第1章 利息的基本概念0
- 格式:ppt
- 大小:230.50 KB
- 文档页数:22
2014年保险事务专业保险精算习题及答案第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。
2.(1)假设A(t)=100+10t, 试确定135,,i i i 。
(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。
3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。
4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。
5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。
(2)名义贴现率为每4年计息一次的年名义贴现率6%。
6.设m >1,按从大到小的次序排列 ()222x x v b q e p +与δ。
7.如果0.01t t δ=,求10 000元在第12年年末的积累值。
8.已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。
9.基金A 以每月计息一次的年名义利率12%积累,基金B 以利息强度6t tδ=积累,在时刻t (t=0),两笔基金存入的款项相同,试确定两基金金额相等的下一时刻。
10. 基金X 中的投资以利息强度0.010.1t t δ=+(0≤t ≤20), 基金Y 中的投资以年实际利率i 积累;现分别投资1元,则基金X 和基金Y 在第20年年末的积累值相等,求第3年年末基金Y 的积累值。
11. 某人1999年初借款3万元,按每年计息3次的年名义利率6%投资,到2004年末的积累值为( )万元。
A. 7.19B. 4.04C. 3.31D. 5.2112.甲向银行借款1万元,每年计息两次的名义利率为6%,甲第2年末还款4000元,则此次还款后所余本金部分为( )元。
苏教版六年级下册数学利息的计算方法
一、利息的基本概念
利息是借款人因使用借入货币而支付给贷款人的报酬。
它是借款人使用资金所付出的代价。
利息的计算基于本金、利率和时间三个因素。
二、利息的计算公式
利息的计算公式为:I = P ×r ×t
其中,I表示利息,P表示本金,r表示利率,t表示时间。
三、利息的种类
1. 简单利息:在一定时期内,只按本金计算利息,不计算复利。
2. 复利:在一定时期内,除按本金计算利息外,还要将已产生的利息并入本金再计利息。
四、实际利率的计算
实际利率是指考虑到复利影响后的年化收益率。
实际利率的计算公式为:
(1 + r/n)^n - 1
其中,r表示名义年利率,n表示每年计息次数。
五、税收与利息
利息收入需要缴纳个人所得税,税率根据国家规定执行。
在计算税后利息时,需要将利息收入乘以税率后再进行计算。
六、综合实例
假设某储户在银行存入本金10000元,年利率为3%,存款期限为1年,不考虑税收因素,计算简单利息和复利下的利息收益。
1. 简单利息:
I = P ×r ×t = 10000 ×3% ×1 = 300元。
2. 复利:
本金和利息的总和为:P ×(1 + r/n)^n = 10000 ×(1 + 3%/12)^12 ≈10309.32元。
税后利息收益为:10309.32 - 10000 = 309.32元。
《利息理论》习题详解 第一章 利息的基本概念1.解:(1))()0()(t a A t A =又()25A t t =+(0)5()2()1(0)55A A t a t t A ∴===++ (2)3(3)(2)11(92 2.318I A A =-=== (3)4(4)(3)0.178(3)A A i A -===2.解:15545(4)(3)(1)100(10.04)0.05 5.2nn n I i A I A i A i i -=∴==+=+⨯=3.证明: (1)123(1)()(2)(1)(3)(2)()(1)m m m m k I A m A m I A m A m I A m A m I A m k A m k ++++=+-=+-+=+-+=+-+-123123()()()()()m m m m k m m m n I I I I A m k A m n m k A n A m I I I I m n +++++++∴++++=+-=+-=++++<令有(2)()(1)()1(1)(1)n A n A n A n i A n A n --==---()1(1)()(1)(1)n n A n i A n A n i A n ∴+=-∴=+-4.证明: (1)112123123(1)(0)(0)(2)(0)(0)(0)(3)(0)(0)(0)(0)()(0)(0)(0)(0)(0)k nk i a a a i a a a i a i a a a i a i a i a n a a i a i a i a i ∴=+=++=+++=+++++第期的单利利率是又(0)1a =123123()1()(0)()1nna n i i i i a n a a n i i i i ∴=+++++∴-=-=++++(2)由于第5题结论成立,当取0m =时有12()(0)n A n A I I I -=+++5.解:(1)以单利积累计算1205003i =⨯1200.085003i ∴==⨯800(10.085)1120∴+⨯=(2)以复利积累计算3120500500(1)i +=+0.074337i ∴=5800(10.074337)1144.97∴+=6.解:设原始金额为(0)A 有(0)(10.1)(10.08)(10.06)1000A +++=解得 (0)794.1A =7.证明:设利率是i ,则n 个时期前的1元钱的当前值为(1)ni +,n 个时期后的1元钱的当前值为1(1)ni +又22211[(1)](1)20(1)(1)n n n ni i i i +-=++-≥++,当且仅当221(1)(1)1(1)n n n i i i +=⇒+=+,0i =即或者n=0时等号成立。
目 录第一篇 利息理论第1章 利息的基本概念第2章 年 金第3章 收益率第4章 债务偿还第5章 债券及其定价理论第二篇 利率期限结构与随机利率模型第6章 利率期限结构理论第7章 随机利率模型第三篇 金融衍生工具定价理论第8章 金融衍生工具介绍第9章 金融衍生工具定价理论第四篇 投资组合理论第10章 投资组合理论第11章 CAPM和APT附 录 2011年秋季中国精算师考试《金融数学》真题及详解第一篇 利息理论第1章 利息的基本概念单项选择题(以下各小题所给出的5个选项中,只有一项最符合题目要求,请将正确选项的代码填入括号内)1.已知在未来三年中,银行第一年按计息两次的名义年利率10%计息,第二年按计息四次的名义年利率12%计息,第三年的实际年利率为6.5%。
某人为了在第三年末得到一笔10000元的款项,第一年年初需要存入银行( )元。
[2011年秋季真题]A.7356B.7367C.7567D.7576E.7657【答案】C【解析】由名义年利率和实际年贴现因子的等价关系,可得:每年的贴现因子分别为,,。
因此,第三年末10000元的款项在第一年初的现值为:。
2.已知0时刻在基金A中投资1元到2t时的积累值为(3t+1)元,在基金B中投资1元到3t时的积累值为元。
假设在T时基金B的利息强度为基金A的利息强度的两倍,则0时刻在基金中B投资1000元在5T时的积累值为( )元。
[2011年秋季真题]A.27567B.27657C.27667D.27676E.27687【答案】C【解析】由题得,0时刻在基金A中投资1元到t时的积累值为(1.5t+1)元,即积累因子,利息强度在基金B中投资1元到3t时的积累值为元,因此在基金B中投资1元到t时的积累值为元,因此。
当时,即,解得,因此0时刻在基金中B投资1000元在5T时的积累值为元。
3.已知某基金的积累函数a(t)为三次函数,每三个月计息一次,第一季度每三个月计息一次的年名义利率为10%,第二季度每三个月计息一次的年名义利率为12%,第三季度每三个月计息一次的年名义利率为15.2%,则为( )。
第一章利息的基本概念1.)()0()(t a A t A =2.,11)0(=∴=b a 180)5(100=a 508)8()5(300=a a 3~5.用公式(1-4b)7~9.用公式(1-5)、(1-6)11.第三个月单利利息1%,复利利息23%)11(%)11(+−+12.1000)1)(1)(1(321=+++i i i k 14.nn nni i i i −−+⋅+>+++)1()1(2)1()1(16.用p.6公式17.用P.7最后两个公式19.用公式(1-26)20.(1)用公式(1-20);(2)用公式(1-23)22.用公式(1-29)23.(1)用公式(1-32);(2)用公式(1-34)及题6(2)结论24.用公式(1-32)25.44216%1(1)(110%)118%45%12i ⎛⎞+=++⎜⎟−⎝⎠⎛⎞−⎜⎟⎝⎠26.对于c)及d),,,c)中,,δn e n a =)(1111)1(−=−=+==∴v di e a δ∴v ln −=δd)中,δ−−=ed 128.∫=tdxx e t a 0)()(δ29.;4411⎟⎠⎞⎜⎝⎛+=+j i h e j =+131.(1)902天39.,两边同时求导,,类似t e tA dr +=∫10δ)1ln(0t dr tA +=∫∴δtt A +=11)(δ)(t B δ46.,10009200.081000d −==9202108.01(288)08.01(=×−+−x 第二章年金4.解:12010.087110.0870.08712160001000110.087121212A −−⎛⎞−+⎜⎟⎛⎞⎛⎞⎝⎠=+⋅++⎜⎟⎜⎟⎝⎠⎝⎠5.解:()()()()22211111111(*)nnn nn i a x i xiii xi a y i i −−−−+==⇒+=−−+−−===将代入(*)1d i d=−7.解:100010001000011718…()51218100010.0839169.84s −+=&&8.解:100.1100.15000s Ra =&&&&9.解:100.1100.155000s Ra =&&&&14.解:永续年金每年支付R112n n Ra R a i ⎛⎞=−⎜⎟⎝⎠17.解:解得即正常还款次数为95次0.0081500100000m a =95.6m ≈解得95950.0081500(10.008)100000a f −++=965.74f =19.解:()()()(2)(2)(2)1055222105100020001700011171150i i i s s s i i i ⎛⎞−+=⎜⎟⎜⎟⎝⎠∴+++−++=令105()1715f t t t t =+−+0(1.03)(1.035)(1.03)1.03 1.035 1.03f f f i −−=−−(1.032)0.003186f =−23.解:,()4660.0411 1.04i a i −−−++40.04114i ⎛⎞+=+⎜⎟⎝⎠24.解:R 1.1025R 1.205R 01423得4321.05 1.1025 1.05 1.1025 1.05 1.205 1.0511000R R R R ×+++=2212.147R =25.解:()()()1211111nn nn n a i n i i i a iii −−−−∂−++−++=∴=∂其中通过公式(2-76)得到0.1020.116.8670.10.002n n n n i a a a i==∂−∴==∂L n29.解:7777111v a v i a iKi−=∴=−=−类似地,111811181111v ia iL v ia iM=−=−=−=−,从而71118(1)(1)1v v v iK iL iM =∴−−=−Q L K M i KL+−=31.解:(2)(12)(2)(12)(12)1112nn nnnv v i i aaa id i−−⎛⎞===+⎜⎟⎝⎠&&,32.解:()500lim 110000tn i n a i −→∞+=&&半半,()()122111111i i i d d−+==+⇒+=−−半半()1211i d −=−−半()1120ti i −+∴=半半36.解:()()()2020201195.36n n anv a i n i Ia ii−−+−+=∴=&&37.解:110123……1该永续年金现值为1i11123……6541该永续年金现值为:()()24111(2)i i i i−−++++=+L ∴所求年金现值为:113(2)(2)i i i i i i++=++39.解:()01ntkt v dt f g h−=−−∫11lim lim n n n n v f a δδ→∞→∞−===1(1)ng kn v δ=−⋅40.解:011()1tdrr a t e t+∫==+1001()ln(1)1nnn a a t dt dt n t−===++∫∫42.解:后五年等比()()()551051111000105011k i s s i i i k+⎛⎞−⎜⎟+⎝⎠−+×++−&&&&43.解:120567……10983…414684468111v v v v a a a i i i i i i i vd−+−+−+=+++=−L L 45.解:2300.015251.0215KsKa−=+&&&&46.解:1010120180180300300 1.03 1.03i i i iia a a a a −−++=月月新月新月月11x110000047.解:011()1tdrr a t e t+∫==+231414212111(0)(1)()(1)84.51v t a t dt t dt t−=−=−=+∫∫48.解:11tn t n v v a a δδ−−==,()001111144010%t n nnt n v v a dt dt n n a δδδδ⎛⎞−−==−=−=×=⎜⎟⎝⎠∫∫49.解:1)()11t n nt tt t atv Ia i==−=∑∑&&第三章收益率2.解:234000 1.120000.93382×−×=3.解:237000100040005500(0)v v v v v −−++=110.090.11.09 1.1i v i v ====时,;时,令(0)0v v i=⇒及7.解:81.516.510(1)11.995%x x i i ⋅⋅=+⇒=8.解:11100.250.751(1)1(1)1(1)100000150002000011000kkkdtdtdtt k t k t k e ee+−+−+−∫∫∫+−=解得:0.14117k =10.解:1234567810911111i 2i 3i 4i 5i5i5i5i5i5i本金利息560.0450.0461000 1.04550.04s i is −⎛⎞++⎜⎟⎝⎠13.解:50000068000060000500055000A B I ===−=,,29.78%Ii A B I=≈+−14.解:()11144320000112%5000180001112%196104B i −⎛⎞⎡⎤⎛⎞=×++×+−×+−×=⎜⎟⎜⎟⎢⎥⎝⎠⎣⎦⎝⎠15.解:书后答案是,不知我对它对。
利息知识点
定义:利息是货币在一定时期内的使用费,指货币持有者(债权人)因贷出货币或货币资本而从借款人(债务人)手中获得的报酬。
包括存款利息、贷款利息和各种债券发生的利息。
计算公式:利息的计算公式为:利息=本金×利率×时间。
其中,本金是我们存入银行的钱,利息是取款时,银行多付的钱,利率是利息与本金的百分比。
利息理论:利息理论是金融数学的一个重要部分,主要研究的是利息的计算方法和利息的应用。
包括单利、复利、连续复利等不同的计算方式。
利率:利率是计算利息的一个重要参数,它表示的是单位本金在单位时间内产生的利息。
例如,如果你在银行里存了1000块钱,一年后,你的银行账户钱变成了1025元。
那么,多出来的25块钱就是利息,1000块就是你的本金,25÷1000 x 100%=2.5%。
这个2.5%就是利息率,也就是利率。