高三数学函数的极限
- 格式:pdf
- 大小:1.53 MB
- 文档页数:16
芯衣州星海市涌泉学校函数的极限教学目的:1、使学生掌握当0x x →时函数的极限;2、理解:A x f x x =→)(lim 0的充分必要条件是Ax f x f x x x x ==-+→→)(lim )(lim 0教学重点:掌握当0x x →时函数的极限教学难点:对“0x x ≠时,当0x x →时函数的极限的概念〞的理解。
教学过程:一、复习:〔1〕=∞→nn qlim _____1<q ;〔2〕).(_______1lim *∞→∈=N k x kx 〔3〕?lim 22=→xx 二、新课就问题〔3〕展开讨论:函数2x y =当x 无限趋近于2时的变化趋势当x 从左侧趋近于2时〔-→2x〕当x 从右侧趋近于2时〔+→2x〕函数的极限有概念:当自变量x 无限趋近于0x 〔0x x ≠〕时,假设函数)(x f y =无限趋近于一个常数A ,就说当x 趋向0x 时,函数)(x f y =的极限是A ,记作A x f x x =→)(lim 0。
特别地,C C x x =→0lim ;0lim x x x x =→三、例题求以下函数在X =0处的极限〔1〕121lim 220---→x x x x 〔2〕xx x 0lim→〔3〕=)(x f 0,10,00,22<+=>x x x x x四、小结:函数极限存在的条件;如何求函数的极限。
五、练习及作业: 1、对于函数12+=x y 填写上上下表,并画出函数的图象,观察当x 无限趋近于1时的变化趋势,说出当1→x时函数12+=x y 的极限2、对于函数12-=x y 填写上上下表,并画出函数的图象,观察当x 无限趋近于3时的变化趋势,说出当3→x 时函数12-=x y 的极限3*121lim 221---→x x x x 32302)31()1(lim x x x x x +-+-→)cos (sin 2lim 22x x x x --→π 2321lim4--+→x x x xa x a x -+→20lim 〔0>a 〕x x 1lim 0→。
高考数学中的极限及相关概念在高考数学中,极限是一项非常重要的概念。
极限的定义是指当自变量无限接近某一固定值时,函数的取值趋近于某一固定值,这个固定值即为极限。
为了更好地理解极限及其相关概念,本文将从以下几个方面进行分析。
一、函数的极限函数的极限是指当自变量趋近于某一特定值时,函数的取值趋近于某一特定值。
例如,当x趋近于1时,y趋近于2。
在高考数学中,函数的极限是非常重要的,因为它可以帮助我们确定函数的性质,从而更好地处理一些复杂的问题。
二、左极限和右极限左极限和右极限是指在函数存在极限的情况下,自变量趋近于这个极限时,函数的取值分别从左侧和右侧趋近于极限。
例如,当x趋近于2时,y趋近于3,此时左极限为3,右极限也为3。
在实际问题中,左极限和右极限的概念经常被用来描述物理或经济现象中的变化规律。
三、连续性连续性是指当自变量在某一固定点上发生微小变化时,函数的取值也随之发生微小变化。
具体来说,如果函数在某一固定点上的极限存在,并且等于函数在这一点上的取值,那么这个函数就是连续的。
连续性是数学中非常重要的一个概念,它可以帮助我们更好地研究函数的变化规律。
四、无穷大与无穷小无穷大与无穷小是指当自变量趋近于某一固定值时,函数的取值趋近于无穷大或无穷小。
在实际问题中,我们经常需要讨论物理或经济现象中的最大值或最小值,因此无穷大与无穷小的概念也是非常重要的。
结语本文从四个方面论述了高考数学中的极限及其相关概念。
在实际应用中,极限与微积分、微分方程等数学学科密切相关,掌握极限及其相关概念是现代数学研究的基础。
希望读者在阅读本文后能够更好地理解极限及其相关概念,从而更好地应对高考数学考试。
函数的极限函数的极限定义和计算方法函数的极限:定义和计算方法函数的极限是微积分中的重要概念之一,广泛应用于数学、物理和工程等领域。
它帮助我们理解函数在自变量逼近某一特定值时的表现,并可以用于求解各种问题。
本文将介绍函数的极限的定义和常见的计算方法。
一、函数的极限的定义对于函数f(x),当自变量x无限接近某一特定值a时,如果函数值f(x)无限接近某一常数L,那么我们说函数f(x)在点x=a处的极限为L,记作:lim(x→a) f(x) = L这里,lim表示极限的意思,(x→a)表示x无限接近a,f(x)表示函数f在x处的函数值。
需要注意的是,函数的极限可能存在或者不存在。
如果一个函数的某个点存在极限,那么它的极限值是唯一的。
此外,函数的极限和函数在该点的取值无关,只与函数的定义域和自变量逼近的点有关。
二、函数的极限的计算方法对于常见的函数,可以使用下列计算方法求出函数的极限:1. 代入法:直接将自变量的值代入函数中,计算函数值。
这种方法适用于简单的函数,在函数式中出现除零或者无法计算函数值的情况下,不能直接使用。
2. 因子分解法:将函数式进行因子分解,化简为可能更易计算的形式。
通过因子的性质,可以将极限计算为各个因子的极限之积。
3. 主要部分法:将函数式中的主要部分提取出来,然后计算主要部分的极限。
主要部分是指影响极限值的部分,对于复杂函数,可以通过忽略高次项、无穷小量等方式找到主要部分。
4. 夹逼定理:对于难以计算的函数,可以通过夹逼定理来求解。
夹逼定理指出,如果函数g(x)无限接近L,函数h(x)无限接近L,且函数f(x)总是位于g(x)和h(x)之间,那么函数f(x)的极限也是L。
5. 分部求和法:对于一些敛散性序列或级数,可以通过分部求和将其转化为已知的序列或级数,从而求得极限。
三、示例:下面我们通过几个例子来说明函数的极限的计算方法。
例1:计算函数 f(x) = 2x^2 + 3x - 1 在x→2 时的极限。
第三节 函数的极限一、知识归纳 1、知识精讲:1)当x →∞时函数f(x)的极限:当自变量x 取正值并且无限增大时,如果函数f(x)无限趋近于一个常数a,就说当x 趋向于正无穷大时, 函数f(x)的极限是a,记作a x f x =+∞→)(lim ,(或x →+∞时,f(x)→a)当自变量x 取负值并且无限增大时,如果函数f(x)无限趋近于一个常数a,就说当x 趋向于负无穷大时, 函数f(x)的极限是a,记作a x f x =-∞→)(lim ,(或x →-∞时,f(x)→a)注:自变量x →+∞和x →-∞都是单方向的,而x →∞是双向的,故有以下等价命题=+∞→)(lim x f x a x f x =-∞→)(lim ⇔a x f x =∞→)(lim2)当x →x 0时函数f(x)的极限:当自变量x 无限趋近于常数x 0(但x ≠x 0)时,如果函数f(x)无限趋近于一个常数a ,就说当x 趋向于x 0时, 函数f(x)的极限是a,记作a x f x x =→)(lim 0,(或x →x 0时,f(x)→a)注:a x f x x =→)(lim 0与函数f (x )在点x 0处是否有定义及是否等于f (x 0)都无关。
3)函数f(x)的左、右极限:如果当x 从点x=x 0左侧(即x <x 0)无限趋近于x 0时,函数f(x)无限趋近于常数a 。
就说a 是函数f(x)的左极限,记作a x f x x =-→)(lim 0。
如果当x 从点x=x 0右侧(即x >x 0)无限趋近于x 0时,函数f(x)无限趋近于常数a 。
就说a 是函数f(x)的右极限,记作a x f x x =+→)(lim 0。
注:=-→)(lim 0x f x x a x f x x =+→)(lim 0⇔a x f x x =→)(lim 0。
并且可作为一个判断函数在一点处有无极限的重要工具。
注:极限不存在的三种形态:①左极限不等于右极限≠-→)(lim 0x f x x )(lim 0x f xx +→; ②0x x→时,()±∞→x f ,③0x x →时,()→x f 的值不唯一。
高中数学函数极限的概念及相关题目解析在高中数学中,函数极限是一个重要的概念。
它不仅在高中数学中占有重要地位,而且在大学数学中也是一个基础和重要的概念。
理解和掌握函数极限的概念对于学生们来说至关重要。
本文将从函数极限的定义、性质以及相关题目解析等方面进行讲解,帮助高中学生和家长更好地理解和应用函数极限。
一、函数极限的定义函数极限是指当自变量趋于某个特定值时,函数的取值趋于某个确定的值。
具体来说,对于函数f(x),当x趋于无穷大或者某个特定值a时,如果存在一个常数L,使得当x趋于无穷大或者a时,f(x)趋于L,那么我们就称函数f(x)在x趋于无穷大或者a时的极限为L。
二、函数极限的性质1. 函数极限的唯一性:如果函数f(x)在x趋于无穷大或者a时的极限存在,那么它是唯一的。
2. 函数极限的有界性:如果函数f(x)在x趋于无穷大或者a时的极限存在,那么它是有界的。
3. 函数极限的保号性:如果函数f(x)在x趋于无穷大或者a时的极限存在且大于(或小于)0,那么它的函数值在某个邻域内都大于(或小于)0。
三、函数极限的计算方法在计算函数极限时,我们常常会遇到一些特殊的极限形式,如0/0、无穷大/无穷大等。
下面通过具体的题目来说明函数极限的计算方法。
例题1:计算极限lim(x→0)(sinx/x)。
解析:当x趋于0时,sinx/x的极限形式为0/0,这是一个不定型。
我们可以利用泰勒展开或洛必达法则来计算这个极限。
首先,我们可以使用泰勒展开将sinx 展开成x的幂级数,即sinx=x-x^3/3!+x^5/5!-...,那么sinx/x=(x-x^3/3!+x^5/5!-...)/x=1-x^2/3!+x^4/5!-...。
当x趋于0时,高次项的幂都趋于0,因此我们只需要保留x的一次幂的项,即lim(x→0)(sinx/x)=lim(x→0)(1)=1。
例题2:计算极限lim(x→∞)(x/(x+1))。
解析:当x趋于无穷大时,x/(x+1)的极限形式为∞/∞,这也是一个不定型。
高三函数最难的部分知识点函数作为高中数学的重要内容,对于高三学生来说,掌握其难点是提高数学成绩的关键。
本文将深入探讨高三数学中函数最难的部分知识点,帮助学生理解和应用这些概念,以便在高考中取得优异成绩。
一、函数的极限与连续性函数的极限是描述函数值随自变量变化而趋向于某一特定值的性质。
对于函数f(x),当x趋近于a时,如果f(x)趋近于某一确定的值L,那么我们说函数f(x)在x趋近于a时的极限是L,记作lim(x→a) f(x) = L。
理解极限的概念需要对“趋近于”和“无限接近”有深刻的认识,这是函数学习中的一个难点。
连续性是函数极限的直接应用。
一个函数在某一点连续,意味着在这一点附近,函数的值随着自变量的微小变化而变化,且这种变化是没有跳跃的。
如果一个函数在其定义域内的每一点都连续,我们就称这个函数是连续函数。
不连续的点称为间断点,间断点的分类和处理是学习中的又一难点。
二、导数与微分导数是函数图像变化率的数学表达,它描述了函数在某一点的切线斜率,即函数在该点的局部性质。
导数的计算涉及到极限的概念,因此理解导数首先要对极限有深刻的理解。
导数的计算规则,如乘积法则、商法则和链式法则,是解决复杂函数求导问题的基础。
微分则是导数的另一种表现形式,它描述了当自变量有一个微小变化时,函数值的近似变化量。
对于函数f(x),其在x点的微分记作df(x)或f'(x)dx,其中f'(x)是函数在x点的导数。
掌握微分的概念和计算方法,对于理解和应用导数至关重要。
三、函数的极值与最值函数的极值是指在函数图像上局部最大或最小值点的函数值。
寻找函数的极值点通常需要计算函数的一阶导数,并找出导数为零的点,这些点可能是极大值点或极小值点。
然后通过二阶导数测试或其他方法来判断这些点是极大值点还是极小值点。
这个过程涉及到导数的综合运用,是函数学习中的高级知识点。
最值问题则涉及到函数在整个定义域内的最大值和最小值。
函数的24种极限总结极限是微积分的核心概念之一,它在数学和物理等学科中具有重要的应用价值。
本文将对24种极限进行总结,以帮助读者更好地理解和应用这一概念。
一、极限的基本概念极限是指当自变量趋于某一特定值时,取值逐渐接近于一个确定的值。
可以用数列逼近的思想进行理解。
极限常用的符号表示是“lim”。
二、一元极限1.常数函数极限常数极限是其本身的值,即 lim(a) = a。
2.幂函数极限幂极限取决于指数的大小关系。
当指数小于1时,函数趋于无穷大;当指数等于1时,函数趋于1;当指数大于1时,函数趋于有限值或无穷大。
3.指数函数极限指数极限是通过不同的底数和指数,对数值进行无穷逼近得到的。
例如,底数为e时,指数极限是e;底数为2时,指数极限是2。
4.对数函数极限对数极限是自然对数的极限。
当自变量趋于无穷大时,对数极限趋近于无穷大。
5.三角函数极限三角极限取决于自变量趋于无穷大时的周期性变化。
对于正弦函数和余弦函数,它们的极限是区间[-1,1]内的一系列值。
6.反三角函数极限反三角极限取决于自变量趋于无穷大时的周期性变化。
对于正切函数和余切函数,它们的极限不存在;而对于正割函数和余割函数,它们的极限是一系列值。
7.指数对数函数极限指数对数极限取决于底数和自变量之间的关系。
当自变量趋于无穷大时,指数对数极限趋近于无穷大。
8.复合函数极限复合极限是通过两个或多个极限运算得到的。
根据复合特性,可以通过分解成多个简单函数,再对每个极限进行计算。
三、多元极限9.二元函数极限二元极限是自变量趋于某个点时,取值逐渐接近于一个确定的值。
常用的符号表示是“lim(f(x,y))”。
10.多元函数序列极限多元函数序列的极限是对每个变量的极限进行运算得到的。
可以通过求极限的方法,得到多元极限。
11.多元孤立点多元孤立点是指在某个点上极限值不存在或无法确定的情况。
针对这种情况,需要进行特殊处理或进行极限的推导。
四、变限积分的极限12.定积分极限定积分的极限是指当积分区间的长度趋于无穷大时,函数在区间上的取值逐渐接近于极限值。
函数的24种极限总结在数学中,函数的极限是一个非常重要的概念,它在微积分、数学分析等领域有着广泛的应用。
本文将总结函数的24种极限,帮助读者更好地理解和掌握这一概念。
1. 常数函数的极限。
当函数f(x) = c为常数时,其极限为lim(x→a) f(x) = c。
这是因为常数函数在任意点的取值都是常数c,因此其极限也等于c。
2. 幂函数的极限。
对于幂函数f(x) = x^n,当n为正整数时,其极限为lim(x→a) f(x) = a^n。
当n 为负整数时,其极限为lim(x→a) f(x) = 1/a^n。
当n为分数时,其极限需要根据具体情况进行计算。
3. 指数函数的极限。
指数函数f(x) = a^x的极限为lim(x→a) f(x) = a^a。
其中a为常数且大于0。
4. 对数函数的极限。
对数函数f(x) = log_a(x)的极限为lim(x→a) f(x) = log_a(a) = 1。
其中a为常数且大于0且不等于1。
5. 三角函数的极限。
三角函数sin(x)和cos(x)在其定义域内的极限都存在,分别为lim(x→0) sin(x) = 0和lim(x→0) cos(x) = 1。
6. 反三角函数的极限。
反三角函数arcsin(x)和arccos(x)在其定义域内的极限也都存在,分别为lim(x→0) arcsin(x) = 0和lim(x→0) arccos(x) = 1。
7. 双曲函数的极限。
双曲函数sinh(x)和cosh(x)在其定义域内的极限分别为lim(x→0) sinh(x) = 0和lim(x→0) cosh(x) = 1。
8. 反双曲函数的极限。
反双曲函数arcsinh(x)和arccosh(x)在其定义域内的极限也都存在,分别为lim(x →0) arcsinh(x) = 0和lim(x→0) arccosh(x) = 1。
9. 指数对数函数的极限。
指数对数函数f(x) = x^a和f(x) = log_a(x)在其定义域内的极限分别为lim(x→a) f(x) = a^a和lim(x→a) f(x) = log_a(a) = 1。
数学高考函数的极限函数的极限在数学高考中是一个重要的考点。
它是研究函数变化趋势的有效方法,广泛应用于微积分、数学分析等领域。
本文将介绍函数的极限的概念、性质以及计算方法,并通过实例进行解析,帮助读者深入理解这一概念。
1. 概念函数的极限是指当自变量趋近于某个值时,函数值的变化情况。
设函数为f(x),x趋近于a时,若随着x的不断接近于a,f(x)的取值趋近于某个确定的常数L,即当x无限接近于a时,f(x)的极限为L。
用数学符号表示为:lim(x→a) f(x) = L其中lim表示极限,(x→a)表示x趋近于a,f(x)表示函数f在x处的取值,L表示极限值。
2. 性质函数极限具有以下性质:(1)唯一性:函数的极限值是唯一的,即当x趋近于a时,函数只有一个极限值。
(2)局部性:函数的极限与x的局部取值有关,与整体取值无关。
即函数极限的计算只需关注x趋近于a时的情况,不受其他点的影响。
(3)逼近性:函数的极限可以用于逼近某个特定的值。
当函数在某点附近的取值接近于某个值时,可以利用极限来计算该函数在该点处的取值。
(4)趋势性:函数极限可以用于判断函数的趋势。
当函数的极限为正无穷大或负无穷大时,可以得出函数增大或减小的结论。
3. 计算方法常用的函数极限计算方法主要包括以下几种:(1)代入法:将x的值代入函数中,计算得到函数在该点的取值。
(2)分式分解法:将函数进行分式分解,利用已知函数的极限性质进行计算。
(3)洛必达法则:对于函数极限计算困难的情况,可以利用洛必达法则进行简化。
洛必达法则是一个求极限的有效工具,可简化复杂的计算过程。
(4)级数展开法:对于一些特定的函数形式,可以通过级数展开的方法来计算函数的极限。
4. 实例分析为了更好地理解函数极限的概念和计算方法,下面通过几个实例进行具体分析。
实例1:计算函数极限lim(x→1) (x^2 - 1)/(x - 1)解析:将x的值代入函数中,得到函数在x=1处的取值。
极限知识点高三数学在高中数学的学习过程中,极限是一个十分重要且常出现的概念。
它不仅在解题过程中起到关键作用,而且在数学的其他分支中也有广泛的应用。
本文将重点介绍高三数学中的极限知识点,帮助同学们更好地理解和掌握这一概念。
一、极限的定义极限是指当自变量趋近于某个值时,函数值的变化趋势。
一般来说,我们用符号“lim”加上一个表达式来表示极限。
例如lim(x→a)f(x)表示当自变量x趋近于a时,函数f(x)的极限。
二、常见的极限运算法则1. 有界性定理:如果一个函数在一个区间内有定义并且有界,那么它在这个区间内必有极限。
2. 四则运算法则:对于两个函数f(x)和g(x),如果lim(x→a)f(x)和lim(x→a)g(x)存在且有限,则有以下极限运算法则:(1) lim(x→a)(f(x)+g(x)) = lim(x→a)f(x) + lim(x→a)g(x)(2) lim(x→a)(f(x)-g(x)) = lim(x→a)f(x) - lim(x→a)g(x)(3) lim(x→a)(f(x)g(x)) = lim(x→a)f(x) × lim(x→a)g(x)(4) lim(x→a)(f(x)/g(x)) = lim(x→a)f(x) / lim(x→a)g(x) (前提:lim(x→a)g(x) ≠ 0)3. 复合函数极限法则:设y=f[g(x)]为由f(u)和g(x)构成的复合函数,其中lim(x→a)g(x)=b,lim(u→b)f(u)=L,则有lim(x→a)f[g(x)]=L。
4. 已知函数极限与极限运算法则可以联合使用。
例如,如果lim(x→a)f(x)=A,lim(x→a)g(x)=B,则有lim(x→a)(f(x)^g(x))=A^B。
三、例题分析为了更好地理解和掌握极限的应用,我们来看几个例题:例题1:求极限lim(x→0)(sinx/x)。
解析:由于在x→0时,sinx和x都趋近于0,我们可以利用泰勒级数展开来计算该极限。
13.3 函数的极限●知识梳理1.函数极限的概念:(1)如果+∞→x lim f (x )=a 且-∞→x lim f (x )=a ,那么就说当x 趋向于无穷大时,函数f (x )的极限是a ,记作∞→x lim f (x )=a ,也可记作当x →∞时,f (x )→a.(2)一般地,当自变量x 无限趋近于常数x 0(但x 不等于x 0)时,如果函数f (x )无限趋近于一个常数a ,就说当x 趋近于x 0时,函数f (x )的极限是a ,记作0lim xx →f (x )=a ,也可记作当x →x 0时,f (x )→a .(3)一般地,如果当x 从点x =x 0左侧(即x <x 0)无限趋近于x 0时,函数f (x )无限趋近于常数a ,就说a 是函数f (x )在点x 0处的左极限,记作-→0limx x f (x )=a .如果从点x =x 0右侧(即x >x 0)无限趋近于x 0时,函数f (x )无限趋近于常数a ,就说a 是函数 f (x )在点x 0处的右极限,记作+→0limx x f (x )=a .2.极限的四则运算法则: 如果0lim xx → f (x )=a , 0limx x →g (x )=b ,那么limx x →[f (x )±g (x )]=a ±b ;limx x →[f (x )·g (x )]=a ·b ;limx x →)()(x g x f =ba(b ≠0).特别提示(1)上述法则对x →∞的情况仍成立;(2)0lim x x →[Cf (x )]=C 0lim xx →f (x )(C 为常数); (3)0lim x x →[f (x )]n =[0lim xx →f (x )]n(n ∈N *). ●点击双基 1.+→0limx x f (x )=-→0limx x f (x )=a 是f (x )在x 0处存在极限的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 答案:C 2.f (x )=⎩⎨⎧<≥,10,12x x x 下列结论正确的是 A.)(lim 1x f x +→=-→1lim x f (x ) B.)(lim 1x f x +→=2,)(lim 1x f x -→不存在C.+→1lim x f (x )=0, )(lim 1x f x -→不存在 D.+→1lim x f (x )≠-→1lim x f (x )答案:D3.函数f (x )在x 0处连续是f (x )在点x 0处有极限的 A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件 答案:A4.(2005年西城区抽样测试) 1lim→x xx x x --+222=________________. 解析:1lim →x xx x x --+222=1lim →x )1()2)(1(-+-x x x x =1lim→x xx 2+=3. 答案:35.若1lim →x 3322+++x ax x =2,则a =__________.解析:1lim →x 3322+++x ax x =2, ∴44+a =2.∴a =4.答案:4 ●典例剖析【例1】求下列各极限: (1) 2lim →x ()21442---x x ; (2)∞→x lim ())((b x a x ++-x ); (3) 0lim→x ||x x; (4)2πlim→x .2sin2cos cos x x x- 剖析:若f (x )在x 0处连续,则应有0lim xx → f (x )=f (x 0),故求f (x )在连续点x 0处的极限时,只需求f (x 0)即可;若f (x )在x 0处不连续,可通过变形,消去x -x 0因式,转化成可直接求f (x 0)的式子.解:(1)原式=2lim→x 4)2(42-+-x x =2lim →x 21+-x =-41. (2)原式=∞→x lim xab x b a x ab x b a ++++++)()(2=a +b .(3)因为+→0limx ||x x =1,而=-→0lim x ||x x=-1,+→0lim x ||x x ≠-→0lim x ||x x , 所以0lim →x ||x x不存在.(4)原式=2πlim→x 2sin2cos 2sin 2cos 22x x x x --=2πlim →x (cos 2x +sin 2x)=2.思考讨论数列极限与函数极限的区别与联系是什么?【例2】 (1)设f (x )=⎪⎪⎩⎪⎪⎨⎧<+=>+→,021;)(lim ,,00,020x x f b x x b x xx 存在使的值试确定;(2)f (x )为多项式,且∞→x limxx x f 34)(-=1,0lim→x xx f )(=5,求f (x )的表达式.解:(1)+→0lim x f (x )= +→0lim x (2x +b )=b ,-→0lim x f (x )= -→0lim x (1+2x )=2,当且仅当b =2时, +→0lim x f (x )= -→0lim x f (x ),故b =2时,原极限存在. (2)由于f (x )是多项式,且∞→x limxx x f 34)(-=1,∴可设f (x )=4x 3+x 2+ax +b (a 、b 为待定系数). 又∵0lim→x xx f )(=5, 即0lim →x (4x 2+x +a +xb )=5, ∴a =5,b =0,即f (x )=4x 3+x 2+5x .评述:(1)函数在某点处有极限,与其在该点处是否连续不同. (2)初等函数在其定义域内每点的极限值就等于这一点的函数值,也就是对初等函数而言,求极限就是求函数值,使极限运算大大简化.【例3】 讨论函数f (x )= ∞→n lim nn x x 2211+-·x (0≤x <+∞)的连续性,并作出函数图象.部析:应先求出f (x )的解析式,再判断连续性. 解:当0≤x <1时,f (x )=∞→n lim⋅+-nnx x 2211x =x ; 当x >1时,f (x )=∞→n limnnx x 2211+-·x =∞→n lim 111122+-nnx x ·x =-x ;当x =1时,f (x )=0. ∴f(x )=⎪⎩⎪⎨⎧>-=<≤).1(),1(0),10(x x x x xi ∵+→1lim x f (x )=+→1lim x (-x )=-1,-→1lim x f (x )=-→1lim x x =1,∴1lim →x f (x )不存在.∴f (x )在x =1处不连续,f (x )在定义域内的其余点都连续. 图象如下图所示.评述:分段函数讨论连续性,一定要讨论在“分界点”的左、右极限,进而判断连续性.●闯关训练夯实基础1.已知函数f (x )是偶函数,且-∞→x lim f (x )=a ,则下列结论一定正确的是A. +∞→x lim f (x )=-a B. +∞→x lim f (x )=aC. +∞→x lim f (x )=|a | D. -∞→x lim f (x )=|a |解析:∵f (x )是偶函数,∴f (-x )=f (x ). 又-∞→x lim f (x )=a ,+∞→x limf (-x )=a ,f (x )=f (-x ),∴+∞→x lim f (-x )= +∞→x lim f (x )=a .答案:B 2. 1lim →x 54222-+-+x x x x 等于 A.21 B.1 C.52D.41解析:∵122lim ,52)5)(1()2)(1(542→∴++=+-+-=-+-+x x x x x x x x x x x 54222-+-+x x x x =21.答案:A3.已知函数y =f (x )在点x =x 0处存在极限,且+→0lim x x f (x )=a2-2,-→0limx x f(x )=2a +1,则函数y =f (x )在点x =x 0处的极限是____________.解析:∵y =f (x )在x =x 0处存在极限, ∴+→0lim x x f (x )=-→0lim x x f (x ),即a 2-2=2a +1.∴a =-1或a =3.∴limx x → f (x )=2a +1=-1或7.答案:-1或74.若 f (x )=11113-+-+x x 在点x =0处连续,则 f (0)=__________________.解析:∵f (x )在点x =0处连续, ∴f (0)=0lim →x f (x ),lim →x f(x )= 0lim →x 11113-+-+x x= 0lim→x 1111)1(332++++++x x x =23.答案:235.已知函数f (x )=∞→n limnn n n x x +-22,试求:(1)f (x )的定义域,并画出图象; (2)求--→2lim x f (x )、+-→2li m x f (x ),并指出2lim -→x f (x )是否存在.解:(1)当|x |>2时,∞→n limn n nnx x +-22=∞→n lim 1)2(1)2(+-nnxx =-1; 当|x |<2时,∞→n lim n n nnx x +-22=∞→n limnnx x )2(1)2(1+-=1;当x =2时,∞→n lim nn nn xx +-22=0; 当x =-2时,∞→n lim nn nn xx +-22不存在.∴f(x )=⎪⎩⎪⎨⎧<<-=-<>-).22(1),2(0),22(1x x x x 或∴f (x )的定义域为{x |x <-2或x =2或x >2}. 如下图:(2)∵--→2lim x f (x )=-1,+-→2lim x f (x )=1.∴2lim -→x f (x )不存在.6.设函数f (x )=ax 2+bx +c 是一个偶函数,且1lim →x f (x )=0,2lim -→x f (x )=-3,求出这一函数最大值.解:∵f (x )=ax 2+bx +c 是一偶函数, ∴f (-x )=f (x ), 即ax 2+bx +c =ax 2-bx +c . ∴b =0.∴f (x )=ax 2+c .又1lim →x f (x )= 1lim →x ax 2+c =a +c =0, 2lim -→x f (x )=2lim -→x ax 2+c =4a +c =-3,∴a =-1,c =1. ∴f (x )=-x 2+1. ∴f (x )max =f (0)=1. ∴f (x )的最大值为1. 培养能力7.在一个以AB 为弦的弓形中,C 为的中点,自A 、B 分别作弧AB的切线,交于D 点,设x 为弦AB 所对的圆心角,求ABDABCx S S ∆∆→0lim.解:设所在圆圆心为O ,则C 、D 、O 都在AB 的中垂线上,∴∠AOD =∠BOD =2x .设OA =r .S △ABC =S 四边形AOBC -S △AOB =r 2sin 2x-21r 2sin x =r 2sin 2x (1-cos 2x ),S △ABD =S 四边形AOBD -S △AOB =r 2tan 2x -21r 2sin x =r 22cos 2sin 3x x . ∴0lim→x ABDABC S S ∆∆=0lim→x 2cos2sin )2cos 1(2sin 322x xr xx r -=0lim →x 2cos 12cos x x +=21.8.当a >0时,求0lim→x bb x a a x -+-+2222.解:原式=0lim→x ))()(())()((222222222222a a x b b x b b x b b x a a x a a x ++++-+++++-+=0lim→x ))(())((2222222222a a x b b x b b x a a x ++-+++-+=0lim→x aa xb b x ++++2222=aa bb ++|||| =⎪⎩⎪⎨⎧>≤).0(),0(0时当时当b a b b探究创新9.设f (x )是x 的三次多项式,已知a x 2lim→=a x x f 2)(-=a x 4lim →ax x f 4)(-=1.试求a x 3lim →ax x f 3)(-的值(a 为非零常数).解:由于a x 2l i m →ax x f 2)(-=1,可知f (2a )=0.①同理f(4a)=0.②由①②,可知f (x )必含有(x -2a )与(x -4a )的因式,由于f (x )是x 的三次多项式,故可设f (x )=A (x -2a )(x -4a )(x -C ).这里A 、C 均为待定的常数. 由a x 2lim→ax x f 2)(-=1,即a x 2lim→ax C x a x a x A 2))(4)(2(---- =ax 2lim →A (x -4a )(x -C )=1, 得A (2a -4a )(2a -C )=1, 即4a 2A-2aCA =- 1.③同理,由于ax 4lim→ax x f 4)(-=1, 得A (4a -2a )(4a -C )=1, 即8a 2A-2aCA =1.④由③④得C =3a ,A =221a ,因而f (x )=221a (x -2a )(x -4a )(x -3a ).∴ax 3lim →a x x f 3)(-=a x 3lim →221a(x -2a )(x -4a )=221a ·a ·(-a )=-21.●思悟小结1. ∞→x lim f (x )=A ⇔+∞→x lim f (x )= -∞→x lim f (x )=A ,limx x →f (x )=A ⇔+→0limx x f (x )=-→0limx x f (x )=A .2.函数f (x )在x 0处连续当且仅当满足三个条件: (1)函数f (x )在x =x 0处及其附近有定义;(2)0lim x x →f (x )存在; (3) 0lim x x →f (x )=f (x 0).3.会熟练应用常见技巧求一些函数的极限.●教师下载中心教学点睛1.在讲解过程中,要讲清函数极限与数列极限的联系与区别,借助于函数图象讲清连续性的意义.2.函数极限比数列极限复杂之处在于它有左、右极限,并有趋近于无穷大和趋近于常数两类,需给予关注.3.在求函数极限时,需观察,对不能直接求的可以化简后求,但提醒学生要注意类似于+∞→x limx x 12+与-∞→x lim x x 12+的区别. 拓展题例【例1】 设f (x )=⎪⎩⎪⎨⎧>≤+),0(e ),0(25x k x k x x 为常数问k 为何值时,有0lim →x f (x )存在?解: -→0lim x f (x )=2k , +→0lim x f (x )=1, ∴要使0lim →x f (x )存在,应有2k =1.∴k =21. 【例2】 a 为常数,若+∞→x lim (12-x -ax )=0,求a 的值. 解:∵+∞→x lim (12-x -ax )= +∞→x lim ax x x a x +---112222=+∞→x lim ax x x a +---11)1(222=0, ∴1-a 2=0.∴a =±1.但a =-1时,分母→0,∴a =1.。