单克隆抗体的制备1
- 格式:doc
- 大小:143.50 KB
- 文档页数:27
单克隆抗体制备方法1975年Kohler和Milstein发现将小鼠骨髓瘤细胞与和绵羊红细胞免疫的小鼠脾细胞进行融合,形成的杂交瘤细胞既可产生抗体,又可无性繁殖,从而创立了单克隆抗体杂交瘤技术。
这一技术上的突破使血清学的研究进入了一个高度精确的新纪元。
采用杂交瘤技术制备单克隆抗体包括动物免疫、细胞融合、选择杂交瘤、检测抗体、杂交瘤细胞的克隆化、冻存以及单克隆抗体的大量生产,要经过几个月的一系列实验步骤。
主要仪器设备:超净工作台、CO2恒温培养箱、超低温冰箱(-70℃)、倒置显微镜、精密天平或电子天平、液氮罐、离心机(水平转子,4000r/min)、37℃水浴箱、纯水装置、滤器、真空泵等。
其需要的主要器械包括:100ml、50ml、25ml细胞培养瓶,10ml、1ml刻度吸管,试管,滴管(弯头、直头),平皿,烧杯,500ml、250ml、100ml盐水瓶,青霉素小瓶,10ml、5ml、1ml注射器等,96孔、24孔细胞培养板,融合管(50ml圆底带盖玻璃或塑料离心管),眼科剪刀,眼科镊,血细胞计数板,可调微量加样器(~50ul,~200ul,~1000ul),弯头针头,200目筛网,小鼠固定装置等。
此外,一般的单克隆抗体制备方法大同小异。
方法动物的选择与免疫1. 动物的选择BALB/C小鼠,较温顺,离窝的活动范围小,体弱,食量及排污较小,一般环境洁净的实验室均能饲养成活。
目前开展杂交瘤技术的实验室多选用纯种BALA/C小鼠。
2. 免疫方案选择合适的免疫方案对于细胞融合杂交的成功,获得高质量的McAb至关重要。
一般在融合前两个月左右根据确立免疫方案开始初次免疫,免疫方案应根据抗原的特性不同而定。
(1)可溶性抗原免疫原性较弱,一般要加佐剂,半抗原应先制备免疫原,再加佐剂。
常用佐剂:福氏完全佐剂、福氏不完全佐剂。
初次免疫抗原1~50μg加福氏完全佐剂皮下多点注射或脾内注射(一般0.8~1ml,0.2ml/点)↓3周后第二次免疫剂量同上,加福氏不完全佐剂皮下或ip(腹腔内注射)(ip剂量不宜超过0.5ml)↓3周后第三次免疫剂量同一,不加佐剂,ip(5~7天后采血测其效价)↓2~3周加强免疫,剂量50~500μg为宜,ip或iv(静脉内注射)↓3天后取脾融合目前,用于可溶性抗原(特别是一些弱抗原)的免疫方案也不断有所更新,如:①将可溶性抗原颗粒化或固相化,一方面增强了抗原的免疫原性,另一方面可降低抗原的使用量。
单克隆抗体制备1. 免疫动物:三只Balb/c小鼠2. 佐剂:首先用完全弗氏佐剂(CFA),后用不完全弗氏佐剂(IFA)。
3. 免疫原:蛋白或KLH偶联多肽。
每次免疫使用50-100µg免疫原。
4. 免疫:用PBS稀释免疫原,然后与相应的佐剂1:1混合。
抗原和佐剂完全混合形成稳定的乳剂,将该乳剂在小鼠双肩周围的皮肤下进行皮下注射和后腿进行肌肉注射。
每个区域大约用1/8的免疫原。
接着将1/2的免疫原进行腹腔注射,这样免疫原可以持久存在从而提高免疫应答。
以后每个星期进行腹腔注射直到达到要求的效价。
5. 第0星期预采血完全弗氏佐剂(CFA)混合的100µg抗原免疫小鼠。
第2星期完全弗氏佐剂(CFA)混合的50µg抗原免疫小鼠。
第3星期不完全弗氏佐剂(IFA)混合的50µg抗原免疫小鼠。
第4星期溶解在PBS中的50µg抗原免疫小鼠。
第5星期取适当的细胞或组织进行ELISA和WB检测,溶解在PBS中的50µg抗原免疫小鼠。
第X星期取适当的细胞或组织进行ELISA和WB检测,溶解在PBS中的50µg抗原免疫小鼠。
6. 杂交瘤融合和筛选:用PEG方法将效价最好的小鼠脾细胞和骨髓瘤细胞F0进行融合。
用抗原对融合的杂交瘤克隆进行筛选,检测它们的特异性和敏感性。
ELI SA阳性的克隆可用WB检测,筛选出来的克隆至少还需要亚克隆两次。
7. 大规模抗体生产:筛选得到两个克隆最后进行大规模培养(每个克隆1L)或者取腹水(每个克隆5只小鼠)。
用蛋白A/G对培养液或腹水进行纯化,平均每个克隆可以得到3-5mg 抗体。
8. 注意:每个融合平均可以得到900多个克隆,对于多肽抗原可以得到100个左右的ELISA阳性克隆,重组蛋白抗原可以得到100-150个ELISA阳性克隆。
亚克隆实验做的越早,越容易保存克隆。
因此,为了保存和复苏阳性克隆,尽早进行筛选检测是必需的。
单克隆抗体的制备流程
一、抗体cDNA克隆
2、结合分离:抗体和抗原之间采用免疫学方法,进行亲和结合分离,在病理学中,可以采用细胞亲和免疫电泳或者细胞色素紧缩技术来进行识
别性结合分离抗体。
3、mRNA提取:使用RNAsy Plus Kit根据操作说明提取亲和结合分
离后的抗体的mRNA,用于cDNA合成。
4、cDNA合成:使用双链cDNA合成试剂盒,根据说明书操作,将mRNA合成双链cDNA。
5、克隆:将双链cDNA进行克隆,经过构建的一系列步骤,最终将cDNA克隆到载体上,构建出抗体cDNA克隆库。
二、抗体cDNA克隆抗体制备
1、选择克隆体:选择抗体cDNA克隆库中的抗体表达克隆,采用PCR
技术进行选择,并检测克隆体具有良好的免疫特性,可以快速确定最佳克
隆体。
2、表达载体构建:将最佳克隆体插入到表达载体中,构建出属于克
隆体的表达载体,以此保证克隆体的正确表达。
3、表达系统筛选:利用多种表达系统,筛选出最佳的表达系统,以
此来达到最佳的表达效果。
4、表达调控:对于最佳的表达系统,根据cDNA克隆体的特性,进行
最佳的表达调控,以此达到最佳的抗体表达效果。
单克隆抗体制备方法
1. 嘿,你知道单克隆抗体制备第一步是啥吗?就好像搭房子得先有稳固的地基呀,这第一步就是免疫动物。
比如给小老鼠打上特定的抗原,让它的免疫系统开始行动起来!
2. 然后呢,就要融合细胞啦!这就像把两种不同的力量汇聚在一起,产生奇妙的反应。
像骨髓瘤细胞和免疫细胞的融合,多神奇呀!
3. 筛选阳性克隆,哇哦,这可是个精细活儿呀!就好像在一堆沙子里找出金子一样不容易呢。
比如说在众多细胞中找出能产生我们需要抗体的那一个。
4. 接下来得克隆化培养啦!这就好似精心呵护一棵小树苗,让它茁壮成长。
把筛选出来的细胞好好培养,让它不断繁殖。
5. 扩大培养也很重要哟!这不就像把一个小团队发展成一个大部队嘛。
让细胞数量大量增加,为后面做准备。
6. 单克隆抗体的收集,哇,终于等到这一刻啦!就像收获辛勤劳作后的果实一般让人开心呀。
把产生的抗体收集起来。
7. 之后还得对抗体进行鉴定呢,这难道不像是给一件宝贝做个全面检查,看看它是不是真的厉害。
比如检测它的特异性啥的。
8. 纯化抗体也是必不可少的步骤呀,这就好比把杂质去掉,只留下最纯净的精华,让抗体更加好用。
9. 最后可别忘记保存抗体哦,要好好地保护起来,让它随时能发挥作用。
就像把宝贝放在一个安全的地方。
我的观点结论:单克隆抗体的制备真的是一个很神奇的过程,每一步都至关重要,需要我们认真对待才能得到好用的单克隆抗体呀!。
单克隆抗体制备步骤及注意事项一、脾细胞的准备:1.将Balb/c小鼠拉颈脱臼处死,浸泡于75%酒精3~5min。
无菌操作取出脾脏,置于盛有5mL不完全培养液的平皿中,洗涤3次去除脾脏表面的脂肪和结缔组织。
2.将洗好的脾脏用剪刀剪成3~5个小块,然后将脾脏研碎,过细胞筛,收集细胞。
3.将脾脏细胞悬液在1000r/min条件下,离心5min,弃上清。
再以同样的方法洗涤离心一次。
4.将沉淀细胞重新悬浮于10mL不完全培养液中,计活细胞数,取108个脾淋巴细胞悬液备用。
注意事项:➢免疫脾细胞一般取最后一次加强免疫3天以后的脾脏,制备成细胞悬液,因为此时B淋巴母细胞比例较大,融合的成功率较高。
二、骨髓瘤细胞的准备:1.选好骨髓瘤细胞株,取体外培养对数生长期细胞或体内生长的肿瘤分离骨髓瘤细胞。
2.取对数生长骨髓瘤细胞离心,用无血清培养液洗2次。
3.制备细胞悬液,计活细胞数。
4.调整细胞浓度,取107细胞悬液备用。
注意事项:➢常用的骨髓瘤细胞系有:NS1、SP2/0、X63、Ag8.653等。
➢骨髓瘤细胞系应和免疫动物属于同一品系,这样杂交融合率高,也便于接种杂交瘤细胞在同一品系小鼠腹腔内生产大量McAb。
➢骨髓瘤细胞的培养适合于一般的培养液,如RPMI-1640基础培养液,DMEM培养基。
小牛血清的浓度一般在10~20%。
细胞的最大密度不得超过106个/mL。
➢一般扩大培养以1:10稀释传代,每3~5天传代一次。
细胞的倍增时间为16~20小时。
➢一般准备融合前的两周就应开始复苏骨髓瘤细胞,为确保该细胞对HA T的敏感性,每3~6个月应用8~AG(8氮杂鸟嘌呤)筛选一次,以防止细胞的突变。
➢保证骨髓瘤细胞处于对数生长期,良好的形态,活细胞计数高于95%,也是决定细胞融合的关键。
三、细胞融合:1.将骨髓瘤细胞与脾细胞按1:10 或1:5的比例混合,加入20~50mL RPMI-1640培养液。
2.在1000r/min条件下离心8min,弃上清,用滴管轻轻吸净残留液体。
单克隆抗体的制备方法
一、单克隆抗体制备法
1. 免疫动物:采用合适体表面抗原的方案,给指定动物(通常为小鼠)注射给定的抗原合剂,产生抗原特异性免疫应答,使动物体内产生单克隆抗体。
2. 抗体分离:采用配体结合层析或免疫沉淀法从免疫动物血清或体液中分离出单克隆抗体,用硫酸铵离析可以得到抗体的抗原特异性的的IgG类分子。
3. 抗体纯化:采用实现纯化的技术结合其他细胞分析技术,将抗体从抗体分离产物中得到抗体的纯度大于95%的IgG纯化成分。
4. 抗体测试:可以采用实验室的抗原-抗体免疫试验来确认得到的单克隆抗体的特异性以及抗体复应性,检测其免疫固定特异性以及抗体复应性,确认其抗体复应性。
单克隆抗体的制备方法与应用一、前言单克隆抗体是指一种具有高度特异性和亲和力的抗体,其来源于单个B细胞克隆。
相比多克隆抗体,单克隆抗体更加纯净、稳定和可靠,因此在生物医学研究、诊断和治疗等方面有着广泛的应用。
本文将介绍单克隆抗体的制备方法与应用。
二、单克隆抗体的制备方法1. 免疫动物首先需要选取适当的动物进行免疫,通常选择小鼠或大鼠。
在进行免疫前需要对动物进行预处理,例如注射低剂量的抗生素来消除潜在的感染。
2. 免疫原选择选择合适的免疫原是制备单克隆抗体的关键步骤。
常见的选择包括蛋白质、多肽、细胞表面分子等。
在选择时需要考虑到其特异性、稳定性和可重复性等因素。
3. 免疫程序在进行免疫前需要对动物进行预处理,例如注射低剂量的抗生素来消除潜在的感染。
接着,将免疫原注射到动物体内,通常需要多次免疫以增强免疫效果。
在免疫过程中需要对动物进行监测,例如采集血样检测抗体水平。
4. 融合细胞的制备在获得足够的抗体后,需要从动物体内采集B细胞并与骨髓瘤细胞进行融合。
常用的骨髓瘤细胞包括SP2/0和NS0等。
5. 单克隆抗体筛选通过限稀法或单一细胞分离法等方法将融合细胞分离为单个克隆,并通过ELISA、免疫印迹等方法筛选出特异性较高的单克隆抗体。
接着对筛选出的单克隆抗体进行扩增和纯化等处理。
三、单克隆抗体的应用1. 生物医学研究单克隆抗体在生物医学研究中有着广泛的应用,例如作为特定蛋白质或分子的检测工具、用于药物开发和治疗等。
2. 诊断单克隆抗体在诊断方面也有着重要的应用,例如用于肿瘤标志物的检测、病原体的检测等。
3. 治疗单克隆抗体在治疗方面也有着广泛的应用,例如用于治疗癌症、自身免疫性疾病等。
其中一些单克隆抗体已经被批准为药物并用于临床治疗。
四、总结单克隆抗体是一种具有高度特异性和亲和力的抗体,在生物医学领域中有着广泛的应用。
其制备方法包括适当动物选择、合适免疫原选择、多次免疫程序、融合细胞制备和单克隆抗体筛选等步骤。
一、实验目的1. 学习单克隆抗体的制备方法;2. 掌握单克隆抗体的鉴定技术;3. 了解单克隆抗体在免疫学研究和临床诊断中的应用。
二、实验原理单克隆抗体(Monoclonal Antibody,mAb)是由单个B细胞克隆产生的,具有高度特异性和亲和力。
单克隆抗体的制备通常采用杂交瘤技术,即将B细胞与肿瘤细胞融合,形成杂交瘤细胞,杂交瘤细胞既具有B细胞的抗体产生能力,又具有肿瘤细胞的无限增殖能力。
通过筛选和培养杂交瘤细胞,可以得到大量相同的单克隆抗体。
三、实验材料1. 实验动物:Balb/c小鼠;2. 抗原:目的蛋白;3. 细胞株:SP2/0(小鼠骨髓瘤细胞);4. 培养基:IMDM培养基、DMEM培养基、RPMI-1640培养基;5. 试剂:FCS、HAT(Hypoxanthine-Aminopterin-Thymidine)、PEG(聚乙二醇)、兔抗小鼠IgG-HRP(辣根过氧化物酶标记)、羊抗兔IgG-FITC(荧光素异硫氰酸酯标记);6. 仪器:CO2培养箱、倒置显微镜、酶标仪、流式细胞仪等。
四、实验方法1. 抗原免疫小鼠:将抗原注入Balb/c小鼠体内,免疫小鼠,制备抗体。
2. 细胞融合:收集免疫小鼠脾细胞,与SP2/0细胞按一定比例混合,加入PEG,诱导细胞融合。
3. 融合细胞筛选:将融合细胞接种于96孔板,加入HAT培养基,培养7-10天,观察细胞生长情况,筛选出阳性克隆。
4. 阳性克隆扩大培养:将阳性克隆扩大培养,制备杂交瘤细胞。
5. 阳性克隆抗体检测:收集杂交瘤细胞培养上清,进行ELISA检测,鉴定阳性克隆。
6. 阳性克隆抗体纯化:将阳性克隆抗体进行亲和层析或蛋白A/G层析,纯化抗体。
7. 阳性克隆抗体鉴定:采用流式细胞术或免疫荧光技术,鉴定阳性克隆抗体。
五、实验结果1. 免疫小鼠制备抗体:免疫小鼠后,血清抗体水平明显升高。
2. 细胞融合:融合细胞生长良好,阳性克隆筛选成功。
3. 阳性克隆扩大培养:阳性克隆杂交瘤细胞生长旺盛。
单克隆抗体技术路线引言:单克隆抗体技术是一种重要的生物医学研究方法,也是生物制药领域的重要工具。
本文将介绍单克隆抗体技术的基本原理、制备步骤以及应用领域,以帮助读者更好地了解和应用这一技术。
一、单克隆抗体技术的基本原理单克隆抗体技术是一种通过克隆单个抗体细胞,制备具有相同抗原结合特异性的抗体的方法。
其主要原理是将抗原注射到实验动物体内,激发机体产生免疫应答,然后采集动物体内的B细胞,融合B 细胞与骨髓瘤细胞,形成杂交瘤细胞,最后通过筛选获得特异性抗原结合能力的单克隆抗体。
二、单克隆抗体制备步骤1. 免疫原选择:选择合适的免疫原,通常为纯化的蛋白质或多肽。
2. 免疫程序:将免疫原注射到实验动物体内,激发免疫应答。
3. B细胞采集:从免疫动物体内采集脾细胞或淋巴结细胞,富集含有目标抗体的B细胞。
4. 杂交瘤细胞制备:将采集到的B细胞与骨髓瘤细胞融合,形成杂交瘤细胞。
5. 杂交瘤细胞筛选:通过限制性稀释法或酶标记法等方法,筛选出分泌特异性抗原结合能力的杂交瘤细胞。
6. 单克隆抗体生产:将筛选出的杂交瘤细胞进行扩增培养,收集培养上清液,纯化得到单克隆抗体。
三、单克隆抗体技术的应用领域1. 生物学研究:单克隆抗体可用于特定分子或细胞的定位和鉴定,帮助研究者了解生物体内的生物过程和机制。
2. 临床诊断:单克隆抗体可用于检测和诊断疾病,如癌症、感染性疾病和自身免疫性疾病等。
3. 治疗应用:单克隆抗体可用于治疗某些疾病,如肿瘤、免疫性疾病和传染病等,具有较高的治疗效果和较低的副作用。
4. 生物制药:单克隆抗体作为生物制药领域的重要工具,可用于药物研发、质量控制和生产等方面。
结论:单克隆抗体技术是一种重要的生物医学研究方法和生物制药工具,其制备步骤简单明了,应用领域广泛。
随着技术的不断发展和完善,单克隆抗体技术在生物医学领域将发挥越来越重要的作用,为疾病的诊断和治疗提供更多的选择和可能。
相信随着对单克隆抗体技术的深入研究和应用,必将为人类健康事业作出更大贡献。
小鼠单克隆抗体的制备小鼠单克隆抗体是利用小鼠免疫系统产生的B细胞,经过细胞融合技术获得的单克隆抗体。
这种抗体具有高亲和力和高特异性,可用于治疗和诊断多种疾病,是目前最常用的单克隆抗体制备方式之一。
1. 免疫小鼠选择目标抗原,一般为蛋白质或多肽。
将抗原与佐剂混合后注射给小鼠,以激发小鼠B细胞产生特异性抗体。
免疫方案应根据抗原的种类、大小和来源等因素进行优化,一般需要进行多次免疫。
2. 制备小鼠脾细胞将小鼠处死,取出脾脏,用PBS洗涤并制备单细胞悬液。
可采用机械打碎法、酶消化法等方法提取脾细胞。
3. 合并小鼠脾细胞与骨髓瘤细胞将小鼠脾细胞与无限增殖的骨髓瘤细胞混合,使用聚乙二醇或电融合等方法融合成杂交瘤细胞。
杂交瘤细胞具有小鼠脾细胞的抗原识别能力和骨髓瘤细胞的无限增殖能力。
4. 限制杂交瘤的生长并筛选细胞可使用一些特定的选择剂或条件限制杂交瘤细胞的生长,如耳蜗毒素(HAT)缺失培养基等。
在特定条件下,只有细胞融合后获得完整染色体的杂交瘤细胞才能存活。
存活的杂交瘤细胞称为单克隆细胞,并通过ELISA等方法筛选出目标抗体的阳性细胞。
5. 扩增单克隆细胞并提取抗体将单克隆细胞进行扩增即可获得大量的目标抗体。
提取抗体可使用乙酸铵等方法,得到纯度较高的抗体液。
小鼠单克隆抗体制备的优点是制备简便、成本低廉,且能够获得高特异性的抗体。
但是,由于小鼠单克隆抗体来源于小鼠免疫系统,因此可能存在的抗原表位的差异、抗体的可溶性和稳定性等问题需要仔细考虑。
此外,还需要注意到小鼠单克隆抗体的制备和饲养过程中可能存在的伦理道德问题。
因此,在抗体制备过程中需注意合理规划实验设计,遵守伦理规范。
一.单克隆抗体的概念抗体是机体在抗原刺激下产生的能与该抗原特异性结合的免疫球蛋白。
常规的抗体制备是通过动物免疫并采集抗血清的方法产生的,因而抗血清通常含有针对其他无关抗原的抗体和血清中其他蛋白质成分。
一般的抗原分子大多含有多个不同的抗原决定簇,所以常规抗体也是针对多个不同抗原决定簇抗体的混合物。
即使是针对同一抗原决定簇的常规血清抗体,仍是由不同B 细胞克隆产生的异质的抗体组成。
因而,常规血清抗体又称多克隆抗体(polyclonal antibody),简称多抗。
由于常规抗体的多克隆性质,加之不同批次的抗体制剂质量差异很大,使它在免疫化学试验等使用中带来许多麻烦。
因此,制备针对预定抗原的特异性均质的且能保证无限量供应的抗体是免疫化学家长期梦寐以求的目标。
随着杂交瘤技术的诞生,这一目标得以实现。
1975年,Kohler和Milstein建立了淋巴细胞杂交瘤技术,他们把用预定抗原免疫的小鼠脾细胞与能在体外培养中无限制生长的骨髓瘤细胞融合,形成B细胞杂交瘤。
这种杂交瘤细胞具有双亲细胞的特征,既像骨髓瘤细胞一样在体外培养中能无限地快速增殖且永生不死,又能像脾淋巴细胞那样合成和分泌特异性抗体。
通过克隆化可得到来自单个杂交瘤细胞的单克隆系,即杂交瘤细胞系,它所产生的抗体是针对同一抗原决定簇的高度同质的抗体,即所谓单克隆抗体(monoclonal antibody),简称单抗。
与多抗相比,单抗纯度高,专一性强、重复性好、且能持续地无限量供应。
单抗技术的问世,不仅带来了免疫学领域里的一次革命,而且它在生物医学科学的各个领域获得极广泛的应用,促进了众多学科的发展。
Kohler和Milstein两人由此杰出贡献而荣获1984年度诺贝尔生理学和医学奖。
二、杂交瘤技术(一)杂交瘤技术的诞生淋巴细胞杂交瘤技术的诞生是几十年来免疫学在理论和技术两方面发展的必然结果,抗体生成的克隆选择学说、抗体基因的研究、抗体结构与生物合成以及其多样性产生机制的揭示等,为杂交瘤技术提供了必要理论基础,同时,骨髓瘤细胞的体外培养、细胞融合与杂交细胞的筛选等提供了技术贮备。
1975年8月7日,Kohler和Milstein在英国《自然》杂志上发表了题为“分泌具有预定特异性抗体的融合细胞的持续培养”(Continuous cultures of fused cells secreting antibody of predefined specificity)的著名论文。
他们大胆地把以前不同骨髓瘤细胞之间的融合延伸为将丧失合成次黄嘌呤-鸟嘌呤磷酸核糖转移酶(hypoxanthine guanosine phosphoribosyl transferase,HGPRT)的骨髓瘤细胞与经绵羊红细胞免疫的小鼠脾细胞进行融合。
融合由仙台病毒介导,杂交细胞通过在含有次黄嘌呤(hypoxanthine,H)、氨基喋呤(aminopterin,A)和胸腺嘧啶核苷(thymidine,T)的培养基(HAT)中生长进行选择。
在融合后的细胞群体里,尽管未融合的正常脾细胞和相互融合的脾细胞是HGPRT ,但不能连续培养,只能在培养基中存活几天,而未融合的HGPRT-骨髓瘤细胞和相互融合的HGPRT-骨髓瘤细胞不能在HAT培养基中存活,只有骨髓瘤细胞与脾细胞形成的杂交瘤细胞因得到分别来自亲本脾细胞的HGPRT和亲本骨髓瘤细胞的连续继代特性,而在HAT培养基中存活下来。
实验的结果完全像起始设计的那样,最终得到了很多分泌抗绵羊红细胞抗体的克隆化杂交瘤细胞系。
用这些细胞系注射小鼠后能形成肿瘤,即所谓杂交瘤。
生长杂交瘤的小鼠血清和腹水中含有大量同质的抗体,即单克隆抗体。
这一技术建立后不久,在融合剂和所用的骨髓瘤细胞系等方面即得到改进。
最早仙台病毒被用做融合剂,后来发现聚乙二醇(PEG)的融合效果更好,且避免了病毒的污染问题,从而得到广泛的应用。
随后建立的骨髓瘤细胞系如SP2/0-Ag14,X63-Ag8.653和NSO/1都是既不合成轻链又不合成重链的变种,所以由它们产生的杂交瘤细胞系,只分泌一种针对预定的抗原的抗体分子,克服了骨髓瘤细胞MOPC-21等的不足。
再后来又建立了大鼠、人和鸡等用于细胞融合的骨髓瘤细胞系,但其基本原理和方法是一样的。
(二)基本程序和方法杂交瘤技术在具体操作上,各实验室使用的程序不尽一致。
本节中介绍的方法是作者所在实验室采用的、实践证明成熟的程序,该程序适合国内大多数实验室。
在开展杂交瘤技术制备单抗之前,培养骨髓瘤和杂交瘤细胞必须具备下列主要仪器设备:超净工作台、CO2恒温培养箱、超低温冰箱(-70℃)、倒置显微镜、精密天平或电子天平、液氮罐、离心机(水平转子,4000r/min)、37℃水浴箱、纯水装置、滤器、真空泵等。
其需要的主要器械包括:100ml、50ml、25ml细胞培养瓶,10ml、1ml刻度吸管,试管,滴管(弯头、直头),平皿,烧杯,500ml、250ml、100ml盐水瓶,青霉素小瓶,10ml、5ml、1ml注射器等,96孔、24孔细胞培养板,融合管(50ml圆底带盖玻璃或塑料离心管),眼科剪刀,眼科镊,血细胞计数板,可调微量加样器(~50ul,~200ul,~1000ul),弯头针头,200目筛网,小鼠固定装置等。
此外,杂交瘤细胞的筛选与检测的仪器设备,依据检测单抗的方法不同而各异,请参阅本节有关部分。
淋巴细胞杂交瘤技术的主要步骤包括:动物免疫、细胞融合、杂交瘤细胞的筛选与单抗检测、杂交瘤细胞的克隆化、冻存、单抗的鉴定等,图6-1概括了淋巴细胞杂交瘤技术研制单抗的主要过程。
1、动物免疫(1) 抗原制备制备单克隆抗体的免疫抗原,从纯度上说虽不要求很高,但高纯度的抗原使得到所需单抗的机会增加,同时可以减轻筛选的工作量。
因此,免疫抗原是越纯越好,应根据所研究的抗原和实验室的条件来决定。
一般来说,抗原的来源有限,或性质不稳定,提纯时易变性,或其免疫原性很强,或所需单抗是用于抗原不同组分的纯化或分析等,免疫用的抗原只需初步提纯甚至不提纯,但抗原中混杂物很多,特别是如果这些混杂物的免疫原性较强时,则必须对抗原进行纯化。
检测用抗原可以是与免疫抗原纯度相同,也可是不同的纯度,这主要决定于所用筛检方法的种类及其特异性和敏感性。
(2) 免疫动物的选择根据所用的骨髓瘤细胞可选用小鼠和大鼠作为免疫动物。
因为,所有的供杂交瘤技术用的小鼠骨髓瘤细胞系均来源于BALB/c小鼠,所有的大鼠骨髓瘤细胞都来源于LOU/c大鼠,所以一般的杂交瘤生产都是用这两种纯系动物作为免疫动物。
但是,有时为了特殊目的而需进行种间杂交,则可免疫其他动物。
种间杂交瘤一般分泌抗体的能力不稳定,因为染色体容易丢失。
就小鼠而言,初次免疫时以8-12周龄为宜,雌性鼠较便于操作。
(3) 免疫程序的确定免疫是单抗制备过程中的重要环节之一,其目的在于使B淋巴细胞在特异抗原刺激下分化、增殖,以利于细胞融合形成杂交细胞,并增加获得分泌特异性抗体的杂交瘤的机会。
因此在设计免疫程序时,应考虑到抗原的性质和纯度、抗原量、免疫途径、免疫次数与间隔时间、佐剂的应用及动物对该抗原的应答能力等。
没有一个免疫程序能适用于各种抗原。
现用的免疫程序中多数是参照制备常规多克隆抗体的方法。
表6-1列举了目前常用的免疫程序。
免疫途径常用体内免疫法包括皮下注射、腹腔或静脉注射,也采用足垫、皮内、滴鼻或点眼。
最后一次加强免疫多采用腹腔或静脉注射,目前尤其推崇后者,因为可使抗原对脾细胞作用更迅速而充分。
在最后一次加强免疫后第3天取脾融合为好,许多实验室的结果表明,初次免疫和再次免疫应答反应中,取脾细胞与骨髓瘤细胞融合,特异性杂交瘤的形成高峰分别为第4天和第22天,在初次免疫应答时获得的杂交瘤主要分泌IgM抗体,再次免疫应答时获得的杂交瘤主要分泌IgG抗体。
笔者体会阳性杂交瘤出现的高峰与小鼠血清抗体的滴度并无明显的平行关系,且多在血清抗体高峰之前。
因此,为达到最高的杂交瘤形成率需要有尽可能多的浆母细胞,这在最后一次加强免疫后第3天取脾进行融合较适宜。
已有人报道采用脾内免疫,可提高小鼠对抗原的免疫反应性,且节省时间,一般免疫3天后即可融合。
表6-1 不同免疫抗原的免疫程序免疫原特性抗原量接种次数间隔时间单抗的特性抗体滴度亲和性免疫原性强(如细胞、细菌和病毒等)106-107个细胞或1-10ug 2-42-4周高中等至强免疫原性中等10-100ug 2-4 2-4周中等或高中等或强免疫原性弱 A.20-400ug 2-4随后2-3 每月2-3月中等强B.10-50ug其后200-400ug 2其后4 每月每天中等中等C.10-100ug 2其后4其后“休息”最后加强每月10天1-2月中等中等或强(摘自刘秀梵)体内免疫法适用于免疫原性强、来源充分的抗原,对于免疫原性很弱或对机体有害(如引起免疫抑制)的抗原就不适用了。
如果制备人单克隆抗体几乎不大可能采用体内免疫法。
因此,针对这些情况,可采用体外免疫。
所谓体外免疫就是将脾细胞(或淋巴结细胞,或外周血淋巴细胞)取出体外,在一定条件下与抗原共同培养,然后再与骨髓瘤细胞进行融合。
其基本方法是取4-8周龄BALB/c小鼠的脾脏,制成单细胞悬液,用无血清培养液洗涤2-3次,然后悬浮于含10%小牛血清的培养液中,再加入适量抗原(可溶性抗原0.5-5ug/ml,细胞抗原105-106个细胞/ml)和一定量的BALB/c小鼠胸腺细胞培养上清液;在37℃,6%CO2浓度下培养3-5天,再分离脾细胞与骨髓瘤细胞融合。
2、细胞融合主要试剂的配制a、细胞培养基杂交瘤技术中使用的细胞培养基主要有RPMI-1640或DMEM(Dulberco Modified Eagles Medium)两种基础培养基,具体配制方法按厂家规定的程序,配好后过滤除菌(0.22um),分装,4℃保存。
•不完全RPMI-1640培养基:RPMI-1640培养基原液96ml100×L.G.溶液1ml双抗溶液1ml7.5% NaHCO3溶液1-2mlHEPES溶液1ml•不完全DMEM培养基:DMEM 13.37g超纯水或四蒸水980mlNaHCO3 3.7g双抗溶液10ml100×L.G.溶液10ml用1N HCl调试PH至7.2-7.4,过滤除菌,分装4℃保存。
•完全RPMI-1640或DMEM培养基:不完全RPMI-1640或DMEM培养基80ml小牛血清15-20ml用于骨髓瘤细胞SP2/0和建株后的杂交瘤细胞培养。
•HT培养基:完全RPMI-1640或DMEM培养基99mlHT贮存液1ml•HAT培养基:完全RPMI-1640或DMEM培养基98mlHT贮存液1mlA贮存液1mlb、氨基喋呤(A)贮存液(100×,4×10-5mol/L): 称取1.76mg氨基喋呤(Aminopterin MW 440.4),溶于90ml超纯水或四蒸水中,滴加1mol/L NaOH 0.5ml中和,再补加超纯水或四蒸水至100ml。