EDA课程设计----八位二进制全加器
- 格式:doc
- 大小:1.86 MB
- 文档页数:12
实验报告
系别电子信息工程系课程名称《EDA技术及其应用》实验
班级1班实验名称8位全加器设计
姓名×××实验时间××××年××月××日
学号××××××××指导教师×××
报告内容
一、实验目的和任务
学习使用QuartusⅡ9.0软件,熟悉EDA设计流程。
学习用图形输入法设计八位全加器,并对其进行分析和测试。
二、实验原理介绍
学习用四位全加器设计八位全加器,第1片74283(四位全加器)的进位输出信号应该和第2片74283的进位输入信号相连。
三、设计代码、仿真波形及分析
任务1:学习使用QuartusⅡ软件,熟悉EDA设计流程(主要为软件设计部分)。
步骤:
编辑输入图形、编译设计文件、仿真设计文件
仿真波形如下图所示:
任务2:硬件验证8位全加器的功能。
步骤:
引脚锁定、编译、下载、硬件测试
可选实验电路模式1;
键2、键1和键3、4分别负责输入两个加数A和B;且能在数码管1、2和3、4上显示;两个加数的和在数码管5、6显示;发光管D1显示进位输出。
编译下载后进行硬件测试;
实验室演示
四、实验结论与心得。
目录第1章概述 (1)第2章设计总体思路 (3)第3章单元电路设计 (5)3.1 八位二进制加法器 (5)3.2 译码显示电路 (8)第4章波形仿真结果分析 (11)第5章安装调试步骤 (12)第6章故障分析与改进 (13)第7章心得体会 (14)参考文献 (15)附录:整体电路图 (16)第1章概述随着EDA技术发展和应用领域的扩大与深入,EDA技术在电子信息、通讯、自动控制及计算机应用等领域的重要性突出。
随着技术市场与人才市场对EDA的需求不断提高,产品的市场需求和技术市场的要求也必然会反映到教学领域和科研领域中来。
因此学好EDA技术对我们有很大的益处。
EDA是电子设计自动化(Electronic Design Automation)的缩写,在20世纪90年代初从计算机辅助设计(CAD)、计算机辅助制造(CAM)、计算机辅助测试(CAT)和计算机辅助工程(CAE)的概念发展而来的。
EDA技术就是以计算机为工具,设计者在EDA软件平台上,用硬件描述语言HDL完成设计文件,然后由计算机自动地完成逻辑编译、化简、分割、综合、优化、布局、布线和仿真,直至对于特定目标芯片的适配编译、逻辑映射和编程下载等工作。
利用EDA工具,电子设计师可以从概念、算法、协议等开始设计电子系统,大量工作可以通过计算机完成,并可以将电子产品从电路设计、性能分析到设计出IC版图或PCB版图的整个过程的计算机上自动处理完成。
VHDL系统优势:(1)与其他的硬件描述语言相比,VHDL具有更强的行为描述能力,从而决定了他成为系统设计领域最佳的硬件描述语言。
强大的行为描述能力是避开具体的器件结构,从逻辑行为上描述和设计大规模电子系统的重要保证。
(2)VHDL丰富的仿真语句和库函数,使得在任何大系统的设计早期就能查验设计系统的功能可行性,随时可对设计进行仿真模拟。
(3)VHDL语句的行为描述能力和程序结构决定了他具有支持大规模设计的分解和已有设计的再利用功能。
《电子设计自动化》实验报告实验六实验名称:8位二进制全加法器的设计专业及班级:姓名:学号:一、实验目的:1.掌握VHDL语言的基本结构。
2.掌握全加器原理,能进行多位加法器的设计。
3.掌握VHDL语言的基本描述语句特别是元件例化语句的使用方法。
二、实验内容设计并实现一个由两个4位二进制并行加法器级联而成的8位二进制并行加法器。
要求编写4位加法器的VHDL语言程序,顶层8位加法器的设计要求利用元件例化语句进行设计,并利用开发工具软件对其进行编译和仿真,最后通过实验开发系统对其进行硬件验证。
三、实验步骤〔附源代码及仿真结果图:1.根据4位二进制加法器的原理,利用VHDL语言的基本描述语句编写出4位加法器的VHDL语言程序。
--ADDER4B.VHDLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY ADDER4B ISPORT< C4: IN STD_LOGIC;A4: IN STD_LOGIC_VECTOR<3 DOWNTO 0>;B4: IN STD_LOGIC_VECTOR<3 DOWNTO 0>;S4: OUT STD_LOGIC_VECTOR<3 DOWNTO 0>;CO4: OUT STD_LOGIC>;END ENTITY ADDER4B;ARCHITECTURE ART OF ADDER4B ISSIGNAL S5:STD_LOGIC_VECTOR<4 DOWNTO 0>;SIGNAL A5,B5:STD_LOGIC_VECTOR<4 DOWNTO 0>;BEGINA5<='0'& A4;B5<='0'& B4;S5<=A5+B5+C4;S4<=S5<3 DOWNTO 0>;CO4<=S5<4>;END ARCHITECTURE ART;2.对所设计的4位二进制加法器的VHDL程序进行编译,然后对其进行仿真,初步验证程序设计的正确性。
实验二:8位加法器的设计1.实验目的(1)学习Quartus Ⅱ/ISE Suite/ispLEVER软件的基本使用方法。
(2)学习GW48-CK或其他EDA实验开发系统的基本使用方法。
(3)了解VHDL程序的基本结构。
2.实验内容设计并调试好一个由两个4位二进制加法器级联而成的8位二进制并行加法器,并用GW48-CK或其他EDA实验开发系统(事先应选定拟采用的实验芯片的型号)进行硬件验证。
3.实验要求(1)画出系统的原理图,说明系统中各主要组成部分的功能。
(2)编写各个VHDL源程序。
(3)根据系统的功能,选好测试用例,画出测试输入信号波形或编号测试程序。
(4)根据选用的EDA实验开发装置编好用于硬件验证的管脚锁定表格或文件。
(5)记录系统仿真、逻辑综合及硬件验证结果。
(6)记录实验过程中出现的问题及解决办法。
4.实验条件(1)开发条件:Quartus Ⅱ 8.0。
(2)实验设备:GW48-CK实验开发系统。
(3)拟用芯片:EPM7128S-PL84。
5.实验设计1)系统原理图为了简化设计并便于显示,本加法器电路ADDER8B的设计分为两个层次,其中底层电路包括两个二进制加法器模块ADDER4B,再由这两个模块按照图2.1所示的原理图构成顶层电路ADDER8B。
ADDER4B图2.1 ADDER4B电路原理图A8[7..0]图 2.1 ADDER8B电路原理图2)VHDL程序加法器ADDER8B的底层和顶层电路均采用VHDL文本输入,有关VHDL程序如下。
ADDER4B的VHDL源程序:--ADDER4B.VHDLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY ADDER4B ISPORT(C4:IN STD_LOGIC;A4:IN STD_LOGIC_VECTOR(3 DOWNTO 0);B4:IN STD_LOGIC_VECTOR(3 DOWNTO 0);S4:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);CO4: OUT STD_LOGIC);END ENTITY ADDER4B;ARCHITECTURE ART OF ADDER4B ISSIGNAL S5:STD_LOGIC_VECTOR(4 DOWNTO 0);SIGNAL A5,B5:STD_LOGIC_VECTOR(4 DOWNTO 0);BEGINA5<='0'&A4;B5<='0'&B4;S5<=A5+B5+C4;S4<=S5(3 DOWNTO 0);CO4<=S5(4);END ARCHITECTURE ART;ADDER8B的VHDL源程序:--ADDER8B.VHDLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY ADDER8B ISPORT(C8: IN STD_LOGIC;A8: IN STD_LOGIC_VECTOR(7 DOWNTO 0);B8: IN STD_LOGIC_VECTOR(7 DOWNTO 0);S8: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);CO8: OUT STD_LOGIC );END ENTITY ADDER8B;ARCHITECTURE ART OF ADDER8B ISCOMPONENT ADDER4B ISPORT(C4: IN STD_LOGIC;A4: IN STD_LOGIC_VECTOR(3 DOWNTO 0);B4: IN STD_LOGIC_VECTOR(3 DOWNTO 0);S4: OUT STD_LOGIC_VECTOR(3 DOWNTO 0);CO4: OUT STD_LOGIC );END COMPONENT ADDER4B;SIGNAL SC: STD_LOGIC;BEGINU1:ADDER4B PORT MAP(C4=>C8,A4=>A8(3 DOWNTO 0),B4=>B8(3 DOWNTO 0),S4=>S8(3 DOWNTO 0),CO4=>SC);U2:ADDER4B PORT MAP(C4=>SC,A4=>A8(7 DOWNTO 4),B4=>B8(7 DOWNTO 4),S4=>S8(7 DOWNTO 4),CO4=>CO8);END ARCHITECTURE ART;CTRLS的VHDL程序--CTRLS.VHDLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY CTRLS ISPORT(CLK: IN STD_LOGIC;SEL: OUT STD_LOGIC_VECTOR(2 DOWNTO 0));END ENTITY CTRLS;ARCHITECTURE ART OF CTRLS ISSIGNAL CNT:STD_LOGIC_VECTOR(2 DOWNTO 0);BEGINPROCESS(CLK) ISBEGINIF CLK'EVENT AND CLK='1' THENIF CNT="111" THENCNT<="000";ELSECNT<=CNT+'1';END IF;END IF;END PROCESS;SEL<=CNT;END ARCHITECTURE ART;DISPLAY的VHDL程序--DISPLAY.VHDLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY DISPLAY ISPORT( SEL: IN STD_LOGIC_VECTOR(2 DOWNTO 0); -- DATAIN: IN STD_LOGIC_VECTOR(15 DOWNTO 0); DATAIN: IN STD_LOGIC_VECTOR(7 DOWNTO 0); COM: OUT STD_LOGIC_VECTOR(7 DOWNTO 0); --LEDW: OUT STD_LOGIC_VECTOR(2 DOWNTO 0); SEG: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)); END ENTITY DISPLAY;ARCHITECTURE ART OF DISPLAY ISSIGNAL DATA: STD_LOGIC_VECTOR(3 DOWNTO 0);-- SIGNAL DATA: STD_LOGIC_VECTOR(7 DOWNTO 0);BEGINP1:PROCESS(SEL) ISBEGINCASE SEL ISWHEN"000"=>COM<="11111110";WHEN"001"=>COM<="11111101";WHEN"010"=>COM<="11111011";WHEN"011"=>COM<="11110111";WHEN"100"=>COM<="11101111";WHEN"101"=>COM<="11011111";WHEN"110"=>COM<="10111111";WHEN"111"=>COM<="01111111";WHEN OTHERS=>COM<="11111111";END CASE;END PROCESS P1;--LEDW<=SEL;P2:PROCESS(SEL)BEGINCASE SEL ISWHEN"000"=>DATA<=DATAIN(3 DOWNTO 0);WHEN"001"=>DATA<=DATAIN(7 DOWNTO 4);-- WHEN"010"=>DATA<=DATAIN(11 DOWNTO 8);-- WHEN"011"=>DATA<=DATAIN(15 DOWNTO 12); WHEN OTHERS=>DATA<="0000";END CASE;CASE DATA ISWHEN"0000"=>SEG<="00111111";WHEN"0001"=>SEG<="00000110";WHEN"0010"=>SEG<="01011011";WHEN"0011"=>SEG<="01001111";WHEN"0100"=>SEG<="01100110";WHEN"0101"=>SEG<="01101101";WHEN"0110"=>SEG<="01111101";WHEN"0111"=>SEG<="00000111";WHEN"1000"=>SEG<="01111111";WHEN"1001"=>SEG<="01101111";WHEN OTHERS=>SEG<="00000000";END CASE;END PROCESS P2;END ARCHITECTURE ART;ADDER8B动态扫描的VHDL程序--ADDER8B.VHDLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY ADDER8B ISPORT(C8: IN STD_LOGIC;A8: IN STD_LOGIC_VECTOR(7 DOWNTO 0);B8: IN STD_LOGIC_VECTOR(7 DOWNTO 0);CLK:IN STD_LOGIC;-- S8: OUT STD_LOGIC_VECTOR(7 DOWNTO 0); S8: BUFFER STD_LOGIC_VECTOR(7 DOWNTO 0); CO8: OUT STD_LOGIC ;COM: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);SEG: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)); END ENTITY ADDER8B;ARCHITECTURE ART OF ADDER8B IS--COMPONENT ADDER4BCOMPONENT ADDER4B ISPORT(C4: IN STD_LOGIC;A4: IN STD_LOGIC_VECTOR(3 DOWNTO 0);B4: IN STD_LOGIC_VECTOR(3 DOWNTO 0);S4: OUT STD_LOGIC_VECTOR(3 DOWNTO 0);CO4: OUT STD_LOGIC );END COMPONENT ADDER4B;--COMPONENT CTRLSCOMPONENT CTRLS ISPORT(CLK: IN STD_LOGIC;SEL: OUT STD_LOGIC_VECTOR(2 DOWNTO 0)); END COMPONENT CTRLS;--COMPONENT DISPLAYCOMPONENT DISPLAY ISPORT(SEL: IN STD_LOGIC_VECTOR(2 DOWNTO 0);--DATAIN: IN STD_LOGIC_VECTOR(15 DOWNTO 0);DATAIN: IN STD_LOGIC_VECTOR(7 DOWNTO 0);COM: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);SEG: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));END COMPONENT DISPLAY;SIGNAL SC: STD_LOGIC;SIGNAL SB: STD_LOGIC_VECTOR(2 DOWNTO 0);BEGINU1:ADDER4B PORT MAP(C4=>C8,A4=>A8(3 DOWNTO 0),B4=>B8(3 DOWNTO 0),S4=>S8(3 DOWNTO 0),CO4=>SC);U2:ADDER4B PORT MAP(C4=>SC,A4=>A8(7 DOWNTO 4),B4=>B8(7 DOWNTO 4),S4=>S8(7 DOWNTO 4),CO4=>CO8);U3:CTRLS PORT MAP(CLK,SB);U4:DISPLAY PORT MAP(SB,S8(7 DOWNTO 0),COM(7 DOWNTO 0),SEG(7 DOWNTO 0));END ARCHITECTURE ART;3)仿真波形设置本设计包括两个层次,因此先进行底层的二进制加法器ADDER4B的仿真,再进行顶层ADDER8B的仿真。
8位全加器课程设计报告一、课程目标知识目标:1. 学生理解8位全加器的基本概念,掌握全加器的逻辑结构和工作原理;2. 学生掌握8位全加器的电路图绘制方法,能分析并解释全加器中各个部分的作用;3. 学生了解8位全加器在计算机运算中的应用,理解其重要性。
技能目标:1. 学生能够运用所学知识,独立完成8位全加器的电路图设计;2. 学生能够运用逻辑门电路,搭建8位全加器电路,并进行功能验证;3. 学生能够通过实际操作,提高解决问题的能力和团队协作能力。
情感态度价值观目标:1. 学生培养对电子技术课程的兴趣,激发学习热情;2. 学生在学习过程中,树立正确的科学态度,注重实践,勇于创新;3. 学生通过团队合作,培养沟通与协作能力,增强集体荣誉感。
课程性质分析:本课程为电子技术课程的一部分,重点在于让学生掌握8位全加器的原理和应用,培养实际操作能力。
学生特点分析:八年级学生具有一定的电子技术基础,对电路有一定的了解,但可能对全加器的理解尚浅,需要通过具体实例和操作来加深理解。
教学要求分析:本课程要求教师以理论与实践相结合的方式进行教学,注重培养学生的实际操作能力和团队协作能力。
在教学过程中,关注学生的个体差异,给予个性化指导,确保课程目标的实现。
通过本课程的学习,学生能够达到上述具体的学习成果。
二、教学内容1. 引言:介绍全加器在数字电路中的重要性,回顾一位全加器的基本原理,引出8位全加器的研究意义。
2. 理论知识:a. 8位全加器的定义和功能;b. 8位全加器的逻辑结构,包括加法器、进位发生器和进位传递部分;c. 8位全加器的真值表和逻辑表达式。
3. 实践操作:a. 8位全加器电路图的绘制;b. 利用集成电路芯片搭建8位全加器电路;c. 电路功能测试及故障排查。
4. 应用拓展:a. 8位全加器在计算机运算中的应用案例;b. 探讨8位全加器与其他数字电路模块的组合应用。
教学大纲安排:第一课时:引言及理论知识(1、2a)第二课时:理论知识(2b、2c)第三课时:实践操作(3a、3b)第四课时:实践操作(3c)第五课时:应用拓展(4a、4b)教材章节关联:本教学内容与教材中“第十章 数字电路及其应用”相关,涉及全加器部分的内容,与教材中的理论知识和实践操作相结合,确保学生能够系统地学习和掌握8位全加器的相关知识。
EDA技术8位二进制全加器设计实验报告班级:学号:姓名:时间:2013-12-06目录方法一:自己写程序 (2)一、设计原理 (2)二、实验程序 (3)程序1:半加器描述 (3)程序2:一位二进制全加器设计顶层描述 (3)程序3:D触发器描述 (4)程序4:8位二进制加法器顶层描述 (4)三、编译及仿真结果 (9)方法二:使用LPM创立元件 (10)一、打开MegaWizard Plug-In Manager (10)二、按照提示,一步步完成全加器/全减器的创建 (10)三、创建成功,生成CMP文件 (10)四、调用CMP文件,例化元件,生成可以使用的元件。
(10)实验总结: (12)摘要我在本实验中用顶层设计思想,用半加器、全加器、D触发器例化出八位全加器,完成了八路加法器、寄存器/锁存器的设计,上升沿触发,使用了6个数码管,分别用于显示输入A,输入B和输出,输出结果也用红灯进行了显示,溢出用绿灯表示。
输入A用0~7号开关完成,输入B用10~17号开关完成,进位C 用8号开关完成。
实验要求完成八路全加器的设计,十六进制输出,上升沿触发,低电平复位,输入输出用数码管显示,用红灯显示输出,绿灯显示溢出。
方法一:自己写程序一、设计原理先写一个半加器,然后用两个半加器例化出一个全加器,再用八个全加器例化出一个八位全加器。
原理如图。
关于上升沿触发,使用D触发器和八位全加器进行例化,D触发器接同一个时钟。
最终完成上升沿触发的八位全加器的设计。
二、实验程序程序1:半加器描述LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY h_adder ISPORT (A, B : IN STD_LOGIC;CO, SO : OUT STD_LOGIC );END ENTITY h_adder;ARCHITECTURE FH1 OF h_adder ISBEGINSO <= NOT (A XOR (NOT B));CO <= A AND B;END ARCHITECTURE FH1;程序2:一位二进制全加器设计顶层描述LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY f_adder ISPORT (AIN, BIN, CIN : IN STD_LOGIC;COUT, SUM : OUT STD_LOGIC );END ENTITY f_adder;ARCHITECTURE FD1 OF f_adder ISCOMPONENT h_adder ISPORT (A, B : IN STD_LOGIC;CO, SO : OUT STD_LOGIC );END COMPONENT;SIGNAL D, E, F : STD_LOGIC;3BEGINU1 : h_adder PORT MAP(A => AIN, B => BIN, CO => D, SO => E);U2 : h_adder PORT MAP(A => E, B => CIN, CO => F, SO => SUM);COUT <= D OR F;END ARCHITECTURE FD1;程序3:D触发器描述LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY DEF1 ISPORT (CLK : IN STD_LOGIC;D : IN STD_LOGIC;Q : OUT STD_LOGIC);END;ARCHITECTURE bhv OF DEF1 ISSIGNAL Q1 :STD_LOGIC;BEGINPROCESS (CLK)BEGINIF CLK'EVENT AND CLK = '1'THEN Q1<=D;END IF;Q<=Q1;END PROCESS;END bhv;程序4:8位二进制加法器顶层描述LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY f_adder8 ISPORT ( AIN, BIN : IN STD_LOGIC_VECTOR(7 DOWNTO 0);ASEGIN1,ASEGIN2, BSEGIN1,BSEGIN2 : BUFFER STD_LOGIC_VECTOR(6 DOWNTO 0);CIN : IN STD_LOGIC;CLK : IN STD_LOGIC;SUM : BUFFER STD_LOGIC_VECTOR(7 DOWNTO 0);SEG1 : BUFFER STD_LOGIC_VECTOR(6 DOWNTO 0);SEG2 : BUFFER STD_LOGIC_VECTOR(6 DOWNTO 0);COUT : OUT STD_LOGIC );END f_adder8;ARCHITECTURE ONE OF f_adder8 ISCOMPONENT f_adder ISPORT (AIN, BIN, CIN : IN STD_LOGIC;COUT, SUM : OUT STD_LOGIC );END COMPONENT;COMPONENT DEF1 ISPORT (CLK : IN STD_LOGIC;D : IN STD_LOGIC;Q : OUT STD_LOGIC);END COMPONENT;SIGNAL C,C1, C2, C3,C4,C5,C6,C7: STD_LOGIC;SIGNAL a : STD_LOGIC_VECTOR(7 DOWNTO 0);SIGNAL b : STD_LOGIC_VECTOR(7 DOWNTO 0);SIGNAL s : STD_LOGIC_VECTOR(7 DOWNTO 0);SIGNAL ss : STD_LOGIC_VECTOR(3 DOWNTO 0);SIGNAL sss : STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINU1 : f_adder PORT MAP(AIN => a(0), BIN => b(0), CIN => CIN, SUM => s(0),COUT => C1);U2 : f_adder PORT MAP(AIN => a(1), BIN => b(1), CIN => C1, SUM => s(1),COUT => C2);U3 : f_adder PORT MAP(AIN => a(2), BIN => b(2), CIN => C2, SUM => s(2),COUT => C3);U4 : f_adder PORT MAP(AIN => a(3), BIN => b(3), CIN => C3, SUM => s(3),COUT => C4);U5 : f_adder PORT MAP(AIN => a(4), BIN => b(4), CIN => C4, SUM => s(4),COUT => C5);U6 : f_adder PORT MAP(AIN => a(5), BIN => b(5), CIN => C5, SUM => s(5),COUT => C6);U7 : f_adder PORT MAP(AIN => a(6), BIN => b(6), CIN => C6, SUM => s(6),COUT => C7);U8 : f_adder PORT MAP(AIN => a(7), BIN => b(7), CIN => C7, SUM => s(7),COUT => C);U9 : DEF1 PORT MAP(Q=>a(0),D=>AIN(0),CLK=>CLK);U10 : DEF1 PORT MAP(Q=>a(1),D=>AIN(1),CLK=>CLK);U11 : DEF1 PORT MAP(Q=>a(2),D=>AIN(2),CLK=>CLK);U12 : DEF1 PORT MAP(Q=>a(3),D=>AIN(3),CLK=>CLK);U13 : DEF1 PORT MAP(Q=>a(4),D=>AIN(4),CLK=>CLK);U14 : DEF1 PORT MAP(Q=>a(5),D=>AIN(5),CLK=>CLK);U15 : DEF1 PORT MAP(Q=>a(6),D=>AIN(6),CLK=>CLK);U16 : DEF1 PORT MAP(Q=>a(7),D=>AIN(7),CLK=>CLK);5U17 : DEF1 PORT MAP(Q=>b(0),D=>BIN(0),CLK=>CLK); U18 : DEF1 PORT MAP(Q=>b(1),D=>BIN(1),CLK=>CLK); U19 : DEF1 PORT MAP(Q=>b(2),D=>BIN(2),CLK=>CLK); U20 : DEF1 PORT MAP(Q=>b(3),D=>BIN(3),CLK=>CLK); U21 : DEF1 PORT MAP(Q=>b(4),D=>BIN(4),CLK=>CLK); U22 : DEF1 PORT MAP(Q=>b(5),D=>BIN(5),CLK=>CLK); U23 : DEF1 PORT MAP(Q=>b(6),D=>BIN(6),CLK=>CLK); U24 : DEF1 PORT MAP(Q=>b(7),D=>BIN(7),CLK=>CLK);U25 : DEF1 PORT MAP(Q=>SUM(0),D=>s(0),CLK=>CLK); U26 : DEF1 PORT MAP(Q=>SUM(1),D=>s(1),CLK=>CLK); U27 : DEF1 PORT MAP(Q=>SUM(2),D=>s(2),CLK=>CLK); U28 : DEF1 PORT MAP(Q=>SUM(3),D=>s(3),CLK=>CLK); U29 : DEF1 PORT MAP(Q=>SUM(4),D=>s(4),CLK=>CLK); U30 : DEF1 PORT MAP(Q=>SUM(5),D=>s(5),CLK=>CLK); U31 : DEF1 PORT MAP(Q=>SUM(6),D=>s(6),CLK=>CLK); U32 : DEF1 PORT MAP(Q=>SUM(7),D=>s(7),CLK=>CLK);U33 : DEF1 PORT MAP(Q=>COUT,D=>C,CLK=>CLK);PROCESS(CLK,AIN,BIN)VARIABLE sSeg1 : STD_LOGIC_VECTOR(7 DOWNTO 0);VARIABLE sSeg2 : STD_LOGIC_VECTOR(7 DOWNTO 0);BEGINss(3 DOWNTO 0)<=SUM(3 DOWNTO 0);sss(3 DOWNTO 0)<=SUM(7 DOWNTO 4);sSeg1(7 DOWNTO 0):= AIN(7 DOWNTO 0);sSeg2(7 DOWNTO 0):= BIN(7 DOWNTO 0);CASE ss ISWHEN "0000" => SEG1 <= "";--0WHEN "0001" => SEG1 <= "";WHEN "0010" => SEG1 <="";WHEN "0011" => SEG1 <="";WHEN "0100" => SEG1 <="";WHEN "0101" => SEG1 <="";WHEN "0110" => SEG1 <="";WHEN "0111" => SEG1 <="";WHEN "1000" => SEG1 <="";WHEN "1001" => SEG1 <=""; --9WHEN "1010" => SEG1 <="";WHEN "1011" => SEG1 <="";WHEN "1100" => SEG1 <="";WHEN "1101" => SEG1 <="";WHEN "1110" => SEG1 <="";WHEN "1111" => SEG1 <="";WHEN OTHERS =>NULL;END CASE;CASE sss ISWHEN "0000" => SEG2 <= "";--0WHEN "0001" => SEG2 <= "";WHEN "0010" => SEG2 <="";WHEN "0011" => SEG2 <="";WHEN "0100" => SEG2 <="";WHEN "0101" => SEG2 <="";WHEN "0110" => SEG2 <="";WHEN "0111" => SEG2 <="";WHEN "1000" => SEG2 <="";WHEN "1001" => SEG2 <=""; --9WHEN "1010" => SEG2 <="";WHEN "1011" => SEG2 <="";WHEN "1100" => SEG2 <="";WHEN "1101" => SEG2 <="";WHEN "1110" => SEG2 <="";WHEN "1111" => SEG2 <="";WHEN OTHERS =>NULL;END CASE;CASE sSeg1(3 DOWNTO 0) ISWHEN "0000" => ASEGIN1 <= "";--0WHEN "0001" => ASEGIN1 <= "";WHEN "0010" => ASEGIN1 <="";WHEN "0011" => ASEGIN1 <="";WHEN "0100" => ASEGIN1 <="";WHEN "0101" => ASEGIN1 <="";WHEN "0110" => ASEGIN1 <="";WHEN "0111" => ASEGIN1<="";WHEN "1000" => ASEGIN1 <="";WHEN "1001" => ASEGIN1 <=""; --9WHEN "1010" => ASEGIN1 <="";WHEN "1011" => ASEGIN1 <="";WHEN "1100" => ASEGIN1 <="";WHEN "1101" => ASEGIN1 <="";WHEN "1110" => ASEGIN1 <="";WHEN "1111" => ASEGIN1 <="";WHEN OTHERS =>NULL;END CASE;7CASE sSeg1(7 DOWNTO 4) ISWHEN "0000" => ASEGIN2 <= "";--0 WHEN "0001" => ASEGIN2 <= "";WHEN "0010" => ASEGIN2 <="";WHEN "0011" => ASEGIN2 <="";WHEN "0100" => ASEGIN2 <="";WHEN "0101" => ASEGIN2 <="";WHEN "0110" => ASEGIN2 <="";WHEN "0111" => ASEGIN2<="";WHEN "1000" => ASEGIN2 <="";WHEN "1001" => ASEGIN2 <=""; --9 WHEN "1010" => ASEGIN2 <="";WHEN "1011" => ASEGIN2 <="";WHEN "1100" => ASEGIN2 <="";WHEN "1101" => ASEGIN2 <="";WHEN "1110" => ASEGIN2 <="";WHEN "1111" => ASEGIN2 <="";WHEN OTHERS =>NULL;END CASE;CASE sSeg2(3 DOWNTO 0) ISWHEN "0000" => BSEGIN1 <= "";--0 WHEN "0001" => BSEGIN1 <= "";WHEN "0010" => BSEGIN1 <="";WHEN "0011" => BSEGIN1 <="";WHEN "0100" => BSEGIN1 <="";WHEN "0101" => BSEGIN1 <="";WHEN "0110" => BSEGIN1 <="";WHEN "0111" => BSEGIN1<="";WHEN "1000" => BSEGIN1 <="";WHEN "1001" => BSEGIN1 <=""; --9 WHEN "1010" => BSEGIN1 <="";WHEN "1011" => BSEGIN1 <="";WHEN "1100" => BSEGIN1 <="";WHEN "1101" => BSEGIN1 <="";WHEN "1110" => BSEGIN1 <="";WHEN "1111" => BSEGIN1 <="";WHEN OTHERS =>NULL;END CASE;CASE sSeg2(7 DOWNTO 4) ISWHEN "0000" => BSEGIN2 <= "";--0 WHEN "0001" => BSEGIN2 <= "";WHEN "0010" => BSEGIN2 <="";WHEN "0011" => BSEGIN2 <="";WHEN "0100" => BSEGIN2 <="";WHEN "0101" => BSEGIN2 <="";WHEN "0110" => BSEGIN2 <="";WHEN "0111" => BSEGIN2<="";WHEN "1000" => BSEGIN2 <="";WHEN "1001" => BSEGIN2 <=""; --9WHEN "1010" => BSEGIN2 <="";WHEN "1011" => BSEGIN2 <="";WHEN "1100" => BSEGIN2 <="";WHEN "1101" => BSEGIN2 <="";WHEN "1110" => BSEGIN2 <="";WHEN "1111" => BSEGIN2 <="";WHEN OTHERS =>NULL;END CASE;END PROCESS;--U1 : f_adder PORT MAP(AIN => AIN(0), BIN => BIN(0), CIN => CIN, SUM => SUM(0), COUT => C1);--U2 : f_adder PORT MAP(AIN => AI N(1), BIN => BIN(1), CIN => C1, SUM => SUM(1), COUT => C2);--U3 : f_adder PORT MAP(AIN => AIN(2), BIN => BIN(2), CIN => C2, SUM => SUM(2), COUT => C3);--U4 : f_adder PORT MAP(AIN => AIN(3), BIN => BIN(3), CIN => C3, SUM => SUM(3), COUT => C4);--U5 : f_adder PORT MAP(AIN => AIN(4), BIN => BIN(4), CIN => C4, SUM => SUM(4), COUT => C5);--U6 : f_adder PORT MAP(AIN => AIN(5), BIN => BIN(5), CIN => C5, SUM => SUM(5), COUT => C6);--U7 : f_adder PORT MAP(AIN => AIN(6), BIN => BIN(6), CIN => C6, SUM => SUM(6), COUT => C7);--U8 : f_adder PORT MAP(AIN => AIN(7), BIN => BIN(7), CIN => C7, SUM => SUM(7), COUT => COUT);END ONE;三、编译及仿真结果程序波形仿真图9时间分析方法二:使用LPM创立元件一、打开MegaWizard Plug-In Manager二、按照提示,一步步完成全加器/全减器的创建三、创建成功,生成CMP文件四、调用CMP文件,例化元件,生成可以使用的元件。
实验2原理图输入法设计8位二进制全加器一、实验目的进一步熟悉QuartusⅡ的使用方法,学习时序仿真。
二、实验内容用V erilog HDL设计一个8位二进制全加器。
可以直接编写程序,也可以利用例化语句调用1位全加器构成8位全加器。
并进行编译、综合、适配和仿真。
三、实验步骤:1.为本项工程设计建立文件夹2.建立V erilog HDL文件3.存盘并建立工程4.全程编译5.时序仿真⑴建立矢量波形文件菜单操作:file—new图2-1 选择编辑矢量波形文件图2-2 波形编辑器⑵设置仿真时间长度菜单操作:Edit—end time图2-3 设置仿真时间长度⑶存盘图2-4 vwf激励波形文件存盘⑷将工程test2的端口信号选入波形编辑器中。
菜单操作:View—Utility Windows—Node Finder,并按图2-5 向波形编辑器拖入信号节点选项:Look:工程名;filer:Pins all⑸编辑输入波形单击输入信号a使之变成蓝色条,激活波形编辑器图2-6波形编辑器按图2-7设置输入信号a的周期在Tool Zoom 状态下调整波形图图2-8 设置好的激励波形图⑹菜单操作:Assignments –setting进入以下窗口:图2-9 选择仿真控制图2-10 仿真波形输出图2-11 选择全时域显示⑺仿真:Processing-Start Simulation 或。
注:该实验也可用硬件测试的方法来验证其设计的正确性。
四、实验报告详细叙述实验内容所要求的设计流程;给出仿真波形图;给时序分析情况。
五、参考程序module ADDER8B(A,B,CIN,COUT,DOUT);output [7:0] DOUT; output COUT;input [7:0] A,B; input CIN; wire [8:0] DA TA;assign DA TA =A+B+CIN;assign COUT=DA TA[8];assign DOUT=DA TA[7:0];endmodule。
信息科学与工程学院《EDA技术及应用》实验报告
专业班级姓名学号
实验时间指导老师成绩
实验一(八位全加器)
调试过程及结果:
【调试过程】
1)对输入程序进行编译
错误及改正:
①将的四位全加器存放在另一个工程后未将其添加至主程序
中,导致元件例化出错。
应将ADDER4.VHDL文件加入主工程。
②打印出错。
2)选择对应元件并设计管脚
3)进行下载,仿真
【结果】
1)先对4位全加器进行调试
输入:A K1-K4;B K5-K8 进位:DI_8
初始化:K1-K8拨档开关全部臵底,LED灯全灭
2)对8位全加器进行调制
输入:A K1-K8; B S1-S8 进位:D2_1
初始化:K1-K8拨档开关全部臵底,S1-S8全部按下。
LED灯全灭
错误及改正:
由于实验设备的状态问题,出现的结果和预计的结果存在差异同,可以对设备进行多次的下载和重新运行可以看到预测结果。
EDA设计说明书课程名称:EDA技术实用教程设计题目:八位二进制全加器院系:电子信息与电气工程学院学生姓名:学号:专业班级:指导教师:**2011 年6 月11. 设计目的熟悉利用QuartusⅡ的原理图输入法设计简单的组合电路,掌握层次化设计的方法,并通过一个八位全加器的设计把握利用EDA软件进行原理图输入方式的电子线路设计的详细流程。
2. 设计原理2.1 一位全加器的原理一位全加器可以用两个半加器及一个或门连接而成,因此需要首先完成半加器的设计。
在本设计中,将采用原理图输入法来完成设计。
一位全加器的设计步骤:①为本项工程设计建立文件夹;②输入设计项目和存盘;③将设计项目设计成可调用的元件;④设计全加器顶层文件;⑤将设计项日设置成工程和时序仿真。
2.2 八位全加器的原理一个八位全加器可以由八个一位全加器构成,加法器之间的进位可以用串行方式实现,即将低位加法器的进位输出cout 与相邻的高位加法器的最低进位输入信号cin 相接。
3. 设计方案与仿真3.1 一位全加器的设计与仿真全加器的实现是以半加器的实现为基础的,因此,要设计全加器应首先设计一个一位的半加器。
半加器的实现方案为:①为此项工程建立文件夹;②在基本元件库中,选中需要的元件,将元件(包含元件and2、not 、xnor 和输入输出引脚input、output)调入原理图编辑窗口中;③将己设计好的原理图文件存盘;④将所设计的半加器设置成可调用的元件。
用原理图输入法所设计的半加器原理图如图3-1所示,利用QuartusⅡ软件平台,根据图3-1所示电路,可生成一个半加器元件符号,如图3-2所示。
在半加器的基础上,为了建立全加器的顶层文件,必须再打开一个原理图编辑窗口,方法同上。
其中,所选择的元件包含半加器、或门和输入输出引脚,由此可得到如图3-3所示的全加器原理图;进而可生成个全加器元件符号,如图3-4所示。
图3-1 半加器原理图图3-2 半加器元件符号图3-3 全加器原理图图3-4 全加器元件符号按照一位全加器原理图连接电路,通过编译、仿真所得的波形图如图3-5所示:图3-5 一位全加器时序仿真波形根据图3-5可知,当输入信号ain 、bin 、cin 全是低电平时,输出信号sum 和cout 全是低电平;当输入信号ain 、bin 、cin 中有且只有一个为高电平时,输出信号sum 为高电平,输出信号cout 为低电平;当输入信号ain 、bin 、cin 中有两个为高电平时,输出信号sum 为低电平,输出信号cout 为高电平;当输入信号ain 、bin 、cin 全是高电平时,输出信号sum 和cout 全是高电平。
由此可以看出仿真结果与理论值相符合。
3.2 八位全加器的实现方案与仿真八位全加器的实现是以一位全加器的实现为基础的,它由八个一位全加器构成,加法器之间的进位可以用串行方式实现,即将低位加法器的进位输出cout 与相邻的高位加法器的最低进位输入信号cin 相接。
一位全加器的实现方案如3.1所述;八位全加器的原理图见图3-6。
根据其电路生成的可调用原件符号如图3-7所示。
图3-6 八位全加器原理图图3-7 八位全加器元件符号根据图3-6所示的原理图进行时序仿真的波形如下图3-8所示:图3-8 八位全加器时序仿真波形上图3-8中:1a 、2a 、3a 、4a 、5a 、6a 、7a 、8a 与1b 、2b 、3b 、4b 、5b 、6b 、7b 、8b 为八位全加器的输入信号,1s 、2s 、3s 、4s 、5s 、6s 、7s 、8s 为八位输出信号, cout 为最高位进位输出信号;根据波形图可得,当输入信号1a 、2a 、3a 、4a 、5a 、6a 、7a 、8a 输入7B, 1b 、2b 、3b 、4b 、5b 、6b 、7b 、8b 输入07时,输出为82,与原理图的设计要求完全相符。
3.3 七段译码器的实现方案与仿真为了将全加器的输出结果在七段数码管上显示出来,就需要用到七段译码器。
其VHDL 源程序代码详见附 6.1。
按照程序生成的七段译码器元件符号如图3-9所示:图3-9 七段译码器元件符号七段译码器的仿真结果如下图所示:图3-10 七段译码器仿真波形3.4 输出结果数码显示的实现方案与仿真为了将八位全加器的输出结果在实验箱上用数码管显示出来,需要将八位输出结果按高低位经过两个七段译码器分别对两个七段数码管生成可控的高低电平信号,驱动相应的数字点亮。
具体电路连接如下图所示:图3-11数码管显示译码电路在此电路的仿真过程中,主程序需要调用八位全加器的源程序和七段译码器的源程序,将两个原件的.vhd文件和.bsf文件拷到目前工程文件夹中即可。
七段译码器的VHDL 程序设计详见附 6.1,八位全加器VHDL源程序代码详见附 6.2。
按照图3-11电路图连接好电路,通过编译、仿真所得的波形图如图3-12所示。
图3-12 输出结果数码管显示仿真波形4. 八位全加器的引脚锁定与下载在本设计中,为了在实验系统上硬件验证八位全加器的功能,用十六个键分别输入八个加数和被加数,分别对应1a 、2a 、3a 、4a 、5a 、6a 、7a 、8a 和1b 、2b 、3b 、4b 、5b 、6b 、7b 、8b ,数码管显示相加结果,发光二极管显示进位cout ,编译下载后进行硬件测试。
改变1a 、2a 、3a 、4a 、5a 、6a 、7a 、8a 和1b 、2b 、3b 、4b 、5b 、6b 、7b 、8b 键入值,数码管会显示相应的结果,同时,发光二极管显示进位信息,有进位则亮。
其引脚锁定图如图4-1所示:图4-1 八位全加器的引脚锁定图5. 设计结论与总结根据八位全加器的硬件测试结果可知:其测试结果与软件仿真的时序波形是一一对应的,即完全符合八位全加器原理图设计的设计要求。
如果1a 、2a 、3a 、4a 、5a 、6a 、7a 、8a 输入加数为FF ,由1b 、2b 、3b 、4b 、5b 、6b 、7b 、8b 输入被加数为FF ,数码管输出为FE ,与此同时,发光二极管点亮。
通过本次设计,熟悉了利用Quartus Ⅱ的原理图输入法设计简单组合电路,掌握了层次化设计的方法,通过一个八位全加器的设计理解并掌握了利用EDA 软件进行原路图输入方式电子线路设计的详细流程。
6. 附录附 6.1 七段译码器VHDL源程序代码LIBRARY IEEE ;USE IEEE.STD_LOGIC_1164.ALL ;ENTITY DECL7S ISPORT ( A : IN STD_LOGIC_VECTOR(4 DOWNTO 1);LED7S : OUT STD_LOGIC_VECTOR(6 DOWNTO 0) ) ;END ;ARCHITECTURE one OF DECL7S ISBEGINPROCESS( A )BEGINCASE A ISWHEN "0000" => LED7S <= "0111111" ;WHEN "0001" => LED7S <= "0000110" ;WHEN "0010" => LED7S <= "1011011" ;WHEN "0011" => LED7S <= "1001111" ;WHEN "0100" => LED7S <= "1100110" ;WHEN "0101" => LED7S <= "1101101" ;WHEN "0110" => LED7S <= "1111101" ;WHEN "0111" => LED7S <= "0000111" ;WHEN "1000" => LED7S <= "1111111" ;WHEN "1001" => LED7S <= "1101111" ;WHEN "1010" => LED7S <= "1110111" ;WHEN "1011" => LED7S <= "1111100" ;WHEN "1100" => LED7S <= "0111001" ;WHEN "1101" => LED7S <= "1011110" ;WHEN "1110" => LED7S <= "1111001" ;WHEN "1111" => LED7S <= "1110001" ;WHEN OTHERS => NULL ;END CASE ;END PROCESS ;END ;附 6.2 八位全加器VHDL源程序代码LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.all;LIBRARY work;ENTITY f_8adder ISport(a1 : IN STD_LOGIC;b1 : IN STD_LOGIC;a2 : IN STD_LOGIC;b2 : IN STD_LOGIC;a3 : IN STD_LOGIC;b3 : IN STD_LOGIC;a4 : IN STD_LOGIC;b4 : IN STD_LOGIC;a5 : IN STD_LOGIC;b5 : IN STD_LOGIC;a6 : IN STD_LOGIC;b6 : IN STD_LOGIC;a7 : IN STD_LOGIC;b7 : IN STD_LOGIC;a8 : IN STD_LOGIC;b8 : IN STD_LOGIC;cout : OUT STD_LOGIC;s : OUT STD_LOGIC_VECTOR(8 downto 1));END f_8adder;ARCHITECTURE bdf_type OF f_8adder IScomponent f_1adderPORT(ain : IN STD_LOGIC;bin : IN STD_LOGIC;cin : IN STD_LOGIC;cout : OUT STD_LOGIC;sum : OUT STD_LOGIC);end component;signal s_ALTERA_SYNTHESIZED : STD_LOGIC_VECTOR(8 downto 1);signal SYNTHESIZED_WIRE_0 : STD_LOGIC;signal SYNTHESIZED_WIRE_1 : STD_LOGIC;signal SYNTHESIZED_WIRE_2 : STD_LOGIC;signal SYNTHESIZED_WIRE_3 : STD_LOGIC;signal SYNTHESIZED_WIRE_4 : STD_LOGIC;signal SYNTHESIZED_WIRE_5 : STD_LOGIC;signal SYNTHESIZED_WIRE_6 : STD_LOGIC; signal SYNTHESIZED_WIRE_7 : STD_LOGIC; BEGINSYNTHESIZED_WIRE_0 <= '0';b2v_inst : f_1adderPORT MAP(ain => a1,bin => b1,cin => SYNTHESIZED_WIRE_0,cout => SYNTHESIZED_WIRE_1,sum => s_ALTERA_SYNTHESIZED(1));b2v_inst1 : f_1adderPORT MAP(ain => a2,bin => b2,cin => SYNTHESIZED_WIRE_1,cout => SYNTHESIZED_WIRE_2,sum => s_ALTERA_SYNTHESIZED(2));b2v_inst2 : f_1adderPORT MAP(ain => a3,bin => b3,cin => SYNTHESIZED_WIRE_2,cout => SYNTHESIZED_WIRE_3,sum => s_ALTERA_SYNTHESIZED(3));b2v_inst3 : f_1adderPORT MAP(ain => a4,bin => b4,cin => SYNTHESIZED_WIRE_3,cout => SYNTHESIZED_WIRE_4,sum => s_ALTERA_SYNTHESIZED(4));b2v_inst4 : f_1adderPORT MAP(ain => a5,bin => b5,cin => SYNTHESIZED_WIRE_4,cout => SYNTHESIZED_WIRE_5,sum => s_ALTERA_SYNTHESIZED(5));b2v_inst5 : f_1adderPORT MAP(ain => a6,bin => b6,cin => SYNTHESIZED_WIRE_5,cout => SYNTHESIZED_WIRE_6,sum => s_ALTERA_SYNTHESIZED(6));b2v_inst6 : f_1adderPORT MAP(ain => a7,bin => b7,cin => SYNTHESIZED_WIRE_6,cout => SYNTHESIZED_WIRE_7,sum => s_ALTERA_SYNTHESIZED(7)); b2v_inst7 : f_1adderPORT MAP(ain => a8,bin => b8,cin => SYNTHESIZED_WIRE_7,cout => cout,sum => s_ALTERA_SYNTHESIZED(8)); s <= s_ALTERA_SYNTHESIZED;END;。