传送带模型和滑块模型教学文案
- 格式:doc
- 大小:768.50 KB
- 文档页数:17
第15讲滑块—木板模型和传送带模型【教学目标】1.能够正确运用牛顿运动定律处理滑块—木板模型;2.会对传送带上的物体进行受力分析,能正确解答传送带上的物体的运动问题.【重、难点】以上两个模型都是重难点考点一滑块—木板模型1.模型概述一个物体在另一个物体表面上发生相对滑动,两者之间有相对运动,可能发生同向相对滑动或反向相对滑动.板块问题一般都涉及到受力分析、运动分析、临界问题、摩擦力的突变问题等,并且会涉及两物体的运动时间、速度、加速度、位移等各量的关系.在解决板块问题时基本上都会用到整体法和隔离法.2.三个基本关系(一)为保持相对静止或相对滑动,求最大外力或最小外力.(已知内力求外力)解题方法:往往求临界情况,即刚好没滑动(相对静止)时的外力.此时隐含两个条件:①静摩擦力为f m;②a相同.例1、如图所示,光滑水平面上放置质量分别为m、2m的A、B两个物体,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,则拉力F的最大值为()A.μmg B.2μmgC.3μmg D.4μmg(二)给定外力,判断是否相对滑动(已知外力求内力)例2、如图所示,质量为m 1的足够长的木板静止在水平面上,其上放一质量为m 2的物块.物块与木板的接触面是光滑的.从t =0时刻起,给物块施加一水平恒力F .分别用a 1、a 2和v 1、v 2表示木板、物块的加速度和速度大小,下列图象符合运动情况的是( )例3、如图所示,水平桌面上质量为m 的物块放在质量为2m 的长木板的左端,物块和木板间的动摩擦因数为μ,木板和桌面间的动摩擦因数为14μ,接触面间的最大静摩擦力等于滑动摩擦力.开始时物块和木板均静止,若在物块上施加一个水平向右的恒力F ,已知重力加速度为g ,下列说法正确的是( )A .当F >μmg 时,物块和木板一定发生相对滑动B .当F =μmg 时,物块的加速度大小为112μgC .当F =2μmg 时,木板的加速度大小为16μgD .不管力F 多大,木板的加速度始终为0(三)开始两物体不共速,那必然相对滑动,但一段时间之后可能共速(需分析) (1)如果会滑离,则找两者的位移关系; (2)如果不会滑离,两者一定会先共速,此后:①若系统无外力,则一起匀速;②若系统有外力,则按照(二)的方法判断是否相对滑动. 例4、如图所示,质量为M =4kg 的木板静止在光滑的水平面上,在木板的右端放置一个质量m =1kg 大小可以忽略的铁块,铁块与木板之间的摩擦因数μ=0.4,在铁块上加一个水平向左的恒力F =8N ,铁块在长L =6m 的木板上滑动.取g =10m/s 2.求经过多长时间铁块运动到木板的左端.变式1、如图所示,长为L=2m、质量为M=8kg的木板,放在水平地面上,木板向右运动的速度v0=6m/s时,在木板前端轻放一个大小不计,质量为m=2kg的小物块.木板与地面、物块与木板间的动摩擦因数均为μ=0.2,g=10 m/s2.求:(1)物块及木板的加速度大小;(2)物块滑离木板时的速度大小.变式2、如图所示,厚度不计的薄板A长l=5m,质量M=5kg,放在粗糙的水平地面上.在A上距右端x=3m处放一物体B(可视为质点),其质量m=2kg,已知A、B间的动摩擦因数μ1=0.1,A 与地面间的动摩擦因数μ2=0.2,原来系统静止.现在板的右端施加一大小恒定的水平向右的力F=26 N,将A从B下抽出.g=10 m/s2,求:(1)A从B下抽出前A、B的加速度各是多大;(2)B运动多长时间离开A.例5、(多选)如图所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦.现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为()A.物块先向左运动,再向右运动B.物块向右运动,速度逐渐增大,直到做匀速运动C.木板向右运动,速度逐渐变小,直到做匀速运动D.木板和物块的速度都逐渐变小,直到为零例6、如图所示,质量M=2kg足够长的木板静止在水平地面上,另一个质量m=1kg的小滑块以v0=6m/s的初速度滑上木板的左端.已知滑块与木板之间的动摩擦因数μ1=0.5,木板与地面的动摩擦因数μ2=0.1,g取l0m/s2.求:(1)求小滑块自滑上木板到相对木板处于静止的过程中,小滑块相对地面的位移大小;(2)求木板相对地面运动位移的最大值;(3)为使小滑块不能离开木板,则木板的长度至少多长.变式3、如图所示,物块A、木板B的质量均为m=10 kg,不计A的大小,木板B长L=3 m.开始时A、B均静止.现使A以水平初速度v0从B的最左端开始运动.已知A与B、B与水平面之间的动摩擦因数分别为μ1=0.3和μ2=0.1,g取10 m/s2.若A刚好没有从B上滑下来,则A的初速度v0为多大?求解“滑块—木板”类问题的方法技巧1.搞清各物体初始状态相对地面的运动和物体间的相对运动(或相对运动趋势),根据相对运动(或相对运动趋势)情况,确定物体间的摩擦力方向.2.正确地对各物体进行受力分析,并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况.考点二传送带问题1.传送带的基本类型一个物体以初速度v0(v0≥0)在另一个匀速运动的物体上运动的力学系统可看成传送带模型.传送带模型按放置方向分为水平传送带和倾斜传送带两种,如图所示.(1)当传送带水平转动时,应特别注意摩擦力的突变和物体运动状态的变化.摩擦力的突变,常常导致物体的受力情况和运动性质突变.(2)求解的关键在于对物体所受的摩擦力进行正确的分析判断.静摩擦力达到最大值,是物体恰好保持相对静止的临界状态;滑动摩擦力只存在于发生相对运动的物体之间,因此两物体的速度相同时,滑动摩擦力要发生突变(滑动摩擦力变为零或变为静摩擦力).3.倾斜传送带(1)对于倾斜传送带,除了要注意摩擦力的突变和物体运动状态的变化外,还要注意物体与传送带之间的动摩擦因数与传送带倾角的关系.若μ≥tan θ,且物体能与传送带共速,则共速后物体做匀速运动;若μ<tan θ,且物体能与传送带共速,则共速后物体相对于传送带做匀变速运动.(2)求解的关键在于分析物体与传送带间的相对运动情况,确定其是否受到滑动摩擦力作用.如果受到滑动摩擦力作用,应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况.当物体的速度与传送带的速度相等时,物体所受的摩擦力有可能发生突变.4.传送带问题的动力学分析(1)水平传送带一直加速先加速后匀速vvvv传送带长度到达左端传送带长度先减速再向右加速,到达右端速度为传送带长度先减速再向右加速,最后匀速,到达右端速度为先以加速度先以加速度以加速度(一)水平传送带例7、如图所示,物块m在传送带上向右运动,两者保持相对静止.则下列关于m所受摩擦力的说法中正确的是()A.皮带传送速度越大,m受到的摩擦力越大B.皮带传送的加速度越大,m受到的摩擦力越大C.皮带速度恒定,m质量越大,所受摩擦力越大D.无论皮带做何种运动,m都一定受摩擦力作用例8、如图所示,水平放置的传送带以速度v=2m/s沿顺时针方向转动,现将一小物体轻轻地放在传送带A端,物体与传送带间的动摩擦因数μ=0.2,g取10 m/s2.若A端与B端相距6 m,则物体由A到B的时间为()A.2 s B.2.5 s C.3.5 s D.4 s 变式4、(多选)如图甲为应用于机场和火车站的安全检查仪,用于对旅客的行李进行安全检查.其传送装置可简化为如图乙模型,紧绷的传送带始终保持v=1m/s的恒定速率运行.旅客把行李(可视为质点)无初速度地放在A处,设行李与传送带之间的动摩擦因数μ=0.1,A、B间的距离为2m,g取10m/s2.若乘客把行李放到传送带的同时也以v=1m/s的恒定速率平行于传送带运动到B处取行李,则()A.乘客与行李同时到达B处B.乘客提前0.5s到达B处C.行李提前0.5s到达B处D.若传送带速度足够大,行李最快也要2s才能到达B处变式5、如图所示,水平传送带以不变的速度v=10m/s向右运动,将一煤块(可视为质点)轻放在传送带的左端,由于摩擦力的作用,煤块做匀加速运动,经过时间t=2s,速度达到v;再经过时间t′=4s,煤块到达传送带的右端,g取10 m/s2,求:(1)煤块与水平传送带间的动摩擦因数;(2)煤块从水平传送带的左端至右端通过的距离;(3)煤块在水平传送带上留下的划痕长度.(二)倾斜传送带例9、滑块能沿静止的传送带匀速滑下,如图所示,若在下滑时突然开动传送带向上传动,此时滑块的运动将()A.维持原来匀速下滑B.减速下滑C.向上运动D.可能相对地面不动变式6、如图所示,粗糙的传送带与水平方向的夹角为θ,当传送带静止时,在传送带上端轻放一小物块,物块下滑到底端所用时间为t,则下列说法正确的是()A.当传送带顺时针转动时,物块下滑的时间可能大于tB.当传送带顺时针转动时,物块下滑的时间可能小于tC.当传送带逆时针转动时,物块下滑的时间等于tD.当传送带逆时针转动时,物块下滑的时间小于t例10、如图所示,传送带与水平地面的夹角为θ=37°,A、B两端相距L=64m,传送带以v=20m/s 的速度沿逆时针方向转动,在传送带上端A点无初速度地放上一个质量为m=8kg的物体(可视为质点),它与传送带之间的动摩擦因数为μ=0.5,求物体从A点运动到B点所用的时间.(重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8)物体沿着倾斜的传送带向下加速运动到与传送带速度相等时,若μ≥tanθ,物体随传送带一起匀速运动;若μ<tanθ,物体将以较小的加速度a=g sinθ-μg cosθ继续加速运动.例11、如图所示,传送带与水平面成夹角θ=30°、以v 0=10m/s 的速度瞬时针转动,在传送带A 端轻轻地放一个质量m =0.5kg 的小物体,它与传送带间的动摩擦因数为μ=23.已知A 、B 两端相距L =25m ,重力加速度g 取10m/s 2.求物体从A 运动到B 所需的时间.变式7、如图所示,传送带与水平地面的夹角θ=37°,A 、B 两端相距L =12m ,质量为m =1kg 的物体以v 0=14m/s 的速度沿AB 方向从A 端滑上传送带,物体与传送带间的动摩擦因数为μ=0.5,传送带顺时针转动的速度v =4m/s ,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.6,求物体从A 点到达B 点所需的时间.【能力展示】【小试牛刀】1.如图所示,在光滑的水平面上有一个长为0.64m、质量为4kg的木板B,在B的左端有一个质量为2kg、可视为质点的铁块A,A与B之间的动摩擦因数为0.2,最大静摩擦力与滑动摩擦力大小相等,g取10m/s2.当对A施加水平向右的拉力F=10N时,将A从B的左端拉到右端的时间为()A.0.8 s B.0.6 sC.1.1 s D.1.0 s2.如图所示,木块A质量为1 kg,木块B的质量为2 kg,叠放在水平地面上,A、B间的最大静摩擦力为1 N,B与地面间的动摩擦因数为0.1,g取10 m/s2,今用水平力F作用于B,则保持A、B 相对静止的条件是F不超过()A.1 N B.3 NC.4 N D.6 N3.如图所示,足够长的传送带与水平面间夹角为θ,以速度v0逆时针匀速转动.在传送带的上端轻轻地放置一个质量为m的小木块,小木块与传送带间的动摩擦因数μ<tan θ,则下图中能客观地反映小木块的速度随时间变化关系的是()4.(多选)如图所示,水平传送带A、B两端点相距s=3.5m,以v0=2m/s的速度(始终保持不变)顺时针运转,今将一小煤块(可视为质点)无初速度地轻放在A端,已知小煤块与传送带间的动摩擦因数为0.4.由于小煤块与传送带之间有相对滑动,会在传送带上留下划痕,小煤块从A运动到B 的过程中(g取10 m/s2)()A.所用的时间是2 sB.所用的时间是2.25 sC.划痕长度是3 mD.划痕长度是0.5 m5.(多选)如图所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量均为m ,物块与木板间的动摩擦因数为μ,木板与水平面间动摩擦因数为13μ,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度为g .现对物块施加一水平向右的拉力F ,则木板加速度大小a 可能是( )A .a =μgB .a =23μgC .a =13μgD .a =F 2m -13μg 6.如图所示,长度l =2m ,质量M =23kg 的木板置于光滑的水平地面上,质量m =2kg 的小物块(可视为质点)位于木板的左端,木板和小物块间的动摩擦因数μ=0.1,现对小物块施加一水平向右的恒力F =10 N ,取g =10 m/s 2.求:(1)若木板M 固定,小物块离开木板时的速度大小;(2)若木板M 不固定,小物块从开始运动到离开木板所用的时间.7.如图所示为一水平传送带装置示意图,绷紧的传送带AB 始终保持v =1m/s 的恒定速率运行,一质量为m =4kg 的行李(可视为质点)无初速度地放在A 处.设行李与传送带间的动摩擦因数μ=0.1,A 、B 间的距离 l =2 m ,g 取10 m/s 2.求:(1)行李在传送带上运动的时间;(2)如果提高传送带的运行速率,行李就能被较快地传送到B 处.求行李从A 处传送到B 处的最短时间和传送带对应的最小运行速率.【大显身手】8.(多选)如图所示,倾角为θ的足够长的传送带以恒定的速率v0沿逆时针方向运行.t=0时,将质量m=1kg的小物块(可视为质点)轻放在传送带上,物块速度随时间变化的图象如图所示.设沿传送带向下为正方向,重力加速度g取10 m/s2.则()A.摩擦力的方向始终沿传送带向下B.1~2 s内,物块的加速度为2 m/s2C.传送带的倾角θ=30°D.物块与传送带之间的动摩擦因数μ=0.59.如图甲所示,质量为M=2kg的木板B静止在水平面上,可视为质点的物块A从木板的左侧以某一初速度沿木板上表面水平冲上木板,A和B的v-t图象如图乙所示,重力加速度g=10m/s2,求:(1)A与B上表面之间的动摩擦因数μ1;(2)B与水平面间的动摩擦因数μ2;(3)A的质量m.10.如图所示,质量M=8kg的小车放在光滑水平面上,在小车左端加一水平推力F=8 N.当小车向右运动的速度达到3m/s时,在小车右端轻轻地放一个大小不计、质量m=2 kg的小物块.小物块与小车间的动摩擦因数μ=0.2,小车足够长.g取10 m/s2,则:(1)放上小物块后,小物块及小车的加速度各为多大?(2)经多长时间两者达到相同的速度.(3)从小物块放上小车开始,经过t′=3s小物块通过的位移大小为多少?11.如图所示,将物块M轻放在匀速传送的传送带的A点,已知传送带速度大小v=2m/s,传送带顺时针转动,AB=2m,BC=8m,M与传送带的动摩擦因数μ=0.5,试求物块由A运动到C点共需要多长时间.(M经过B点时速度大小不变,方向沿着BC方向,g取10 m/s2,sin 37°=0.6,cos 37°=0.8)第15讲 板块模型和传送带模型答案例1、C 例2、D 例3、B 例4、2s变式1、(1)2 m/s 2 3 m/s 2 (2)0.8 m/s 变式2、(1)2 m/s 2,1 m/s 2(2)2s 例5、BC 例6、(1)3.5m (2)1m (3)3m 变式3、2 6 m/s例7、B 例8、C 变式4、BD 变式5、(1)0.5 (2)50 m (3)10m 变式6、D 例9、A例10、答案:4 s解析:开始时物体下滑的加速度:a 1=g (sin 37°+μcos 37°)=10 m/s 2,运动到与传送带共速的时间为:t 1=v a 1=2010 s =2s ,下滑的距离:s 1=12a 1t 12=20m ;由于mg sin37°>μmg cos 37°,故物体2s 后继续加速下滑,且此时:a 2=g (sin 37°-μcos 37°)=2 m/s 2,s 2=64 m -s 1=44 m ,根据s 2=vt 2+12a 2t 22,解得:t 2=2 s ,故共用时间t =t 1+t 2=4 s .例11、4.5s 变式7、2s【能力展示】1.A 2.D 3.D 4.AD 5.CD 6.(1)4 m/s (2)2 s7.(1) 2.5s (2)2 s 2 m/s 8.BD 9.(1)0.2 (2)0.1 (3)6 kg10.(1)2 m/s 2 0.5 m/s 2 (2)2 s (3)8.4 m11.3.2 s。
微专题四动力学中的“木板-滑块”和“传送带”模型动力学中“木板-滑块”模型1.模型分析模型概述(1)滑块、滑板是上下叠放的,分别在各自所受力的作用下运动,且在相互的摩擦力作用下相对滑动.(2)滑块相对滑板从一端运动到另一端,若两者同向运动,位移之差等于板长;若反向运动,位移之和等于板长.(3)一般两者速度相等为“临界点”,要判定临界速度之后两者的运动形式。
常见情形滑板获得一初速度v0,则板块同向运动,两者加速度不同,x板>x块,Δx=x板-x块,最后分离或相对静止滑块获得一初速度v0,则板块同向运动,两者加速度不同,x板<x块,Δx=x块-x板,最后分离或相对静止开始时板块运动方向相反,两者加速度不同,最后分离滑板或滑块受到拉力作用,要判断两者是否有相对运或相对静止,Δx=x块+x板动,以及滑板与地面是否有相对运动2。
常见临界判断(1)滑块恰好不滑离木板的条件:滑块运动到木板的一端时,滑块与木板的速度相等.(2)木板最短的条件:当滑块与木板的速度相等时滑块滑到木板的一端.(3)滑块与木板恰好不发生相对滑动的条件:滑块与木板间的摩擦力为最大静摩擦力,且二者加速度相同。
[典例1]一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁,木板右端与墙壁的距离为4。
5 m,如图(a)所示。
t=0时刻开始,小物块与木板一起以共同速度向右运动,直至t=1 s时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板。
已知碰撞后1 s时间内小物块的v。
t图线如图(b)所示。
木板的质量是小物块质量的15倍,重力加速度大小g取10 m/s2。
求:图(a)图(b)(1)木板与地面间的动摩擦因数μ1及小物块与木板间的动摩擦因数μ2;(2)木板的最小长度;(3)木板右端离墙壁的最终距离.[大题拆分]第一步:分析研究对象模型.设小物块和木板的质量分别为m和M。
传送带模型高中物理教案传送带模型高中物理教案1一、教学目标1.在学习机械能守恒定律的根底上,研究有重力、弹簧弹力以外其它力做功的情况,学习处理这类问题的方法。
2.对功和能及其关系的理解和认识是本章教学的重点内容,本节教学是本章教学内容的总结。
通过本节教学使学生更加深入理解功和能的关系,明确物体机械能变化的规律,并能应用它处理有关问题。
3.通过本节教学,使学生能更加全面、深入认识功和能的关系,为学生今后能够运用功和能的观点分析热学、电学知识,为学生更好理解自然界中另一重要规律——能的转化和守恒定律打下根底。
二、重点、难点分析1.重点是使学生认识和理解物体机械能变化的规律,掌握应用这一规律解决问题的方法。
在此根底上,深入理解和认识功和能的关系。
2.本节教学实质是渗透功能原理的观点,在教学中不必出现功能原理的名称。
功能原理内容与动能定理的区别和联系是本节教学的难点,要解决这一难点问题,必须使学生对“功是能量转化的量度”的认识,从笼统、浅薄地了解深入到十清楚确认识“某种形式能的变化,用什么力做功去量度”。
3.对功、能概念及其关系的认识和理解,不仅是本节、本章教学的重点和难点,也是中学物理教学的重点和难点之一。
通过本节教学应使学生认识到,在今后的学习中还将不断对上述问题作进一步的分析和认识。
三、教具投影仪、投影片等。
四、主要教学过程(一)引入新课结合复习机械能守恒定律引入新课。
提出问题:1.机械能守恒定律的内容及物体机械能守恒的条件各是什么?评价学生答复后,教师进一步提问引导学生思考。
2.假如有重力、弹簧弹力以外其它力对物体做功,物体的机械能怎样变化?物体机械能的变化和哪些力做功有关呢?物体机械能变化的规律是什么呢?教师提出问题之后引起学生的注意,并不要求学生答复。
在此根底上教师明确指出:机械能守恒是有条件的。
大量现象讲明,许多物体的机械能是不守恒的。
例如从车站开出的车辆、起飞或降落的飞机、打入木块的子弹等等。
【最新整理,下载后即可编辑】传送带模型专题传送带模型是一个经典的力学模型,也是实际生活中广泛应用的一种机械装置,以其为背景的问题都具有过程复杂、条件隐蔽性强的特点,传送带问题也是高考中的常青树,从动力学角度、功能角度进行过多次考查,它自然成为师生关注的热点。
一、难点形成的原因:1、对于物体与传送带之间是否存在摩擦力、是滑动摩擦力还是静摩擦力、摩擦力的方向如何,等等,这些关于摩擦力的产生条件、方向的判断等基础知识模糊不清;2、对于物体相对地面、相对传送带分别做什么样的运动,判断错误;3、对于物体在传送带上运动过程中的能量转化情况考虑不全面,出现能量转化不守恒的错误过程。
二、难点突破策略:在以上三个难点中,第1个难点应属于易错点,突破方法是先正确理解摩擦力产生的条件、方向的判断方法、大小的决定因素等等。
通过对不同类型题目的分析练习,做到准确灵活地分析摩擦力的有无、大小和方向。
第2个难点是对于物体相对地面、相对传送带分别做什么样的运动,判断错误。
该难点应属于思维上有难度的知识点,突破方法是灵活运用“力是改变物体运动状态的原因”这个理论依据,对物体的运动性质做出正确分析,判断好物体和传送带的加速度、速度关系,画好草图分析,找准物体和传送带的位移及两者之间的关系。
如图甲所示,A、B分别是传送带上和物体上的一点,刚放上物体时,两点重合。
设皮带的速度为V0,物体做初速为零的匀加速直线运动,末速为V0,其平均速度为V0/2,所以物体的对地位移x物=20tV,传送带对地位移x传送带=V0t,所以A、B 两点分别运动到如图乙所示的A'、B'位置,物体相对传送带的位移也就显而易见了,x物=2传送带x,就是图乙中的A'、B'间的距离,即传送带比物体多运动的距离,也就是物体在传送带上所留下的划痕的长度。
第3个难点也应属于思维上有难度的知识点。
对于匀速运动的传送带传送初速为零的物体,传送带应提供两方面的能量,一是物体动能的增加,二是物体与传送带间的摩擦所生成的热(即内能),有不少同学容易漏掉内能的转化,因为该知识点具有隐蔽性,往往是漏掉了,也不能在计算过程中很容易地显示出来,尤其是在综合性题目中更容易疏忽。
精选高中物理滑块模型教案
学科:物理
年级:高中
教学内容:滑块模型
教学目标:学生能够理解滑块模型的基本原理和运用,掌握相关公式和计算方法。
教学重点和难点:掌握滑块模型的运用,理解相关物理概念。
教学方式:讲述、实验、讨论、解题
教具准备:滑块、斜面、测量工具、实验仪器
教学内容与步骤:
一、引入:通过一个例子介绍滑块模型的应用,引出本节课的主题。
二、学习滑块模型的基本原理和公式,包括滑块在斜面上运动的相关理论知识。
三、进行实验,让学生亲自操作滑块并观察其运动规律,验证理论公式。
四、讨论和解答问题:学生可以根据实验结果和理论知识进行讨论,解答相关问题。
五、作业:布置相关练习,巩固学生对滑块模型的理解和运用。
教学反馈:通过作业的批改和课堂讨论,检查学生是否掌握了滑块模型的相关知识。
教学延伸:学生可以通过探究更复杂的问题或实验,拓展滑块模型的应用领域。
这样一份高中物理滑块模型教案,希望对您有所帮助。
祝教学顺利!。
专题强化五传送带模型和“滑块一木板”模型t目标要求】1.会对传送带上的物体进行受力分析,能正确解答传送带上物体的动力学问题2能正确运用动力学观点处理“滑块一木板模型”.题型一传送带模型1.水平传送带2.倾斜传送带考向1动力学中水平传送带问题r例U(多选)应用于机场和火车站的安全检查仪,其传送装置可简化为如图所示的模型.传送带始终保持。
=0∙4m/s的恒定速率运行,行李与传送带之间的动摩擦因数"=0.2,A、8间的距离为2m,g取10m∕s2.旅客把行李(可视为质点)无初速度地放在A处,则下列说法正确的是()(・)/A.开始时行李的加速度大小为2m∕s2B.行李经过2s到达5处C.行李到达B处时速度大小为0.4m/sD.行李在传送带上留下的摩擦痕迹长度为0∙08m听课记录:________________________________________________________________考向2动力学中的倾斜传送带问题f例21(2023.辽宁卷・13)机场地勤工作人员利用传送带从飞机上卸行李.如图所示,以恒定速率S=O∙6m∕s运行的传送带与水平面间的夹角Q=37。
,转轴间距1=3.95m∙工作人员沿传送方向以速度P2=1.6m/s从传送带顶端推下一件小包裹(可视为质点).小包裹与传送带间的动摩擦因数〃=0.8.取重力加速度g=10m∕s2,sin37o=0.6,CoS37。
=0.8.求:(1)小包裹相对传送带滑动时加速度的大小出(2)小包裹通过传送带所需的时间/.考向3传送带中的动力学图像f例3】(多选)(2023•福建省西山学校高三模拟)如图,一足够长的倾斜传送带顺时针匀速转动.一小滑块以某初速度沿传送带向下运动,滑块与传送带间的动摩擦因数恒定,最大静摩擦力等于滑动摩擦力,则其速度。
随时间/变化的图像可能是()听课记录:1例4】(多选)(2023∙广东省华南师大附中检测)如图甲所示,一足够长的、倾角为37。
专题:传送带模型和滑块模型1、板块模型此类问题通常是一个小滑块在木板上运动,小物块与长木板是靠一对滑动摩擦力或静摩擦力联系在一起的。
分别隔离选取研究对象,均选地面为参照系,应用牛顿第二定律及运动学知识,求出木板对地的位移等,解决此类问题的关键在于深入分析的基础上,头脑中建立一幅清晰的动态的物理图景,为此要认真画好草图。
在木板与木块发生相对运动的过程中,作用于木块上的滑动摩擦力f 为动力,作用于木板上的滑动摩擦力f为阻力,由于相对运动造成木板的位移恰等于物块在木板左端离开木板时的位移Sm 与木板长度L 之和,而它们各自的匀加速运动均在相同时间t 内完成。
例2 如图3所示,质量M=8kg的小车放在光滑的水平面上,在小车右端加一水平恒力F,F=8N,当小车速度达到1.5m/s时,在小车的前端轻轻放上一大小不计、质量m=2kg的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长,求物体从放在小车上开始经t=1.5s通过的位移大小。
(g取10m/s2)解答:物体放上后先加速:a1=μg=2m/s2,此时小车的加速度为:,当小车与物体达到共同速度时:v共=a1t1=v0+a2t1,解得:t1=1s ,v共=2m/s,以后物体与小车相对静止:(∵,物体不会落后于小车)物体在t=1.5s内通过的位移为:s=a1t12+v共(t-t1)+ a3(t-t1)2=2.1m解决这类问题的方法是:①研究物块和木板的加速度;②画出各自运动过程示意图;③找出物体运动的时间关系、速度关系、相对位移关系等;④建立方程,求解结果,必要时进行讨论。
要求学生分析木板、木块各自的加速度,要写位移、速度表达式,还要寻找达到共同速度的时间等等在这三个模型中尤其板块模型最为复杂。
其次是传送带模型,一般情况下只需要分析物体的加速度和运动情况,而传送带一般是匀速运动不需另加分析。
最后是追及相遇问题,它只是一个运动学问题并没有牵扯受力分析问题,相对是最简单的,只要位移关系速度公式就可以问题。
对于上述的三种模型我们不难发现他们的共性是:①分别写出位移、速度表达式;②根据位移、速度的关系求得未知量。
我认为在三个模型中只要熟练分析好板块模型其他两个模型在此基础上根据已知条件稍作变通就可以迎刃而解了。
这样就可以减少了学生对模型数量的记忆,达到事半功倍的效果。
例3、如图1所示,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最大值。
分析:为防止运动过程中A落后于B(A不受拉力F的直接作用,靠A、B间的静摩擦力加速),A、B一起加速的最大加速度由A决定。
解答:物块A能获得的最大加速度为:.∴A、B一起加速运动时,拉力F的最大值为:.变式1例1中若拉力F作用在A上呢?如图2所示。
解答:木板B能获得的最大加速度为:。
∴A、B一起加速运动时,拉力F的最大值为:.变式2在变式1的基础上再改为:B与水平面间的动摩擦因数为(认为最大静摩擦力等于滑动摩擦力),使A、B以同一加速度运动,求拉力F的最大值。
解答:木板B能获得的最大加速度为:,设A、B一起加速运动时,拉力F的最大值为F m,则:解得:例4.如图所示,有一块木板静止在光滑且足够长的水平面上,木板质量为M=4kg ,长为L=1.4m ;木板右端放着一小滑块,小滑块质量为m=1kg ,其尺寸远小于L 。
小滑块与木板之间的动摩擦因数为μ==04102.(/)g m s(1)现用恒力F 作用在木板M 上,为了使得m 能从M 上面滑落下来,问:F 大小的范围是什么?(2)其它条件不变,若恒力F=22.8牛顿,且始终作用在M 上,最终使得m 能从M 上面滑落下来。
问:m 在M 上面滑动的时间是多大?解析:(1)小滑块与木板间的滑动摩擦力f N mg ==μμ,小滑块在滑动摩擦力f 作用下向右匀加速运动的加速度 a f m g m s 124===//μ,木板在拉力F 和滑动摩擦力f 作用下向右匀加速运动的加速度a F f M 2=-()/,使m 能从M 上面滑落下来的条件是a a 21>,即Ng m M F m f M f F 20)(//)(=+>>-μ解得,(2)设m 在M 上滑动的时间为t ,当恒力F=22.8N ,木板的加速度a F f M m s 2247=-=()/./ ),小滑块在时间t 内运动位移S a t 1122=/,木板在时间t 内运动位移S a t 2222=/,因S S L21-= 即s t t t 24.12/42/7.422==-解得例5.长为1.5m 的长木板B 静止放在水平冰面上,小物块A 以某一初速度从木板B 的左端滑上长木板B ,直到A 、B 的速度达到相同,此时A 、B 的速度为0.4m/s ,然后A 、B 又一起在水平冰面上滑行了8.0cm 后停下.若小物块A 可视为质点,它与长木板B 的质量相同,A 、B 间的动摩擦因数μ1=0.25.求:(取g =10m/s 2)(1)木块与冰面的动摩擦因数. (2)小物块相对于长木板滑行的距离.(3)为了保证小物块不从木板的右端滑落,小物块滑上长木板的初速度应为多大? 解析:(1)A 、B 一起运动时,受冰面对它的滑动摩擦力,做匀减速运动,加速度222 1.0m/s2v a g sμ=== 解得木板与冰面的动摩擦因数μ2=0.10(2)小物块A 在长木板上受木板对它的滑动摩擦力,做匀减速运动,加速度a 1=μ1g =2.5m/s 2。
小物块A 在木板上滑动,木块B 受小物块A 的滑动摩擦力和冰面的滑动摩擦力,做匀加速运动,有μ1mg -μ2(2m )g =ma 2 解得加速度a 2=0.50m/s 2。
设小物块滑上木板时的初速度为v 10,经时间t 后A 、B 的速度相同为v ,由长木板的运动得v =a 2t ,解得滑Av B行时间20.8s vt a ==,小物块滑上木板的初速度 v 10=v +a 1t =2.4m/s ,小物块A 在长木板B 上滑动的距离为22120112110.96m 22s s s v t a t a t ∆=-=--=(3)小物块A 滑上长木板的初速度越大,它在长木板B 上相对木板滑动的距离越大,当滑动距离等于木板长时,物块A 达到木板B 的最右端,两者的速度相等(设为v ′),这种情况下A 的初速度为保证不从木板上滑落的最大初速度,设为v 0.有220121122v t a t a t L --=,012v v a tv a t ''-==,由以上三式解得,为了保证小物块不从木板的右端滑落,小物块滑上长木板的初速度不大于最大初速度0122() 3.0m/s v a a L =+=2 传送带问题突破方法是灵活运用“力是改变物体运动状态的原因”这个理论依据,对物体的运动性质做出正确分析,判断好物体和传送带的加速度、速度关系,能够明确对于物块来说当它的速度达到和传送带速度相等时是摩擦力方向、大小改变的转折点。
画好草图分析,找准物体和传送带的位移及两者之间的关系。
解决这类题目的方法如下:选取研究对象,对所选研究对象进行隔离处理,就是一个化难为易的好办法。
对轻轻放到运动的传送带上的物体,由于相对传送带向后滑动,受到沿传送带运动方向的滑动摩擦力作用,决定了物体将在传送带所给的滑动摩擦力作用下,做匀加速运动,直到物体达到与皮带相同的速度,不再受摩擦力,而随传送带一起做匀速直线运动。
传送带一直做匀速直线运动,要想再把两者结合起来看,则需画一运动过程的位移关系图就可让学生轻松把握。
总之就是物体只要上了传送带就是想和传送带达到共同的速度,至于能否达到要看实际条件。
简化一下即为:①研究物块的加速度;②画出运动过程示意图;③找出物体运动的时间关系、速度关系、位移关系以及传送带的位移关系;④建立方程,求解结果,必要时进行讨论。
滑块与传送带相互作用的滑动摩擦力,是参与改变滑块运动状态的重要原因之一。
其大小遵从滑动摩擦力的计算公式,与滑块相对传送带的速度无关,其方向取决于与传送带的相对运动方向,滑动摩擦力的方向改变,将引起滑块运动状态的转折,这样同一物理环境可能同时出现多个物理过程。
因此这类命题,往往具有相当难度。
滑块与传送带等速的时刻,是相对运动方向及滑动摩擦力方向改变的时刻,也是滑块运动状态转折的临界点。
按滑块与传送带的初始状态,分以下几种情况讨论。
点评:处理水平传送带问题,首先是要对放在传 送带上的物体进行受力分析,通过比较物体初速度 与传送带的速度的关系,分清物体所受的摩擦力是 动力还是阻力;其次是分析物体的运动状态,即对静 态— 动态— 终态做分析和判断,对其全过程做出合理的分析、推断,进而用相关的物理规律求解.一、滑块初速为0,传送带匀速运动[例1]如图所示,长为L 的传送带AB 始终保持速度为v 0的水平向右的速度运动。
今将一与皮带间动摩擦因数为μ的滑块C ,轻放到A 端,求C 由A 运动到B 的时间t AB解析:“轻放”的含意指初速为零,滑块C 所受滑动摩擦力方向向右,在此力作用下C 向右做匀加速运动,如果传送带够长,当C 与传送带速度相等时,它们之间的滑动摩擦力消失,之后一起匀速运动,如果传送带较短,C 可能由A 一直加速到B 。
滑块C 的加速度为,设它能加速到为时向前运动的距离为CA BAθ。
若,C 由A 一直加速到B ,由。
若,C 由A 加速到用时,前进的距离距离内以速度匀速运动C 由A 运动到B 的时间。
[例2]如图所示,倾角为θ的传送带,以的恒定速度按图示方向匀速运动。
已知传送带上下两端相距L 今将一与传送带间动摩擦因数为μ的滑块A 轻放于传送带上端,求A 从上端运动到下端的时间t 。
解析:当A 的速度达到时是运动过程的转折点。
A 初始下滑的加速度若能加速到,下滑位移(对地)为。
(1)若。
A 从上端一直加速到下端 。
(2)若 ,A 下滑到速度为用时之后距离内摩擦力方向变为沿斜面向上。
又可能有两种情况。
(a )若,A 达到后相对传送带停止滑动,以速度匀速,总时间(b)若,A达到后相对传送带向下滑,,到达末端速度用时总时间2倾斜的传送带情景一:如图4(a)所示,传送带顺时针匀速运行,且足够长.现将物体轻轻放在传送带上的A端,物体经过一段时间运动到另一端B点.分析:将物块轻轻放在传送带上后,物块所受滑动摩擦力方向沿斜面向下,受力情况如图3(b)所示,物块将做匀加速直线运动.当速度达到v后,如果mgsinθ>f,将继续向下加速运动,直到运动至B点.如果mgsinθ≤f,物块将随传送带一起匀速运动至B点,物块受力情况如图4(b)所示.图4二、滑块初速为0,传送带做匀变速运动[例3]将一个粉笔头轻放在以2m/s 的恒定速度运动在足够长的水平传送带上后,传送带上留下一条长度为4m 的划线。