功能复合材料-3-压电复合材料
- 格式:ppt
- 大小:1.27 MB
- 文档页数:24
1-3型压电复合材料的制备与物性的研究压电复合材料是指由压电陶瓷材料和有机聚合物材料按照一定的连通方式组合在一起而构成的功能材料。
由于压电复合材料同时具备聚合物相和压电相的优点而被广泛的研究,其在医学超声探头和水声换能器中都有着重要的应用。
1-3型压电复合材料的连通方式为一维连通的压电陶瓷平行的镶嵌在三维连通的聚合物基体中,其声阻抗远小于压电陶瓷材料。
因而,用复合材料制作的换能器更容易与水和人体组织匹配。
制备1-3型压电复合材料的方法有切割-填充法、脱模法等,其中切割-填充法操作简单、成本低,并且可以根据需要控制复合材料中陶瓷柱的宽度与间隔,因此被广泛的用于复合材料的制备。
本论文利用切割-填充法制备了陶瓷相的体积比不同的1-3型PZT-Epoxy压电复合材料和陶瓷相的体积比为31%的1-3型BCZT-Epoxy压电复合材料,并对其超声物性展开了研究。
主要结果如下:(1)研究了陶瓷相的体积比对1-3型PZT43-Epoxy压电复合材料的压电常数、声阻抗等物性的影响,并探讨了材料的纵横比对复合材料的厚度机电耦合系数kt的影响。
实验制备了陶瓷相的体积比分别为25%、31%和40%的压电复合材料。
研究发现复合材料的声阻抗Z和压电常数d33都随陶瓷相的体积比的增加而增大,实验制备的复合材料的声阻抗的最小值和压电常数的最大值分别为10.2Mrayl、317pC/N。
与PZT43陶瓷材料相比,复合材料的厚度机电耦合系数kt 提高、介电常数εr降低,但是介电损耗tanδ增加、机械品质因子Qm比PZT43陶瓷降低了 2个数量级。
在-50℃-150℃的测试区间内,实验制备的压电复合材料的厚度机电耦合系数kt都具有较好的温度稳定性,并且kt随着复合材料样品的厚度的增加呈现先增加后减少的趋势,在纵横比约为3时kt取得最大值。
陶瓷相的体积比为31%的1-3型PZT43-Epoxy压电复合材料在厚度为1.4mm时的物性分别为:d3= 273pC/N,Z=11 Mrayl,kt=0.66,Q =4.1 εr= 410,ta =0.03。
功能复合材料一、课程说明课程编号:060113Z10课程名称:功能复合材料/functional composite Materials课程类别:学科专业课程学时/学分:24/1.5先修课程:大学物理、固体物理、材料化学与物理、材料科学基础、无机非金属材料适用专业:材料科学与工程专业本科生建议教材及参考书:(1)功能复合材料,张佐光,化学工业出版社,2004.9(2)殷景华,等.功能材料概论,哈尔滨:哈尔滨工业出版社,2002.7(2)贡长生,张克立.新型功能材料,北京:化学工业出版社,2001.1二、课程设置的目的、意义本课程主要介绍功能材料的研究现状和发展趋势,一些常见功能材料和复合材料的基本知识、种类、特点和应用,有助于学生拓宽专业知识面,同时加深对专业的认识和应用。
三、课程目标3.1课程对毕业生能力支撑本课程对应毕业要求2-2、4-1、5-1,具体内容如下:毕业要求2-2:掌握分析研究复杂工程问题所需的物理、化学等自然科学基础知识。
学会运用物理学和化学中的理论、观点和方法,识别、分析常见工程问题中涉及的物理和化学问题。
毕业要求4-1:根据工程应用的需要,能够根据材料工程技术研究的需要选择合适的实验手段对材料组成、组织结构、性能及其相互关系,对试验数据做出正确的分析,为材料的应用提出合理建议。
毕业要求5-1:系统地掌握材料科学与工程基础理论,掌握相关技术基础理论和现代分析方法在材料制备技术中的应用知识与应用技巧;系统地掌握材料工程领域主要制备技术,深入了解新材料与材料加工新技术的发展方向。
3.2课程教学目标通过本课程的教学,使学生在学习了材料科学基础、材料物理化学等课程的基础上进一步掌握不同类型功能材料及功能复合材料的合成与制备理论基础、制备方法、制备技术、工艺、设备等,把握材料科学与工程的新技术、新工艺。
使学生掌握材料科学研究工作者通常关注的成分-工艺-显微组织/结构-性能之间的内在联系,为将来研究开发新材料和材料制备新工艺奠定良好的理论基础。
压电复合材料压电复合材料是一种具有压电效应的复合材料,由于其在传感器、换能器等领域具有广泛的应用前景,因此备受关注。
压电复合材料由压电陶瓷和复合材料两部分组成,具有良好的压电性能和优异的力学性能。
本文将从压电复合材料的材料特性、制备工艺、应用领域等方面进行介绍。
首先,压电复合材料具有优异的压电性能。
压电效应是指在外加电场作用下,材料会产生机械应变;反之,在外加机械应力作用下,材料也会产生电荷。
这种双向的耦合效应使得压电复合材料在传感器、换能器等领域具有广泛的应用前景。
其次,压电复合材料还具有良好的力学性能,具有较高的强度和刚度,能够满足不同工程领域的需求。
其次,压电复合材料的制备工艺主要包括材料选择、成型工艺和制备工艺等几个方面。
首先,在材料选择上,需要选择具有良好压电性能的陶瓷材料,并与复合材料进行复合,以确保材料具有良好的力学性能。
其次,在成型工艺上,可以采用注塑成型、压延成型等工艺,以获得所需形状的压电复合材料。
最后,在制备工艺上,需要进行烧结、热压等工艺,以确保压电复合材料具有良好的压电性能和力学性能。
最后,压电复合材料在传感器、换能器等领域具有广泛的应用。
在传感器方面,压电复合材料可以用于压力传感器、加速度传感器等领域,具有灵敏度高、频率响应宽等优点。
在换能器方面,压电复合材料可以用于声波换能器、超声波换能器等领域,具有转换效率高、频率稳定等优点。
因此,压电复合材料在工程领域具有广泛的应用前景。
综上所述,压电复合材料具有优异的压电性能和良好的力学性能,其制备工艺简单可行,应用领域广泛。
随着科学技术的不断发展,相信压电复合材料将会在工程领域发挥越来越重要的作用。
压电复合材料摘 要: 从压电材料的压电效应入手, 介绍了压电材料的分类及结构组成。
针对不同压电材料在生产实践中的应用情况, 列出现阶段压电材料的制备技术。
综述了近年来压电材料的研究现状, 并系统介绍了压电材料在各个领域的应用和发展。
关键词:压电材料;压电效应;制备工艺;应用Abstract: This paper begins with the piezoelectric effect and introduces the classification and structure of piezoelectric materials. Considering the application of different piezoelectric materials in the production practice, preparative techniques of piezoelectric material in the current stage are listed. Research actuality of piezoelectric materials is summaried. Application and development of the piezoelectric materials in various Fields are also introduced systematically.Keywords: piezoelectric material; piezoelectric effect; preparative technique; application1.引言自20世纪出现压电材料以来, 因其独特性能,逐渐成为材料领域中的重要组成部分。
随着电子、导航和生物等高技术领域的发展, 人们对压电材料性能的要求越来越高。
目前, 研究和开发压电材料主要是从老材料中发掘新效应, 开拓新应用; 从控制材料组织和结构入手,运用新工艺制备各种新型压电材料。
压电复合材料
压电复合材料是有两种或多种材料复合而成的压电材料。
常见的压电复合材料为压电陶瓷和聚合物(例如聚偏氟乙烯活环氧树脂)的两相复合材料。
这种复合材料兼具压电陶瓷和聚合物的长处,具有很好的柔韧性和加工性能,并具有较低的密度、容易和空气、水、生物组织实现声阻抗匹配。
此外,压电复合材料还具有压电常数高的特点。
压电复合材料在医疗、传感、测量等领域有着广泛的应用。
优点
(1)横向振动很弱,串扰声压小;
(2)机械品质因数Q 值低:
(3)带宽大(80%~100%);
(4)机电耦合系数值大;
(5)灵敏度高,信噪比优于普通PZT 探头;
(6)在较大温度范围内特性稳定;
(7)可加工形状复杂的探头,仅需简易的切块和充填技术;(8)声速、声阻抗、相对绝缘常数及机电系数易于改变(因这些参数相关于陶瓷材料的体积率);
(9)易与声阻抗不同的材料匹配(从水到钢);
(10)可通过陶瓷体积率的变化,调节超声波灵敏度。
第28卷 第6期2006年6月武 汉 理 工 大 学 学 报JOURNA L OF WUHAN UNIVERSIT Y OF TECHN OLOG Y Vol.28 No.6 J un.2006123型压电复合材料的制备及性能研究徐玲芳,陈 文,周 静,李 君(武汉理工大学材料科学与工程学院,武汉430070)摘 要: 采用塑性聚合物方法制备了掺Nb 的PZT (PZT 25A )陶瓷纤维,且通过排列陶瓷纤维,灌注环氧树脂的方法制备了123型压电复合材料。
研究了陶瓷纤维的结构,分析了123型压电复合材料密度和剩余极化随纤维体积分数V c 的变化关系。
XRD 表明PZT 25A 陶瓷纤维为纯钙钛矿结构,SEM 显示纤维结构致密,直径为250μm 。
123型压电复合材料的密度和剩余极化随纤维体积分数V c 的变化呈近似线性关系。
V c 为85%时123压电复合材料的ε3、tan δ、k p 、k t 及Q m 分别为638、1.74%、0.31、0.61及3.27,与PZT 25A 陶瓷相比较,123型压电复合材料厚度方向振动增强,机械品质因素明显降低。
关键词: 123压电复合材料; 环氧树脂; 压电性能; 铁电性能中图分类号: TB 332文献标志码: A 文章编号:167124431(2006)0620001203Preparation and Properties of Fine Scale 123PiezoelectricCeramic/Polymer CompositesX U L i ng 2f ang ,CH EN Wen ,ZHO U Ji ng ,L I J un(School of Materials Science and Technology ,Wuhan University of Technology ,Wuhan 430070,China )Abstract : This paper reported the fabrication and properties of fine scale 123composites consisting of unidirectional ordered PZT 25A piezoelectric ceramic fibers with diameter of 250μm in a polymer matrix of epoxy resin E 244.SEM micrograph showed fine microstructures.And regular arrangement of fibers was observed.The composites with high ceramic volume fraction showed excellent ferroelectrics characteristics.As ceramic volume fraction was 85%,a high coupling coefficient (k t )of up to 0.61,a low mechanical quality factor (Q m )of 3.27and relative permittivity (ε3)of 638were detected.K ey w ords : piezoelectric composites ; epoxy resin ; piezoelectricity ; ferroelectricity收稿日期:2006202228.基金项目:国家自然科学基金(50402014).作者简介:徐玲芳(19772),女,博士.E 2mail :lindahbaa @123型压电复合材料具有优良的压电各向异性、高的机电耦合系数、大的压电常数且具有易与人体或水等轻负载及背衬匹配的声阻抗等特点,适合于医疗超声和无损检测换能器的要求[1]。
简介:由压电陶瓷相和聚合物相组成的压电复合材料是本世纪70 年代发展起来的一种多用途功能复合材料。
由于柔性聚合物相的加入, 压电复合材料的密度( Q) 、声阻抗( Z ) 、介电常数( E) 都降低了; 而复合材料的优值( d hgh) 和机电耦合系数( k t)却提高了, 这使压电复合材料能在水听器、生物医学成像、无损检测、传感器等诸多方面被广泛地用作换能器。
作为水听器应用的压电材料要求有较大的静水压压电常数。
现阶段研究较多的是0- 3 型和1- 3 型, 其他类型的压电复合材料也有相应的研究研究历史:1972 年, 日本的北山- 中村试制了PVDF- BaTiO3 的柔性复合材料, 开创了压电复合材料的历史。
70 年代中后期, 美国宾州大学材料实验室开始研究压电复合材料在水声中的应用, 并研制了1-3 型压电复合材料。
R E Newnham、D P Skinner、KA Klicker 、T R Gururaja 和H P Savakus 等人进行了大量的理论和实验研究工作, 测试了不同体积含量的压电复合材料的特性。
80 年代初以后, 美国加州斯坦福大学的B A Auld、Y Wang 等人建立了PZT 柱周期排列的1 -3 型压电复合材料的理论模型、并分析了其中的横向结构模。
美国纽约菲利浦实验室的W A Smith 等人也做了与上类似的工作。
与此同时, 以及随后几年, 许多国家也相继开展了压电复合材料的研究, 如澳大利亚的L W Chan 等、日本的Hiroshi Takeuchi 等。
一些研究工作者还利用压电复合材料制作了换能器, 如日本的Chitose Nakaya 等、英国的G Hayward 和R Hamilton 等人。
定义:在压电复合材料中,各相以0、1、2、3维的方式连通,如果复合材料由两相构成,则存在10种连通方式,即0-0、0-1、0-2、0-3、1-1、1-2、1-3、2-2、2-3、3-3型。
压电复合材料
压电复合材料是一种具有压电效应的材料,它能够在受到外力作用时产生电荷,同时也可以在施加电场时发生形变。
这种材料在诸多领域有着广泛的应用,比如声波传感器、超声波换能器、压电马达等。
本文将对压电复合材料的特性、制备方法以及应用领域进行介绍。
首先,压电复合材料的特性是非常重要的。
它具有良好的压电效应和机械性能,能够在外界作用下产生电荷并且具有较高的灵敏度。
此外,压电复合材料还具有优异的耐热性和耐腐蚀性,能够在恶劣环境下工作。
这些特性使得压电复合材料在各种工程领域中得到了广泛的应用。
其次,压电复合材料的制备方法有多种多样。
常见的制备方法包括溶液浸渍法、溶胶-凝胶法、热压法等。
其中,溶液浸渍法是将压电陶瓷颗粒浸渍在聚合物基体中,形成复合材料。
而溶胶-凝胶法则是通过溶胶和凝胶的转化过程来制备复合材料。
这些制备方法各有特点,可以根据具体需求选择合适的方法。
最后,压电复合材料在各个领域都有着重要的应用。
在声波传感器中,它可以
将声波转化为电信号,实现声音的检测和测量。
在超声波换能器中,它可以将电能和声能相互转换,广泛应用于医学超声诊断、清洗等领域。
此外,在压电马达中,它可以将电能转化为机械能,驱动设备运动。
这些应用领域的丰富多样性,充分展示了压电复合材料的重要性和价值。
总之,压电复合材料具有良好的特性和广泛的应用前景,对其进行深入研究和
开发具有重要意义。
希望本文对压电复合材料的特性、制备方法和应用领域有所帮助,也希望能够引起更多人对这一领域的关注和重视。