哈工大 光机系统设计 双胶合透镜 实验报告
- 格式:doc
- 大小:283.50 KB
- 文档页数:6
光学设计报告04111102一.双胶合望远物镜设计(一).参数计算 1. 求J h h z ,,根据光学特性的要求: '4*3.714.8D D =Γ==4.728.142===D h35tan5 3.062z h =⨯=087.0''==f h u''tan 85tan57.437y f ω=∙=⨯=647.0'''==y u n J2.计算平行玻璃板的像差和数C S S S I II I ,, 平行玻璃板入射光束的有关参数为087.0=utan(5)0.0875z u =-=-1zu u≈- 平行玻璃板本身的参数为d=31mm ; n=1.5163; 1.64=ν 带入平行玻璃板的初级像差公式可得:4324432106.61.51631-1.5163×0.087×-311-I ⨯-==--=du n n S 44= =-6.610(-1)=6.610z u S S u --II I ⎛⎫⨯⨯⨯⨯ ⎪⎝⎭224221 1.51631310.0878.21064.1 1.5163C n S du n υ-I --=-=-⨯⨯=-⨯⨯ 3.列出初级像差方程式求解双胶合物镜的C W P ,,∞∞理想状态下整个物镜系统的像差和数C S S S I II I ,,满足0=I S ; 0=II S ; 0=I C S 。
由于棱镜物镜系统S S S +=所以双胶合物镜的像差和数为4106.6--I I I ⨯==棱镜系统S S S4- 6.610S S S II II -II ==-⨯系统棱镜 4-8.210C C C S S S I I -I ==⨯系统棱镜(1)列出初级像差方程求P ,W ,C4106.64.7-I ⨯===P hP S 5109.8-⨯=P 4-6.610z S h PJ W -II =-=⨯31.4410W -=⨯4221022.84.7-I ⨯===C C h S C51.5010C -=⨯(2)由P ,W ,C 求C W P ,,∞∞由于h=7.4,f ’=85,因此有087.0=ϕh321057.7)(-⨯=ϕh431059.6)(-⨯=ϕh进而可得:135.0)(3==ϕh P P20.19()W W h φ=='0.00128C Cf ==由于望远镜本身对无限远物平面成像,因此无需再对物平面位置进行归化:135.0==∞P P 0.19W W ∞==0.00128C =将∞∞W P ,带入公式求0P200.85(0.15)0.134P P W ∞∞=--≈ 根据00128.0=C ,00.134P =查找玻璃组合。
哈工大光机系统设计双胶合透镜实验报告哈工大光机系统设计双胶合透镜实验报告哈尔滨工业大学实验报告Harbin Institute of Technology 实验报告课程名称:光机系统设计实验名称:双胶合消色差物镜设计院系:电气及自动化与控制系班级:姓名:学号:哈尔滨工业大学1,实验目的设计一个双胶合消色差透镜,并绘制图形,熟悉应用光学、机械学等相关知识,掌握光机系统设计的流程。
2. 结构特性分析双胶合消色差物镜光学性能要求: 1) f / 6,焦距540mm;2) 视场角1.5°;3) 镜片材料选择BAK1 和BK7;4) 20 线对/mm 处MTF>0.4;5) 工作波长:可见光 3. 初始结构设计当物体处于无穷远时,P∞=W∞=0(孔径角消失),设计消色差系数C=0。
透镜的光焦度分配公式:通过应用光学相关知识,算的双胶合透镜的曲率半径依次为:R1 =345.231 R2 =-240.89 R3 =-1003.25 两个透镜的初始厚度设计各为7mm,透镜组到成像面的距离设计为近轴光线,由ZEMAX 计算出相应厚度调整值。
图1 双胶合透镜出结构设计图2 所示,视场90mm;如图3 所示,视场角设定为1.5°,图4 所示,入射光线为可见光;如所示为初始透镜结构图。
图2 设定视场图3 设置光场图4 设定入射光4. 系统优化设计焦距值为540mm,设定默认优化函数EFFL target 为540,权重为1,选择透镜的三个曲率半径以及相应的厚度作为优化参数,优化结果如图5所示。
图5 优化结果参数5. 像质分析由图6所示,优化后最大的波像差大约为4个波长,尚未达到衍射极限,应为焦平面上的彗差影响所致;同时可见这个透镜相对与可见光的低阶色差比较小,满足设计要求。
图8优化后光线追迹曲线如图6所示,优化后存在彗差,由图中度数可得艾里斑半径为8.595μm,而像差RMS半径为18.570μm,可见此优化结果基本达到设计要求,可以使用。
H a r b i n I n s t i t u t e o f T e c h n o l o g y实验报告课程名称:光机系统设计实验名称:基于ZMAX的光机系统设计班级:0936203姓名:蔡海蛟学号:6090120331哈尔滨工业大学一.实验目的(1)熟悉并掌握ZMAX软件的使用(2)熟悉光学系统设计的步骤及方法(3)了解牛顿式望远镜和施密特—卡塞格林系统,并对其相差有一定了解(4)学会用ZMAX设计简单的光学系统,并对系统进行像质分析和系统优化二.基本原理(1)实验一、牛顿望远镜牛顿望远镜是最简单的用来矫正轴上像差的望远镜。
牛顿望远镜是由一个简单的抛物线形镜面组成的,而且除此之外别无它物。
抛物线很好地矫正了所有阶的球差,将望远镜使用在轴上系统,就没有其他的像差。
(2)实验二、带有非球面矫正器的施密特—卡塞格林系统施密特-卡塞格林望远镜(Schmidt-Cassegrain)属于折反射(Catadioptrics)类别。
施-卡望远镜的设计是以伯恩哈德施密特的施密特摄星仪为基础:使用球面镜做主镜(沿袭施密特摄星仪的设计)以施密特修正板来改正球面像差承袭卡塞格林的设计,以凸面镜做次镜,施密特-卡塞格林望远镜(Schmidt-Cassegrain)属于折反射(Catadioptrics)类别。
在施密特-卡塞格林系统,光通过薄的非球面校正透镜进入镜筒,然后接触球面主镜。
被球面主镜反射的光线折回镜筒开口中部的第二反射镜,然后再次被第二反射镜反射,光线通过镜筒内部中间的管子聚集在目镜形成图象。
三.系统结构(1)实验一、牛顿望远镜图一.牛顿望远镜原理图利用ZMAX设计牛顿望远镜:设计一个1000mm F/5的望远镜(及需要一个曲率半径为2000mm的镜面,和一个200mm 的孔径)。
移动光标到第一面,即光阑面的曲率半径列,输入-2000.0,负号表示为凹面。
现在在同一个面上输入厚度值-1000,这个负号表示通过镜面折射后,光线将往“后方”传递。
双胶透镜设计1.双胶合透镜设计方案1.1双胶镜头简介当今光学系统已经应用到了广泛的领域当中,所以对于光学镜头的设计就成了现在人们十分关注的事情。
其中双胶合镜透镜使用最广泛。
在光学设计中,像差(abeDation)指公光学系统中由透镜材料的特性或折射(或反射)表面的几何形状引起实际像与理想像的偏差。
理想像就是理想光学系统所成的像。
实际的光学系统,只有在近轴区域以很小孔径角的光束所生成的像是完善的。
但在实际应用中,需有一定大小的成像空间和光束孔径,同时还由于成像光束多是由不同颜色的光组成的,同一介质的折射率随颜色而异。
因此实际光学系统的成像具有一系列缺陷,这就是像差。
像差的大小反映了光学系统成像质量的优劣。
几何像差主要有七种:其中单色光像差有五种,即球差、彗差、像散、场曲和畸变;复色光像差有轴向色差和垂轴色差两种。
单个透镜的色差是无法消除的,但把一对用不同材料做成的凸凹透镜胶合起来,可对选定的两种波长消除色差。
根据薄透镜系统的初级像差理论,在允许选择玻璃材料的条件下,一个双胶合薄透镜组除了校正色差外,还能校正两种单色像差。
另外对于单透镜来说,虽然可以选择不同曲率半径使球差达到最小,这称为配曲法,但配曲法不能完全消除球差,考虑到凸透镜和凹透镜有符号相反的球差,所以可以把两种透镜胶合起来进一步消除球差,同样对于彗差也是一样的,轴外傍轴物点发出的宽光束经透镜折射后,在理想平面上不再交于一点,而是形成状入彗星的亮斑,此称为彗差。
利用配曲法可部分消除单透镜的彗差,也可以另用胶合透镜消除彗差,但因为消球差和消彗差所要求的条件往往不一致,所以这两种像差不易同时消除。
双胶合物镜:(简称双胶物镜)双胶物镜由一正透镜和一负透镜胶合而成(正负透镜用不同种类的光学玻璃),正负透镜胶合面两个球面半径相等。
这种物镜的优点是:结构简单,光能损失小,合理选择玻璃和弯曲能校正球差、彗差、色差,但不能消除像散、场曲与畸变,但双胶物镜口径一般不超过Φ100mm,因为当口径过大时,由温度变化胶合加会产生应力,使成像质量变坏甚至脱胶。
各专业全套优秀毕业设计图纸《光电系统》课程设计报告姓名:唐晋川班级:0211102学号:2011210818一、设计题目——双胶合透镜优化设计双胶合透镜优化设计双胶合透镜是一种常用的望远物镜,它结构简单、光能损失小,合理选择玻璃和弯曲能校正球差,慧差、色差和像差,但不能消除象散、场曲与畸变。
根据上述原理使用OSLO软件进行双胶合透镜的设计并对其中一种特性进行优化设计,使得双胶合透镜的参数比较理想。
二、设计原理双胶合透镜优化设计:双胶合透镜是一种常用的望远物镜,它结构简单、光能损失小,合理选择玻璃和弯曲能校正球差,慧差、色差和像差,但不能消除象散、场曲与畸变。
优化是光学系统设计过程中最重要的一步,一般来说初始结构的像质并不是很理想的,只有经过优化才能使光学系统的性能达到我们需要的状态。
通过初始设计的双胶合透镜像差不符合要求,所以要对其进行优化。
优化之前要进行两个必要的步骤:要确定优化变量和选用评价函数。
理论上讲,透镜组的全部结构参数都可以作为优化变量参与优化,光学系统中影响像质的因素是曲率半径r,折射率n和厚度d。
三、实验日志:1、使用oslo软件对双胶合透镜进行设计。
2、使用oslo软件对双胶合透镜进行优化设计。
四、实验步骤双胶合透镜设计并优化(1)双胶合透镜设计○1新建镜头文件○2输入透镜光学特性参数○3输入镜面数据○4保存透镜数据(2)双胶合透镜优化○1打开透镜文件并另存○2设置优化变量○3设置误差函数○4进行优化五、实验结果与分析双胶合透镜优化设计我对双胶合透镜所进行的优化是从透镜的像差着手进行的,从后面的数据中我们可以看出通过改变透镜的曲率半径、光圈大小和透镜的厚度都可以明显改善透镜的像差,从而提高透镜的成像质量。
综合考虑,我进行了三次优化,分别通过优化曲率半径、优化光圈大小和优化透镜的厚度来达到设计的目的。
双胶合透镜的原始最小RMS值为4.252773,像差值为-0.031841。
经过优化曲率半径后的最小RMS值为2.506337,像差值为-0.018681,经过优化透镜的厚度的最小RMS 值为1.8,像差值为-0.17142,最后经过优化光圈大小得出了经过三次优化的透镜的最小RMS值为1.639445,像差值为-0.014059,显然我们得出了很好的效果使得仿真比较成功。
设计双胶合望远物镜设计性实验一、实验目的掌握zemax光学设计软件的使用,能进行光学器件的设计和仿真,理解各种光学设计的基本分析原理,了解像差的基本概念、意义。
二、实验内容1.设计要求:焦距:f’=250 mm通光孔径:D=35 mm视场角:2ω=6°,工作中心波长为在可见光波段,入瞳与物镜重合,物镜后棱镜系统的总厚度为150 mm,要求:δL’m=0.1 5mm,SC’m、=-0.003,ΔL’FC=0.05 mm2.给出设计结果,并对设计结果进行分析和评价。
三.实验1.总体思路和基本方法与其他光学自动设计软件相似,Zemax软件进行光学系统设计时的基本流程如图1-1其中,光学系统模型的建立是光学系统设计的第一步。
其中各个参数的取值可以采用标准的PW算法,同时也可以通过查阅光学设计的镜头手册来选择一组合理的初始化数据。
在Zemax中,光学系统建模分为两个方面:系统特性参数的输入和初始结构的输入。
Zemax软件同时还具有非常强大的像质分析功能。
可以在主窗口中的Analysis下拉菜单中选择相应的像质评价工具。
一些常用的分析功能也能通过工具栏中的图标按钮来快速选择。
使用者可以通过对这些图形和文本窗口提供的菜单命令进行操作,设置需显示或计算的内容。
Zemax中的分析窗口都具有“Update(刷新)”菜单命令,当系统特性参数或结构参数改变时,可以通过刷新命令使Zemax重新计算并重新显示当前窗口中的数据。
Zemax的优化功能可以根据设定的一系列目标值去自动改变光学系统的曲率﹑厚度﹑玻璃﹑二次曲面系数及其他附加参数和多重结构数据等,以满足光学系统的光学特性和像差的要求。
在优化过程中,使用者可以根据需要,对系统设定约束条件和目标。
Zemax通过构造评价函数(Merit function),并采用一定的算法计算评价函数的取值,由取值的大小判断实际系统是否满足约束条件及目标的要求。
2.初始结构的选择Surf:Type Radius Thickness Glass Semi-Diameter OBJ Standard Infinity Infinity InfinitySTO Standard 153.10000 6.0000000 K9 20.0692362 Standard -112.93000 4.0000000 ZF1 20.0391343 Standard -361.6800 50.000000 20.0633294 Standard Infinity 150.00000 K9 18.6284755 Standard Infinity Infinity M 15.818629IMA Standard Infinity 13.2204113.优化函数的确立及Zemax实现(一)建立光学系统的模型(1)初始结构的输入;其中因为没有告诉后工作距,将厚度设为Marginal Ray Height(边缘光线高度)(2)系统特性参数的输入;(主要是对孔径﹑视场﹑波长进行设定)(二)像质评价(1) 焦距:(2)球差:Analysis—Miscellaneous—Longitudinal aberration—text所以可得δL’m=-0.06974mm;(3)正弦差:根据初级彗差和初级正弦差的关系SC’m= K’s/y’=-6.276404μm/13.154mm=-0.000477K’s:y’(4)轴向色差ΔL’FC一般指0.707h的轴向色差,可以由Chormatic Focal Shift 获得,即ΔL’FC= L’F-L’C设置Setting中的孔径:观察text:所以可得ΔL’FC= L’F-L’C=0.17395333-0.08541441=0.08853892mm(三)优化(1)像差控制:显然我们所得的像差与要求的像差数据有差距,所以必须要进行进一步的像差优化。
实验二:双胶合透镜系统
一.实验目的
掌握胶合透镜的设计方法、原理、过程及透镜系统的优化处理方法;
二.透镜系统的结构性能要求
1)相对孔径为1/4(F/#为4),焦距为100mm;
2)视场角为0︒;
3)玻璃材料分别为BK7,SF1;
4)相对波长为可见光波长;
5)厚度为3mm;
三.实验步骤
一个双透镜采用两片玻璃胶合,曲率半径大小相同。
通过使用两片具有不同色散特性的玻璃,一阶色差可以被矫正。
这样会产生较好的像质。
1.系统参数的设置:F/#为4;
视场角为0︒;
工作波长可见光波长;
2.结构参数的设置:第一个面焦距为100mm,厚度为3mm,玻璃材料为BK7;
STO面焦距为-100mm,厚度为3mm,玻璃材料为SF1;
如下图所示:
四.透镜优化过程
1.将曲率半径设为变量,厚度也设为变量,权重为1,创建评价函数包括EFFL 操作数,如下图所示:
2.将厚度也设为变量,glass min为2,max,6,edge为1;air min为0.2,max 为100,edge为0.2;如下图所示:
3.单击菜单栏Tools一最佳化Optimization,如下图所示:
五.双胶合透镜系统分析
1.对于点列图,优化后的系统点列图的弥散斑明显减小了很多,如下图所示:
2.对于wavefront Map图,像差从65.46减小到0.3034。
所以双胶合透镜能够校正了像差,如下图所示:
3.对于多色光焦点漂移图,如下图所示现在已经减小了色差的线性项,,二阶色差占了优势,因此如抛物线形状所示请注意多色光焦点漂移量减少为74um单透镜为1540um),如下图所示:。
设计题目设计题目:设计双胶合会聚透镜相对孔径 F=4;4400DF D mm f ==⇒=;焦距f ‘=100mm波长范围:可见光视场角 0°校正:球差,慧差、色差。
设计过程:1、 用PWC 法或镜头库确定原型,输入透镜数据2、 分析原型相差3、 优化4、 分析优化结果题目结束相关知识喷血,大牛可直接掠过或斧正塞得和系数引发的血案:塞得和系数的自变量有内部参数和外部参数,外部参数取决外部光线。
内部参数除PWC 外还与入射孔径角有关(孔径角应该随比例不变);PWC 可由辅助光线参数求出,若由多个面构成则由多个面求和。
(PWC)0参数,单透镜取决于折射率,系统取决于系统结构。
P W C ∞∞∞是物面处于无穷远时,目的在于搞掉入射孔径角。
以上参数在实际系统有转换公式,待定参数反应系统结构、特性。
21()(1)n i i i i i u u P n n =∆=∆∆∑;1()(1)n i i i i i u u W n n =∆=∆∆∑; 其中'''1111;;;'i i i i i i i i i i u u u u u n n n n n n ∆=-∆=-∆=-闲话少说,言归正传,求解开始双胶合物镜求解过程:(1) P 0;20200.85(0.1)0.85(0.2)P P W P P W ∞∞∞∞⎧=++⎪⎨⎪=++⎩……[1] 冕牌玻璃在前……[2] 火石玻璃在前求出P 0;当物处于无穷远时,P ∞、W ∞均为0(孔径角消失)。
由[1]求得00.0085P =-;此时默认冕牌玻璃在前。
可选择K7+ZF3,此时色差0I C =;00.012P =;0 4.11Q =-若由[2]求得00.034P =-,且火石玻璃在前,ZF2+BaK2,此时0I C =;00.032P =-;0 5.05Q =-(2)0 4.11 4.110.06014Q Q =±=-±=-±;00.154.110.089821.67W Q Q ∞-=-=-+;则取:0 4.11 4.110.06014 4.05Q Q =±=-+=-+=-(3) 求解光焦度分配121221111()()1C v v v ϕϕϕ⎧=--⎪⎨⎪=-⎩;11212122160.63111()() 1.948264860.6329.5110.9482648v C v v v v v ϕϕϕ⎧=--===⎪--⎨⎪=-=-⎩ (4) 由上式中Q 求解结构参数:212111121111213322221 2.10171 1.6829201111111-0.6765111Q r n Q r n n n Q r r n n n ρϕϕϕρρϕϕρ⎧==+=-⎪⎪⎪==+=+=⎨--⎪⎪-==-=+-=⎪---⎩1230.594210.475811.4782r r r =⎧⎪⇒=-⎨⎪=-⎩;(5) 带入zemax 中进行优化:代入软件后在,lens data 里面把参数输入好。
东莞理工学院
ZEMAX光学设计软件应用训练实验报告
选择“analysis”,“miscellaneous”,“field curv/dist”场曲线如图所示。
牛顿式反射望远镜结构示意图
.输入数据:第一面,光阑面的曲率半径列输入-2000.0,负号表示为凹面,
列输入“MIRROR”。
选择“System”,“General”,然后在“通用数据对话框(
Box)”中输入一个200的孔径值,并单击“OK”。
ZEMAX使用的缺省值是波长
现在打开一个图层窗口,光线显示了从第一面到像平面的轨迹,此时像平面在镜面的左边。
如下图:
2.构造转折面:第一面的厚度改为-800mm。
像平面,按Insert在主面与像平面之间插入一个虚构
思考题与实践题:
1、牛顿反射式望远镜属于我们《应用光学》书本上所介绍的那种望远镜系统?
注意我们已将主反射面的距离减小到-18,第四面的半径已经被加入了一个变量标记。
新图层,检查一切是否正常。
如下图:
注意大约有4个波长的像差仍然有待改正。
现在单击第一面(光阑面)的“
设置第一面的半径为变量,再次优化(Tools,Optimization,Automatic
从主菜单,选SYSTEM,FIELDS,并将视场角的个数设置为3,输入y-
在评价函数编辑时,选Tools,Default Merit Function,并将RINGS
在遮挡器和辅助镜面之间的小缝隙纯粹是很小的一点。
这里是为了更容易让大家看到。
MTF现在已被主要是辅助镜面产生的遮挡所改变。
更新MTF窗口,看一下新的MTF,如下图:。
H a r b i n I n s t i t u t e o f T e c h n o l o g y
实验报告
课程名称:光机系统设计
实验名称:双胶合消色差物镜设计院系:电气及自动化与控制系班级:
姓名:
学号:
哈尔滨工业大学
1, 实验目的
设计一个双胶合消色差透镜,并绘制图形,熟悉应用光学、机械学等相关知识,掌握光机系统设计的流程。
2. 结构特性分析
双胶合消色差物镜光学性能要求: 1) f / 6,焦距540mm ; 2) 视场角1.5°;
3) 镜片材料选择BAK1 和BK7; 4) 20 线对/mm 处MTF>0.4; 5) 工作波长:可见光
3. 初始结构设计
当物体处于无穷远时,P ∞=W ∞=0(孔径角消失),设计消色差系数C=0。
透镜的光焦度分配公式: )v 1
-v 1/(1-2
121)(v c =ψ 12-1ψ=ψ
通过应用光学相关知识,算的双胶合透镜的曲率半径依次为: R 1 =345.231 R 2 =-240.89
R 3 =-1003.25
两个透镜的初始厚度设计各为7mm ,透镜组到成像面的距离设计为近轴光线,由ZEMAX 计算出相应厚度调整值。
图1 双胶合透镜出结构设计
图 2 所示,视场90mm;如图 3 所示,视场角设定为1.5°,图 4 所示,入射光线为可见光;如所示为初始透镜结构图。
图2 设定视场
图3 设置光场
图4 设定入射光
4. 系统优化
设计焦距值为540mm,设定默认优化函数EFFL target 为540,权重为1,选择透镜的三个曲率半径以及相应的厚度作为优化参数,优化结果如图 5所示。
图5 优化结果参数
5. 像质分析
由图6所示,优化后最大的波像差大约为4个波长,尚未达到衍射极限,应为焦平面上的彗差影响所致;同时可见这个透镜相对与可见光的低阶色差比较小,满足设计要求。
图8优化后光线追迹曲线
如图 6所示,优化后存在彗差,由图中度数可得艾里斑半径为8.595μm,
而像差RMS半径为18.570μm,可见此优化结果基本达到设计要求,可以使用。
图7 优化后散点图
最后查看调制传递函数,由图10可见,在20线对处的MTF值为0.4835,符合设计要求。
综上所示,本次双胶合消色差透镜的设计符合达到题目的要求。
在20线对/mm处满足MTF>0.4
6.小结:
通过完成本次光机系统设计的大作业基本熟悉了应用光学、机械学等相关知识和光机系统设计的流程,但由于一些知识点掌握的不好也遇到了很多麻烦,大作业的设计也使本课程做到了加强基础、重视应用、开拓思维、培养能力、提高素质。