工程热力学第二章习题课详解
- 格式:pptx
- 大小:301.89 KB
- 文档页数:19
1. 热量和热力学能有什么区别?有什么联系?答:热量和热力学能是有明显区别的两个概念:热量指的是热力系通过界面与外界进行的热能交换量,是与热力过程有关的过程量。
热力系经历不同的过程与外界交换的热量是不同的;而热力学能指的是热力系内部大量微观粒子本身所具有的能量的总合,是与热力过程无关而与热力系所处的热力状态有关的状态量。
简言之,热量是热能的传输量,热力学能是能量?的储存量。
二者的联系可由热力学第一定律表达式d d q u p v δ=+ 看出;热量的传输除了可能引起做功或者消耗功外还会引起热力学能的变化。
2. 如果将能量方程写为 d d q u p v δ=+或d d q h v p δ=-那么它们的适用范围如何?答:二式均适用于任意工质组成的闭口系所进行的无摩擦的内部平衡过程。
因为 uh p v=-,()du d h pv dh pdv vdp =-=-- 对闭口系将 du 代入第一式得 q dh pdv vdp pdv δ=--+ 即 q dh vdp δ=-。
3. 能量方程 δq u p v =+d d (变大) 与焓的微分式 ()d d d h u pv =+(变大) 很相像,为什么热量 q 不是状态参数,而焓 h 是状态参数?答:尽管能量方程 qdu pdv δ=+ 与焓的微分式 ()d d d h u pv =+(变大)似乎相象,但两者的数学本质不同,前者不是全微分的形式,而后者是全微分的形式。
是否状态参数的数学检验就是,看该参数的循环积分是否为零。
对焓的微分式来说,其循环积分:()dh du d pv =+⎰⎰⎰因为0du =⎰,()0d pv =⎰所以0dh =⎰,因此焓是状态参数。
而对于能量方程来说,其循环积分:q du pdv δ=+⎰⎰⎰虽然: 0du =⎰ 但是: 0pdv ≠⎰ 所以: 0q δ≠⎰ 因此热量q 不是状态参数。
4. 用隔板将绝热刚性容器分成A 、B 两部分(图2-13),A 部分装有1 kg 气体,B 部分为高度真空。
第二章 习题解答 2-1()36296.82731700.2630 m /kg 0.510RT pv RT v p ⨯+=⇒===⨯ 311 3.802 kg/m 0.2630v ρ=== 2-2 (1)08314296.93 J/kg K 28R R M ===⋅ (2)30296.932730.8 m /kg 101325RT v p ⨯=== 311 1.25 kg/m 0.8v ρ=== (3)()306831450027364.27 m /kmol 0.110M R T V p ⨯+===⨯ 2-3储气罐内原有CO 2质量:()()3111101.32530103 6.558 kg 188.927345g p V m RT +⨯⨯===⨯+ 充气后的CO 2质量:()()3222101.32530010318.582 kg 188.927370g p V m RT +⨯⨯===⨯+ 充入的CO 2质量:2118.582 6.55812.024 kg m m m ∆=-=-=2-4()621212100.07 1.626 kg 287300p p V m m m RT -⨯⨯∆=-===⨯ 2-5010101325300388 kg/h 287273p V m RT ⨯===⨯ 3299.310300346 kg/h 287273pV m RT ⨯⨯===⨯2-6充入的空气在室外状态下体积:()3220.80.18.559.5 m 0.1pV V p -⨯∆=== 59.519.83 min 3τ== 2-7()()350011011010014310115.210 1.0210273101325300273 5.57310 m /hp V pVT pV V T T p T +⨯⨯⨯⨯=⇒==⨯+=⨯ 2-8 表压力:230009.807234 kPa 0.44g p π⨯==⨯ 101234335 kPa g p B p =+=+=(1)压力不变()2211227318582 K V T T V ==⨯+==309℃ (2)32232875820.5 m /kg 33510RT v p ⨯===⨯ (3)终态:32211 2 kg/m 0.5v ρ=== 初态:3122 4 kg/m ρρ==2-9(1)613.7100.057.693 kg 296.8300pV m RT ⨯⨯===⨯ (2)1222112116.5300361 K 13.7p V p V p T T T T p =⇒==⨯= 2-10111m RT V p = 6212126212250.361030318.6 kg 0.510293p V m p T m RT p T ⨯⨯⨯====⨯⨯2-11333440.15243.140.00185 m 332V R π⎛⎫==⨯⨯= ⎪⎝⎭ 537.6100.001852083 J/kg K 2.2510300pV R mT -⨯⨯===⋅⨯⨯ 该气体为氦气2-12 其他条件相同时,压力低、温度高所需体积大。
⼯程热⼒学第三版曾丹苓第⼆章习题及答案热⼒学第⼆章习题及答案⼀、是⾮题1、任意过程只要知道其始末状态即可确定过程与外界的热交换(x)、功交换(x)及系统热⼒学能的变化(√)。
2、简单可压缩系统任意过程中对外所作膨胀功均可⽤计算(√)。
pdV计算(x),⽤?dWpsurr3、流动功Δ(pdV)只有在开⼝系统中研究⽓体流动时才需要考虑(√)。
4、q和w是状态参数(x)⼆、选择题1、表达式δQ=dU+δW c 。
(a)适⽤于任意热⼒过程;(b)仅适⽤于准静态过程;(c)仅适⽤于闭⼝系统中的热⼒过程。
2、表达式δQ=dU+pdV适⽤ a1中的 a2。
(a1)闭⼝系;(b1)开⼝系;(c1)闭⼝及开⼝系;(a2)准静过程;(b2)任意热⼒过程;(c2)⾮准静过程。
3、任意准静或⾮准静过程中⽓体的膨胀功均可⽤ b 计算。
(a)pdV;(b)p surr dV;(c)d(pv)。
4、在正循环中?Qδa零,同时?Wδa零。
在逆循环中?Qδ c 零,且?Wδ c 零(a)⼤于;(b)等于;(c)⼩于。
三、习题2-1 0.5kg 的⽓体,在汽缸活塞机构中由初态p 1=0.7MPa 、V 1=0.02m 3,准静膨胀到V 2=0.04m 3。
试确定在下列各过程中⽓体完成的功量及⽐功量;(1)定压过程;(2) pV 2=常数。
解:(1)由准平衡过程体积变化功的表达式,当为定压过程时:W=p △V=0.7×106×0.02=14000 J=14 kJ ⽐功量 w= p △v=W/m=14000/0.5=28000 J=28 kJ(2)pV 2=0.7×106×0.022=280 J 〃m 3由准平衡过程体积变化功的表达式W=dV V pdv v v ??=04.002.0228021=7000 J=7 kJ⽐功量 w= p △v=W/m=7000/0.5=14000 J=14 kJ 2-2为了确定⾼压下稠密⽓体的性质,取2kg ⽓体在25MPa 下从350K 定压加热到370K ,⽓体初终状态下的容器分别为0.03 m3及0.035 m 3,加⼊⽓体的热量为700kJ ,试确定初终状态下的热⼒学能之差。
工程热力学(第五版)习题答案工程热力学(第五版)廉乐明 谭羽非等编 中国建筑工业出版社第二章 气体的热力性质2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。
解:(1)2N 的气体常数2883140==M R R =296.9)/(K kg J •(2)标准状态下2N 的比容和密度1013252739.296⨯==p RT v =0.8kg m /3v 1=ρ=1.253/m kg(3)MPa p 1.0=,500=t ℃时的摩尔容积MvMv =pT R 0=64.27kmol m/32-3.把CO2压送到容积3m3的储气罐里,起始表压力301=g p kPa ,终了表压力3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。
试求被压入的CO2的质量。
当地大气压B =101.325 kPa 。
解:热力系:储气罐。
应用理想气体状态方程。
压送前储气罐中CO2的质量1111RT v p m =压送后储气罐中CO2的质量2222RT v p m =根据题意容积体积不变;R =188.9Bp p g +=11 (1) Bp p g +=22(2) 27311+=t T (3) 27322+=t T(4)压入的CO2的质量)1122(21T p T p R v m m m -=-=(5)将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg2-5当外界为标准状态时,一鼓风机每小时可送300 m3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m3,问鼓风机送风量的质量改变多少? 解:同上题1000)273325.1013003.99(287300)1122(21⨯-=-=-=T p T p R v m m m =41.97kg2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1MPa 的空气3 m3,充入容积8.5 m3的储气罐内。
2016.09.27 工热第 02 章课后作业2-1一汽车在1h内消耗汽油34.1L,已知汽油的发热量为44000kJ/kg,汽油密度为750kg/m3。
测得该车通过车轮输出的功率为64kW,试求汽车通过排气、水箱散热等各种途径所放出的热量。
解:34.1 10 -3 750 44000 10 3 5P油==3.1258 10 W3600P散热=P油P车 3.1258 10 5 64 10 =3.1258 10 35W 点评:大家做题的时候,所有不标准的单位全部换算到国际制单位,不要出现 kJ/h 这种写法。
2-10 空气在压气机中被压缩,压缩前空气的参数是p1=0.1MPa、v1=0.845m3/kg;压缩后的参数是p2=0.8MPa、v2=0.175m3/kg。
设在压缩过程中 1kg 空气的热力学能增加 139.0kJ,同时向外放出热量 50kJ。
压气机每分钟产生压缩空气 10kg。
试求:(1)压缩过程中对1kg 空气作的功;(2)每产生 1kg 压缩空气所需的功(技术功);(3)带动此压气机要用多大功率的电动机?解:Q U w w Q U 50 103 139 10 3 1.89 10 5Jd pv p v v p d d w w t pv 1.89 10 5 0.8 10 6 0.1750.1 10 60.845 2.445 10 5JP C q w mt 2.445 10 5 4.075 10 4 W2-19 医用氧气袋中空时呈扁平状态,内部容积为零。
接在压力为 14Mpa、温度为 17℃的钢质氧气瓶上充气。
充气后氧气袋隆起,体积为 0.008m3,压力为 0.15MPa,由于充气过程很快,氧气袋与大气换热可以忽略不计,同时因充入氧气袋内的气体质量与钢瓶内的气体质量相比甚少,故可以认为钢瓶内氧气参数不变。
设氧气可以视为理想气体,其热力学能可表示为u=0.657{T}k kJ/kg,焓与温度的关系为h=0.917{T}k kJ/kg,求充入氧气袋内氧气的质量。
习题提示与答案 第一章 基本概念及定义1-1 试确定表压力为0.1 kPa 时U 形管压力计中的液柱高度差。
(1)液体为水,其密度为1 000 kg/m 3;(2)液体为酒精,其密度为789 kg/m 3。
提示:表压力数值等于U 形管压力计显示的液柱高度的底截面处液体单位面积上的力,g h p ρ∆=e 。
答案:(1) mm 10.19=∆水h (2) mm 12.92=∆酒精h 。
1-2 测量锅炉烟道中真空度时常用斜管压力计。
如图1-17所示,若α=30°,液柱长度l =200 mm ,且压力计中所用液体为煤油,其密度为800 kg/m 3 ,试求烟道中烟气的真空度为多少mmH 2O(4 ℃)。
提示:参照习题1-1的提示。
真空度正比于液柱的“高度”。
答案:()C 4O mmH 802v=p 。
1-3 在某高山实验室中,温度为20 ℃,重力加速度为976 cm/s 2,设某U 形管压力计中汞柱高度差为30 cm ,试求实际压差为多少mmHg(0 ℃)。
提示:描述压差的“汞柱高度”是规定状态温度t =0℃及重力加速度g =980.665cm/s 2下的汞柱高度。
答案:Δp =297.5 mmHg(0℃)。
1-4 某水塔高30 m ,该高度处大气压力为0.098 6 MPa ,若水的密度为1 000 kg/m 3 ,求地面上水管中水的压力为多少MPa 。
提示:地面处水管中水的压力为水塔上部大气压力和水塔中水的压力之和。
答案:Mpa 8 0.392=p 。
1-5 设地面附近空气的温度均相同,且空气为理想气体,试求空气压力随离地高度变化的关系。
又若地面大气压力为0.1MPa ,温度为20 ℃,求30 m 高处大气压力为多少MPa 。
提示: h g p p ρ-=0 →TR hg p p g d d -=,0p 为地面压力。
答案:MPa 65099.0=p 。
1-6 某烟囱高30 m ,其中烟气的平均密度为0.735 kg/m 3。
工程热力学(第五版)习题答案工程热力学(第五版)廉乐明 谭羽非等编第二章 气体的热力性质2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。
解:(1)2N 的气体常数2883140==M R R =296.9)/(K kg J ∙(2)标准状态下2N 的比容和密度1013252739.296⨯==p RT v =0.8kg m /3v 1=ρ=1.253/m kg(3)MPa p 1.0=,500=t ℃时的摩尔容积MvMv =pT R 0=64.27kmol m/32-3.把CO2压送到容积3m3的储气罐里,起始表压力301=g p kPa ,终了表压力3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。
试求被压入的CO2的质量。
当地大气压B =101.325 kPa 。
解:热力系:储气罐。
应用理想气体状态方程。
压送前储气罐中CO2的质量1111RT v p m =压送后储气罐中CO2的质量2222RT v p m =根据题意容积体积不变;R =188.9Bp p g +=11 (1) Bp p g +=22(2) 27311+=t T (3) 27322+=t T(4)压入的CO2的质量)1122(21T p T p R v m m m -=-=(5)将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg2-5当外界为标准状态时,一鼓风机每小时可送300 m3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m3,问鼓风机送风量的质量改变多少? 解:同上题1000)273325.1013003.99(287300)1122(21⨯-=-=-=T p T p R v m m m =41.97kg2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1MPa 的空气3 m3,充入容积8.5 m3的储气罐内。
工程热力学(第五版)习题答案2-3.把CO2压送到容积3m3的储气罐里,起始表压力301=g p kPa ,终了表压力3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。
试求被压入的CO2的质量。
当地大气压B =101.325 kPa 。
解:热力系:储气罐。
应用理想气体状态方程。
压送前储气罐中CO2的质量1111RT v p m =压送后储气罐中CO2的质量2222RT v p m =根据题意容积体积不变;R =188.9Bp p g +=11 (1) Bp p g +=22(2) 27311+=t T(3) 27322+=t T(4)压入的CO2的质量)1122(21T p T p R v m m m -=-= (5)将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg第二章 气体的热力性质2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。
解:(1)2N 的气体常数2883140==M R R =296.9)/(K kg J •(2)标准状态下2N 的比容和密度1013252739.296⨯==p RT v =0.8kg m /3v 1=ρ=1.253/m kg(3)MPa p 1.0=,500=t ℃时的摩尔容积MvMv =p TR 0=64.27kmol m /32-5当外界为标准状态时,一鼓风机每小时可送300 m3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m3,问鼓风机送风量的质量改变多少? 解:同上题1000)273325.1013003.99(287300)1122(21⨯-=-=-=T p T p R v m m m =41.97kg2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1MPa 的空气3 m3,充入容积8.5 m3的储气罐内。
工程热力学第三版课后习题答案工程热力学是工程学科中的重要分支,它研究能量转化和传递的原理及其应用。
在学习过程中,课后习题是巩固知识、提高能力的重要途径。
然而,由于工程热力学的内容较为复杂,课后习题往往令人感到困惑。
为了帮助学习者更好地掌握工程热力学,下面将给出《工程热力学第三版》课后习题的答案。
第一章:基本概念和能量转化原理1. 答案略。
2. 根据能量守恒定律,系统的内能增加等于吸收的热量减去对外做功的量。
因此,ΔU = Q - W。
3. 根据能量守恒定律,系统的内能增加等于吸收的热量减去对外做功的量。
因此,ΔU = Q - W。
4. 答案略。
5. 答案略。
第二章:气体的状态方程和热力学性质1. 对于理想气体,状态方程为PV = nRT,其中P为气体的压力,V为气体的体积,n为气体的摩尔数,R为气体常数,T为气体的温度。
2. 对于理想气体,内能只与温度有关,与体积和压力无关。
3. 对于理想气体,焓的变化等于吸收的热量。
4. 对于理想气体,熵的变化等于吸收的热量除以温度。
5. 答案略。
第三章:能量转化和热力学第一定律1. 根据热力学第一定律,系统的内能增加等于吸收的热量减去对外做功的量。
因此,ΔU = Q - W。
2. 根据热力学第一定律,系统的内能增加等于吸收的热量减去对外做功的量。
因此,ΔU = Q - W。
3. 根据热力学第一定律,系统的内能增加等于吸收的热量减去对外做功的量。
因此,ΔU = Q - W。
4. 答案略。
5. 答案略。
第四章:热力学第二定律和熵1. 答案略。
2. 答案略。
3. 答案略。
4. 答案略。
5. 答案略。
通过以上对《工程热力学第三版》课后习题的答案解析,相信读者对工程热力学的相关知识有了更深入的了解。
掌握热力学的基本概念和原理,对于工程学科的学习和实践具有重要意义。
希望读者能够通过课后习题的解答,提高自己的热力学能力,并将其应用于工程实践中,为社会发展做出贡献。
【例2-3】方程d pdv δμ=+与dq du w δ=+有何不同?答:前者适用于可逆过程,因为pdv 只能计算可逆过程的功;后者适用于任何过程。
【例2-4】焓的物理意义是什么?答:焓的物理意义可以理解如下:当工质流进系统时,带进系统的与热力状态有关的能量有内能μ与流动功pv ,而焓正是这两种能量的和。
因此,焓可以理解为工质流动时与外界传递的与其热力状态有关的总能量。
但当工质流不流动时,pv 不再是流动功,但焓作为状态参数仍然存在。
此时,它只能理解为三个状态参数的组合。
热力装置中,工质大都是在流动的过程中实现能量传递与转化的,故在热力计算中,焓比内能应用更广泛,焓的数据表(图)也更多。
【例2-5】说明热和功的区别与联系。
答:热和功都是能量的传递形式。
它们都是过程量,只有在过程进行时才有热和功。
热式由于温度不同引起的系统与环境之间的能量交换,而功是由于温差以外(只要是力差)的驱动力引起的系统与环境之间的能量交换。
在微观上,热量是物质分子无规则运动的结果,而功是物质分子有序运动的结果。
功在任何情况下可以完全转变为热,而热在不产生其他影响的情况下不可能完全完全转变为功。
【2-6】下列说法是否正确?(1) 机械能可完全转化为热能。
而热能却不能完全转化为机械能。
(2) 热机的热效率一定小于1。
(3) 循环功越大,热效率越高。
(4) 一切可逆热机的热效率都相等。
(5) 系统温度升高的过程一定是吸热过程。
(6) 系统经历不可逆过程后,熵一定增大。
(7) 系统吸热,其熵一定增大;系统放热,其熵一定减小。
(8) 熵产大于零的过程必为不可逆过程。
答:(1)对于单个过程而言,机械能可完全转化为热能,热能也能完全转化为机械能,例如定温膨胀过程。
对于循环来说,机械能可完全转化为热能,而热能却不能完全转化为机械能。
(2)热源相同时,卡诺循环的热效率是最高的,且小于1,所以一切惹急的热效率均小于1。
(3)循环热效率是循环功与吸热量之比,1211t q q w q q η-==,即热效率不仅与循环功有关,还与吸热量有关。