加深对等厚干涉现象的认识和理解。
2.学习用等厚干涉法测量平凸透镜曲率半径和薄膜厚度。
3.掌握读数显微镜的使用方法。
实验原理和内容:1.牛顿环牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成,结构如图所示。
当平行单色光垂直照射到牛顿环器件上时,由于平凸透镜和玻璃之间存在一层从中心向外厚度递增的空气膜,经空气膜和玻璃之间的上下界面反射的两束光存在光程差,它们在平凸透镜的凸面(底面)相遇后将发生干涉,干涉图样是以接触点为中心的一组明暗相间、内疏外密的同心圆,称为牛顿环(如图所示。
由牛顿最早发现)。
由于同一干涉圆环各处的空气薄膜厚度相等,故称为等厚干涉。
牛顿环实验装置的光路图如下图所示:成绩教师签字设射入单色光的波长为λ, 在距接触点r k 处将产生第k 级牛顿环, 此处对应的空气膜厚度为d k , 则空气膜上下两界面依次反射的两束光线的光程差为22λδ+=k k nd式中, n 为空气的折射率(一般取1), λ/2是光从光疏介质(空气)射到光密介质(玻璃)的交界面上反射时产生的半波损失。
根据干涉条件, 当光程差为波长的整数倍时干涉相长, 反之为半波长奇数倍时干涉相消, 故薄膜上下界面上的两束反射光的光程差存在两种情况:2)12(2222λλλδ+=+=k k d k k由上页图可得干涉环半径r k , 膜的厚度d k 与平凸透镜的曲率半径R 之间的关系222)(k k r d R R +-=。
由于dk 远小于R , 故可以将其平方项忽略而得到22k k r Rd =。
结合以上的两种情况公式, 得到:λkR Rd r k k ==22, 暗环...,2,1,0=k由以上公式课件, r k 与d k 成二次幂的关系, 故牛顿环之间并不是等距的, 且为了避免背光因素干扰, 一般选取暗环作为观测对象。
大物实验等厚干涉实验报告一、实验目的1、观察等厚干涉现象,加深对光的波动性的理解。
2、掌握用牛顿环测量平凸透镜曲率半径的方法。
3、学会使用读数显微镜。
二、实验原理1、等厚干涉当一束平行光垂直入射到厚度不均匀的透明薄膜上时,在薄膜的上、下表面反射的两束光将会产生干涉现象。
由于薄膜厚度不同,两束反射光的光程差也不同,在某些位置两束光相互加强,出现亮条纹;在另一些位置两束光相互削弱,出现暗条纹。
这种因薄膜厚度相同的地方形成相同干涉条纹的现象称为等厚干涉。
2、牛顿环将一块曲率半径较大的平凸透镜放在一块平面玻璃上,在透镜的凸面与玻璃之间形成一空气薄层。
当平行单色光垂直入射时,在空气薄层的上、下表面反射的两束光将产生干涉。
由于空气薄层的厚度从中心到边缘逐渐增加,所以在反射光中形成以接触点为中心的一系列明暗相间的同心圆环,称为牛顿环。
3、曲率半径的计算设透镜的曲率半径为$R$,在空气薄膜厚度为$e$ 处,两束反射光的光程差为$\Delta = 2e +\frac{\lambda}{2}$,其中$\lambda$ 为入射光的波长。
当光程差为波长的整数倍时,出现亮条纹,即:\2e +\frac{\lambda}{2} = k\lambda \quad (k = 1, 2, 3, \cdots)\当光程差为半波长的奇数倍时,出现暗条纹,即:\2e +\frac{\lambda}{2} =(2k + 1)\frac{\lambda}{2} \quad (k = 0, 1, 2, 3, \cdots)\在牛顿环中,中心处($k = 0$)的干涉条纹是暗纹。
对于第$k$ 级暗纹,有:\2e_k =(2k + 1)\frac{\lambda}{2}\由于$e_k$ 与半径$r_k$ 的关系为$e_k = R \sqrt{R^2 r_k^2}$,且$r_k^2 = kR\lambda$,所以可得透镜的曲率半径为:\R =\frac{r_k^2}{k\lambda}\三、实验仪器读数显微镜、钠光灯、牛顿环装置。
深圳大学实验报告课程名称:大学物理实验(一)实验名称:等厚干涉学院:专业:班级:组号:指导教师:报告人:学号:实验时间:年月日星期实验地点实验报告提交时间:一、实验目的a .复习和巩固等厚干涉原理,观察等厚干涉现象;b .利用牛顿环测量透镜球面的曲率半径;c .学会如何消除误差、正确处理数据的方法;二、实验原理:1. 等厚干涉原理当一束平行光ab 入射到厚度不均匀的透明介质薄膜上,在薄膜的表面上会产生干涉现象。
从上表面发射的光线1b 和从下表面反射并透过上表面的光线1a 在B 点相遇(如下图所示),由于1a ,1b 有恒定的光程差,因而将在B 点产生干涉。
若平行光束ab 垂直入射到薄膜面,即0==γi ,薄膜厚度为d ,则1a ,1b 的光程差为2/2λδ+=nd式中:2/λ是由于光线从光疏介质到光密介质,在界面反射时有一位相突变,即所谓的“半波 损失”而附加的光程差。
因此,明暗条纹出现的条件是: 暗纹:2/·)12(2/2λλ+=+m nd ,m = 0, 1, 2, 3,…;明纹:2/·22/2λλm nd =+,m = 1, 2, 3,…。
很容易理解,同一种条纹对应的空气厚度是一样的,所以称之为等厚干涉条纹。
要想在实验上观察到并测量这些条纹,还必须满足一下条件: a. 薄膜上下两平面的夹角足够小,否则由于条纹太密而无法分辨; b. 显微镜必须聚焦在B 点附近,见上图。
方能看到干涉条纹,也就是说,这种条纹是有定域问题的。
2. 利用牛顿环测一个球面镜的曲率半径牛顿环等厚干涉图样如下图所示。
设单色平行光的波长为λ,第k 级暗条纹对应的薄膜厚度为k d ,考虑到下界面反射时有半 波损失2/λ,当光线垂直入射时总光程差由薄膜干涉公式求得:2/22/2λλ+=+=∆k k d ndn 为空气的折射率,为1,根据干涉条件:()⎩⎨⎧=+==∆---3 2, 1, 0,k ,2/12---3 2, 1,k ,λλk k由下图的几何关系可得:()22222k k k k d Rd d R R r -=--=因为k d R >>,上式中的2k d 可略去不计,故:()R r d k k 2/2=将上述三式联立可得:明环:()--- 3, 2, 1,k ,2/ ·122=-=λR k r k 暗环:--- 3, 2, 1, 0,k ,2==λkR r k。
大学物理光的等厚干涉实验报告一、实验目的1、观察和研究等厚干涉现象及其特点。
2、利用等厚干涉测量平凸透镜的曲率半径。
3、加深对光的波动性的理解和认识。
二、实验原理1、等厚干涉当一束平行光入射到厚度不均匀的透明薄膜上时,在薄膜的上、下表面反射的两束光将会发生干涉。
由于薄膜厚度相同的地方,两束反射光的光程差相同,因而会形成明暗相间的干涉条纹。
这种干涉称为等厚干涉。
2、牛顿环将一块曲率半径较大的平凸透镜放在一块平面玻璃上,在透镜的凸面和玻璃之间形成一厚度由中心向边缘逐渐增加的空气薄膜。
当平行单色光垂直入射时,在空气薄膜的上、下表面反射的两束光将在透镜的凸面下方相遇而发生干涉,形成以接触点为中心的一系列明暗相间的同心圆环,这些圆环称为牛顿环。
3、曲率半径的计算根据光的干涉原理,设透镜的曲率半径为$R$,第$m$ 个暗环的半径为$r_m$,对应的空气薄膜厚度为$h_m$,入射光的波长为$\lambda$,则有:\\begin{align}r_m^2&=mR\lambda 2Rh_m\\h_m&=\frac{r_m^2}{2R}\end{align}\由于中心处$h = 0$ 为暗斑,对于第$m$ 个暗环,有:\r_m^2 = m\lambda R\则透镜的曲率半径$R$ 为:\R =\frac{r_m^2}{m\lambda}\三、实验仪器1、牛顿环装置2、钠光灯3、读数显微镜4、游标卡尺四、实验步骤1、调节牛顿环装置将牛顿环装置放在显微镜的载物台上,调节装置的位置,使显微镜的目镜中能够看到清晰的牛顿环。
2、调节显微镜(1)调节目镜,使十字叉丝清晰。
(2)调节物镜焦距,使牛顿环清晰成像。
3、测量牛顿环的直径(1)转动显微镜的鼓轮,使十字叉丝从牛顿环的中心向左移动,依次对准第$10$、$9$、$8$、······、$3$ 暗环,分别记录对应的位置读数$x_{10}$、$x_9$、$x_8$、······、$x_3$。
大学物理实验报告实验名称:光的等厚干涉
学院:机电工程学院
班级:车辆151班
姓名:吴倩萍
学号:5902415034
时间:第8周周三下午3:45开始
地点:基础实验大楼313
一、实验目的:
1.观察牛顿环和劈尖的干涉现象。
2.了解形成等厚干涉现象的条件及特点。
3.用干涉法测量透镜的曲率半径以及测量物体的微小直径或厚度。
二、实验仪器:
牛顿环装置、钠光灯、读数显微镜、劈尖等。
三、实验原理:
在平面玻璃板BB上放置一曲率半径为R的平凸透镜AOA,两者之间便形成一层空气薄层。
当用单色光垂直照射下来时,从空气上下两个表面反射的光束1和光束2在空气表面层附近相遇产生干涉,空气层厚度相等处形成同一级的干涉条纹,这种干涉现象称为等厚干涉。
1.用牛顿环测量平凸透镜表面的曲率半径
(1)安放实验仪器。
(2)调节牛顿环仪边框上三个螺旋,使在牛顿环仪中心出现一组同心干涉环。
将牛顿环仪放在显微镜的平台上,调节45°玻璃板,以便获得最大的照度。
(3)调节读数显微镜调焦手轮,直至在显微镜内能看到清晰的干涉条纹的像。
适当移动牛顿环位置,使干涉条纹的中央暗区在显微镜叉丝的正下方,观察干涉条纹是否在显微镜的读数范围内,以便测量。
(4)转动测微鼓轮,先使镜筒由牛顿环中心向左移动,顺序数到第
24暗环,再反向至第22暗环并使竖直叉丝对准暗环中间,开始记录。
在整个测量过程中,鼓轮只能沿同一个方向依次测完全部数据。
将数据填入表中,显然,某环左右位置读数之差即为该环的直径。
用逐差法求出R,并计算误差。
2.用劈尖干涉法则细丝直径
(1)将被测细丝夹在两块平板玻璃的一端,另一端直接接触,形成劈尖,然后置于读数显微镜载物台上。
(2)调节叉丝方位和劈尖放置方位,使镜筒移动方向与干涉条纹相垂直,以便准确测出条纹间距。
(3)用读数显微镜测出20条暗条纹间的垂直距离l,再测出棱边到细丝所在处的总长度L,求出细丝直径d。
(4)重复步骤3,各测三次,将数据填入自拟表格中。
求其平均值。
四、实验内容:
观察牛顿环
(1)接通钠光灯电源使灯管预热。
(2)将牛顿环装置放置在读数显微镜镜筒下,并将下面的反射镜置于背光位置。
(3)待钠光灯正常发光后,调节光源的位置,使450半反射镜正对钠灯窗口,并且同高。
(4)在目镜中观察从空气层反射回来的光,整个视场应较亮,颜色呈钠光的黄色,如果看不到光斑,可适当调节45度半反射
镜的角度及钠灯的高度和位置,直至看到反射光斑,并均匀照亮视场。
(5)调节目镜,在目镜中看到清晰的十字叉丝线的像。
(6)放松目镜紧固螺丝,转动目镜使十字叉丝线中的一条线与标尺平行,即与镜筒移动方向平行。
(7)转动物镜调节手轮(注意:要两个手轮一起转动)调节显微镜镜筒与牛顿环装置之间的距离。
先将镜筒下降,使45度半反射镜接近牛顿环装置但不能碰上,然后缓慢上升,直至在目镜中看到清晰的牛顿环像。
五、实验数据处理与分析:
六、思考题:
1.牛顿环干涉条纹一定会成为圆环形。
答:不一定。
若不是等厚干涉,就不一定成圆环形。
2、实验中为什么要测牛顿环直径,而不测其半径?
答:因为无法确定牛顿环的圆心在哪里,难以测出其半径。
3、实验中为什么要测量多组数据且采用逐差法处理数据,答减少实验的偶然误差。
七、附上原始数据:。