人教版九年级数学上典中点课后作业22.1.1二次函数(A)(含答案)
- 格式:doc
- 大小:62.50 KB
- 文档页数:7
一、选择题1.对于二次函数()()2140y ax a x a =+->,下列说法正确的是( )①抛物线与x 轴总有两个不同的交点;②对于任何满足条件的a ,该二次函数的图象都经过点()4,4和()0,0两点; ③若该函数图象的对称轴为直线0x x =,则必有012x <<; ④当2x ≥时,y 随x 的增大而增大,则102a <≤ A .①② B .②③ C .①④ D .③④ 2.二次函数(2)(3)y x x =--与x 轴交点的个数为( )A .1个B .2个C .3个D .4个3.二次函数y =ax 2+bx +c 的部分图象如图,图象过点A (3,0),对称轴为直线x =1,下列结论:①a ﹣b +c =0;②2a +b =0; ③4ac ﹣b 2>0;④a +b ≥am 2+bm (m 为实数);⑤3a +c >0.则其中正确的结论有( )A .2个B .3个C .4个D .5个4.设函数()()12y x x m =--,23y x=,若当1x =时,12y y =,则( ) A .当1x >时,12y y < B .当1x <时,12y y > C .当0.5x <时,12y y <D .当5x >时,12y y >5.函数221y x x =--的自变量x 的取值范围为全体实数,其中0x ≥部分的图象如图所示,对于此函数有下列结论:①函数图象关于y 轴对称; ②函数既有最大值,也有最小值; ③当1x <-时,y 随x 的增大而减小;④当21a -<<-时,关于x 的方程221x x a --=有4个实数根.其中正确的结论个数是( ) A .3B .2C .1D .06.如图为二次函数2y ax bx c =++的图象,此图象与x 轴的交点坐标分别为(-1,0)、(3,0).下列说法:0abc >;方程20ax bx c ++=的根为11x =-,23x =;当1x >时,y 随着x 的增大而增大;420a b c ++<.正确的个数是( )A .1B .2C .4D .37.已知关于x 的二次函数y=(x-h )2+3,当1≤x≤3时,函数有最小值2h ,则h 的值为( ) A .32B .32或2 C .32或6 D .32或2或6 8.如图所示,二次函数2y ax bx c =++的图象中,对称轴是直线1x =,王刚同学观察得出了下面四条信息:①1c >;②若()12,y ,()24,y 是抛物线上两点,则12y y >;③420a b c -+<;④方程20ax bx c ++=的两根是11x =-,23x =.其中说法正确的有( )A .①②③④B .②④C .①②④D .①③④9.若()14,A y -,()21,B y -,()30,C y 为二次函数2(2)3y x =-++的图象上的三点,则1y ,2y ,3y 的大小关系是( ) A .123y y y <=B .312y y y =<C .312 y y y <<D .123y y y =<10.已知抛物线229(0)y x mx m =-->的顶点M 关于坐标原点O 的对称点为M ',若点M '在这条抛物线上,则点M 的坐标为( ) A .(1,5)- B .(2,8)- C .(3,18)-D .(4,20)-11.函数()20y ax a a =-≠与()0y ax a a =-≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .12.把函数2(1)2y x =-+图象向右平移1个单位长度,平移后图象的函数解析式为( ) A .22y x =+B .2(1)1y x =-+C .2(2)2y x =-+D .2(1)3y x =-+13.已知二次函数2y ax bx c =++,当2x =时,该函数取最大值9.设该函数图象与 x 轴的一个交点的横坐标为1x ,若15x >则a 的取值范围是( ) A .3a 1-<<-B .2a 1-<<C .1a 0-<<D .2a 4<<14.对于二次函数2(2)7y x =---,下列说法正确的是( ) A .图象开口向上B .对称轴是直线2x =-C .当2x >时,y 随x 的增大而减小D .当2x <时,y 随x 的增大而减小15.在平面直角坐标系中,将函数22y x =-的图象先向右平移1个单位长度,再向上平移5个单位长度,得到图象的函数解析式是( ) A .22(1)5y x =-++ B .22(1)5y x =--+ C .22(1)5y x =-+-D .22(1)5y x =---第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题16.已知点A (4,y 1),B (2,y 2),C (-2,y 3)都在二次函数()22y x m =--的图象上,则y 1,y 2,y 3的大小关系是_______.17.已知二次函数y=x 2+x+m ,当x 取任意实数时,都有y >0,则m 的取值范围是________.18.若抛物线22y x x c =++与坐标轴有两个交点,则c 应满足的条件是_______. 19.二次函数2y ax bx c =++的部分对应值如下表:x-3 -2 -1 0 1 2 3 4 5 y125-3-4-3512利用二次函数的图象可知,当函数值0y >时,x 的取值范围是______.20.学校公益伞深受师生欢迎,如图为公益伞骨架结构,点A 为伞开关位置,图1完全收拢状态,图2中间状态,图3完全打开状态,撑伞整个过程中,63AB cm =,10CE cm =,2EF DE =,5BF DF =+,DF 长度保持不变,滑动环扣C 、D 相对距离会变化.(1)图1中,A 、G 重合,此时8AC cm =,则DF =______cm .(2)图3中,90EDC ∠=︒,因支架、伞布等作用,弹性钢丝BG 近似变形为抛物线2164y x bx c =-++一部分,则AC =______cm .21.抛物线23y x =先向上平移1个单位,再向左平移1个单位,所得的抛物线为________22.二次函数2y ax bx c =++自变量x 与函数值y 之间有下列关系:那么()ba b c a++的值为______. x … 3-2- 0 … y…31.68- 1.68-…23.在平面直角坐标系中,点A 是抛物线()24y a x k =-+与y 轴的交点,点B 是这条抛物线上的另一点,且//AB x 轴,则以AB 为边的等边三角形ABC 的周长为_____.24.若二次函数()221y x k =++的图象上有两点()(),,,03A m B n -,m ____________n .(填“>”,“=”或“<”)25.如图,抛物线2yx 与直线y x =交于O ,A 两点,将抛物线沿射线OA 方向平移42个单位.在整个平移过程中,抛物线与直线3x =交于点D ,则点D 经过的路程为______.26.若函数21y mx x =++的图象与x 轴只有一个公共点,则m 的值是_______.参考答案三、解答题27.如图,在平面直角坐标系中,点1A ,2A ,3A ,……,n A 和1C ,2C ,3C ,……,n C 均在抛物线2yx 上,点1B ,2B ,3B ,……,n B 在y 轴的正半轴上,若四边形111OA B C ,四边形1222B A B C ,四边形2333B A B C ,……,四边形1n n n n B A B C -都是正方形.(1)分别写出点1A ,1B ,1C 的坐标;(2)分别求出正方形2333B A B C 和正方形1n n n n B A B C -的面积.28.如图用长为30m 的篱笆围成一个一边靠墙的矩形养鸡场ABCD ,已知墙长14m ,设边AB 的长为xm ,矩形ABCD 的面积为ym 2.(1)求y 与x 之间的函数关系式,并求出函数y 的最大值. (2)当y =108时,求x 的值.29.已知抛物线23y ax bx =++经过点()3,0-,()2,5-.求此抛物线的解析式. 30.如图,已知抛物线2y x bx c =-++经过点(1,0)A -,(3,0)B ,与y 轴交于点C ,点P 是抛物线上一动点,连接PB ,PC .(1)求抛物线的解析式;(2)①如图1,当点P 在直线BC 上方时,过点P 作PD x ⊥轴于点D ,交直线BC 于点E .若2PE ED =,求PBC 的面积;②抛物线上是否存在一点P ,使PBC 是以BC 为底边的等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.参考答案。
数学人教版九年级上册22一、选择题1.二次函数y=2x〔x﹣3〕的二次项系数与一次项系数的和为〔〕A. 2B. ﹣2C. ﹣1D. ﹣42.关于y=ax2+bx+c,有以下四种说法,其中正确的选项是〔〕A. 当b=0时,二次函数是y=ax2+cB. 当c=0时,二次函数是y=ax2+bxC. 当a=0时,一次函数是y=bx+cD. 以上说法都不对3.关于x的函数y=〔m﹣1〕x m+〔3m+2〕x+1是二次函数,那么此解析式的一次项系数是〔〕A. ﹣1B. 8C. ﹣2D. 14.以下函数解析式中,一定为二次函数的是〔〕A. y=3x﹣1B. y=ax2+bx+cC. s=2t2﹣2t+1D. y=x2+5.二次函数y=3x2﹣2x﹣4的二次项系数与常数项的和是〔〕A. 1B. ﹣1C. 7D. ﹣66.x是实数,且满足〔x﹣2〕〔x﹣3〕=0,那么相应的函数y=x2+x+1的值为〔〕A. 13或3B. 7或3C. 3D. 13或7或37.圆的面积公式S=πR2中,S与R之间的关系是〔〕A. S是R的正比例函数B. S是R的一次函数C. S是R的二次函数D. 以上答案都不对8.函数:①y=3x﹣1;②y=3x2﹣1;③y=3x3+2x2;④y=2x2﹣2x+1,其中二次函数的个数为〔〕A. 1B. 2C. 3D. 4二、填空题9.两个变量x,y之间的关系式为y=〔a﹣2〕x2+〔b+2〕x﹣3.〔1〕当________时,x,y之间是二次函数关系;〔2〕当________时,x,y之间是一次函数关系.10.方程ax2+bx+cy=0〔a≠0、b、c为常数〕,请你经过变形把它写成你所熟习的一个函数表达式的方式.那么函数表达式为________,成立的条件是________,是________函数.11.函数y=2x2中,自变量x的取值范围是________,函数值y的取值范围是________.12.假定y=〔m2+m〕x m2﹣2m﹣1﹣x+3是关于x的二次函数,那么m=________.13.函数的图象是抛物线,那么m=________.14.函数y=〔m﹣2〕x2+mx﹣3〔m为常数〕.〔1〕当m________时,该函数为二次函数;〔2〕当m________时,该函数为一次函数.三、解答题15.y=〔m﹣2〕x +3x+6是二次函数,求m的值.16.函数y=〔9k2﹣1〕x2+2kx+3是关于x的二次函数,求不等式的解集.17.假定y=〔m﹣3〕是二次函数,〔1〕求m的值.〔2〕求出该图象上纵坐标为﹣6的点的坐标.18.函数y=〔m2﹣m〕x2+〔m﹣1〕x+2﹣2m.〔1〕假定这个函数是二次函数,求m的取值范围.〔2〕假定这个函数是一次函数,求m的值.〔3〕这个函数能够是正比例函数吗?为什么?19.y=〔m﹣1〕x 是关于x的二次函数,求m的值.20.依据下面的条件列出函数解析式,并判别列出的函数能否为二次函数:〔1〕假设两个数中,一个比另一个大5,那么,这两个数的乘积p是较大的数m的函数;〔2〕一个半径为10cm的圆上,挖掉4个大小相反的正方形孔,剩余的面积S〔cm2〕是方孔边长x 〔cm〕的函数;〔3〕有一块长为60m、宽为40m的矩形绿地,方案在它的周围相反的宽度内种植阔叶草,中间种郁金香,那么郁金香的种植面积S〔cm2〕是草坪宽度a〔m〕的函数.答案解析局部一、选择题1.【答案】D【考点】二次函数的定义【解析】【解答】解:y=2x〔x﹣3〕=2x2﹣6x.所以二次项系数与一次项系数的和=2+〔﹣6〕=﹣4.故答案为:D【剖析】首先将函数解析式整理成普通方式,然后直接得出二次项系数与一次项系数,再依据有理数加法法那么算出答案。
阶段强化专训一:二次函数的图象与系数的关系名师点金:二次函数y=ax2+bx+c(a≠0)的系数a,b,c与图象有着密切的关系:a的取值决定了开口方向和开口大小,a,b的取值影响对称轴的位置,c的取值决定了抛物线与y轴的交点位置,所以a,b,c这三个系数共同决定着抛物线的位置和大小,反之也可以根据二次函数图象情况确定a,b,c的系数符号或大小.a与图象的关系1.如图所示,四个函数的图象,分别对应的是①y=ax2;②y=bx2;③y=cx2;④y=dx2,则a,b,c,d的大小关系为()A.a>b>c>d B.a>b>d>cC.b>a>c>d D.b>a>d>c(第1题)(第2题)2.在抛物线y=mx2与抛物线y=nx2中,若-m>n>0,则开口向上的抛物线是________,开口较大的抛物线是________.3.抛物线y=ax2+c与抛物线y=bx2如图所示,则不等式-ax+b>0的解集是________.b与图象的关系(第4题)4.若二次函数y =3x 2+(b -3)x -4的图象如图所示,则b 的值是( ) A .-5 B .0 C .3 D .45.当抛物线y =x 2-nx +2的对称轴是y 轴时,n______0;当对称轴在y 轴左侧时,n______0;当对称轴在y 轴右侧时,n______0.(填“>”“<”或“=”)c 与图象的关系6.下列抛物线可能是y =ax 2+bx 的图象的是( )7.若将抛物线y =ax 2+bx +c -3向上平移4个单位长度后得到的图象如图所示,则c =________.(第7题)(第8题)a ,b 与图象的关系8.二次函数y =ax 2+bx +c 的图象如图所示,则下列说法中不正确的是( ) A .a >0 B .b <0 C .3a +b >0 D .b >-2a9.如果抛物线y =m 2x 2+(n +2)x -5的对称轴是x =-32,则(3m -2n)2-2n +43m 的值为________.a ,c 与图象的关系10.二次函数y =(3-m)x 2-x +n +5的图象如图所示,试求(m -3)2+n 2-|m +n|的值.(第10题)a ,b ,c 与图象的关系11.在二次函数y =ax 2+bx +c 中,a <0,b >0,c <0,则符合条件的图象是( )(第12题)12.已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,对称轴为直线x =-12,下列结论中正确的是( )A .abc >0B .a +c =0C .b =2aD .4a +c =2b阶段强化专训一1.A 点拨:本题运用数形结合思想,在二次函数y =ax 2的图象中,|a|越大,图象的开口越小,所以①,②中,a >b >0,③,④中,d <c <0,所以a >b >c >d ,故选A .2.y =nx 2;y =mx 2 3.x <ba4.C 点拨:∵二次函数y =3x 2+(b -3)x -4的图象关于y 轴对称,∴b -3=0,b =3.5.=;<;>6.D 点拨:抛物线y =ax 2+bx 的图象一定经过原点. 7.1 8.D9.15 点拨:由题意得-n +2m =-32,∴3m -2n =4,3m =2n +4,∴(3m -2n)2-2n +43m =42-1=15.10.解:由图象知⎩⎪⎨⎪⎧3-m >0,n +5<0,解得⎩⎪⎨⎪⎧m <3,n <-5.∴m -3<0,m +n <-2.∴(m -3)2+n 2-|m +n|=3-m -n +m +n =3.11.D12.D 点拨:由二次函数知a >0,c <0,由对称轴为直线x =-12,得-b 2a =-12,∴b=a >0,∴abc <0,∴A 选项不正确;∵抛物线经过(1,0),∴a +b +c =0,∴a +c =-b <0,故B 选项不正确;由b =a 知C 选项不正确;由对称轴为直线x =-12,且二次函数图象与x 轴一个交点为(1,0),知另一交点为(-2,0),∴4a -2b +c =0,∴4a +c =2b ,故D 选项不正确.。
22.1.7 用待定系数法求二次函数解析式课后作业:方案(A)一、教材题目:P42 T10、T11,P57 T610.根据二次函数图象上三个点的坐标,求出函数的解析式:(1)(-1,3),(1,3),(2,6);(2)(-1,-1),(0,-2),(1,1);(3)(-1,0),(3,0),(1,-5);(4)(1,2),(3,0),(-2,20).11.抛物线y =ax 2+bx +c 经过(-1,-22),(0,-8),(2,8)三点,求它的开口方向、对称轴和顶点.6.根据下列条件,分别确定二次函数的解析式:(1)抛物线y =ax 2+bx +c 过点(-3,2),(-1,-1),(1,3);(2)抛物线y =ax 2+bx +c 与x 轴的两交点的橫坐标分别是-12,32,与y 轴交点的纵坐标是-5.二、补充题目:来源于《典中点》2.已知二次函数的图象经过点(0,3),(-3,0),(2, -5),且与x 轴交于A ,B 两点. (1)试确定此二次函数的解析式;(2)判断点P(-2,3)是否在这个二次函数的图象上,如果在,请求出△PAB 的面积;如果不在,请说明理由.3.已知A(1,0),B(0,-1),C(-1,2),D (2,-1),E(4,2)五个点,抛物线y=a(x -1)2+k(a>0)经过其中三个点.(1)求证:C,E两点不可能同时在抛物线y=a(x-1)2+k(a>0)上.(2)点A在抛物线y=a(x-1)2+k(a>0)上吗?为什么?(3)求a和k的值.5.已知二次函数y=3x2-6x+5,求满足下列条件的二次函数的解析式:(1)两图象关于x轴对称;(2)两图象关于y轴对称;(3)两图象关于经过抛物线y =3x 2-6x +5的顶点且平行于x 轴的直线对称.6.(2015·宁波)已知抛物线y =(x -m)2-(x -m),其中m 是常数. (1)求证:不论m 为何值,该抛物线与x 轴一定有两个公共点. (2)若该抛物线的对称轴为直线x =52.①求该抛物线对应的函数解析式;②把该抛物线沿y 轴向上平移多少个单位长度后,得到的抛物线与x 轴只有一个公共点?答案一、教材10.解:(1)设函数解析式为y =ax 2+bx +c ,将(-1,3),(1,3),(2,6)代入解析式得⎩⎪⎨⎪⎧3=a -b +c ,3=a +b +c ,6=4a +2b +c ,解得⎩⎪⎨⎪⎧a =1,b =0,c =2.故此函数解析式为y =x 2+2. (2)设函数解析式为y =ax 2+bx +c ,将(-1,-1),(0,-2),(1,1)代入解析式得: ⎩⎪⎨⎪⎧-1=a -b +c ,-2=c ,1=a +b +c , 解得:⎩⎪⎨⎪⎧a =2,b =1,c =-2. 故此函数解析式为y =2x 2+x -2. (3)设函数解析式为y =ax 2+bx +c ,将(-1,0),(3,0),(1,-5)代入解析式得: ⎩⎪⎨⎪⎧0=a -b +c ,0=9a +3b +c ,-5=a +b +c , 解得:⎩⎪⎨⎪⎧a =54,b =-52,c =-154.故此函数解析式为y =54x 2-52x -154.(4)设函数解析式为y =ax 2+bx +c.将(1,2),(3,0),(-2,20)代入解析式得: ⎩⎪⎨⎪⎧2=a +b +c ,0=9a +3b +c ,20=4a -2b +c ,解得:⎩⎪⎨⎪⎧a =1,b =-5,c =6. 故此函数解析式为y =x 2-5x +6. *11.解:将三点坐标代入解析式得: ⎩⎪⎨⎪⎧-22=a -b +c ,-8=c ,8=4a +2b +c ,解得:⎩⎪⎨⎪⎧a =-2,b =12,c =-8. 故此抛物线解析式为y =-2x 2+12x -8,因为a <0,所以抛物线开口向下,对称轴为直线x =-b2a =3,顶点坐标为(3,10).6.解:(1)由题知,⎩⎪⎨⎪⎧9a -3b +c =2,a -b +c =-1,a +b +c =3,解得⎩⎪⎨⎪⎧a =78,b =2,c =18.所以二次函数的解析式为y =78x 2+2x +18.(2)由题知,⎩⎪⎨⎪⎧14a -12b +c =0,94a +32b +c =0,c =-5,解得⎩⎪⎨⎪⎧a =203,b =-203,c =-5.所以二次函数的解析式为y =203x 2-203x -5. 二、典中点2.解:(1)设二次函数的解析式为y =ax 2+bx +c. ∵二次函数的图象经过点(0,3),(-3,0),(2, -5), ∴⎩⎪⎨⎪⎧c =3,9a -3b +c =0,4a +2b +c =-5, 解得⎩⎪⎨⎪⎧a =-1,b =-2,c =3.∴二次函数的解析式为y =-x 2-2x +3.(2)∵-(-2)2-2×(-2)+3=-4+4+3=3, ∴点P(-2,3)在这个二次函数的图象上. 令-x 2-2x +3=0,解得x 1=-3,x 2=1, ∴与x 轴的交点坐标为:(-3,0),(1,0). ∴S △PAB =12×4×3=6.3.(1)证明:由题意可知,抛物线的对称轴为直线x =1. 若C(-1,2)在这个抛物线上,则C 点关于直线x =1的对称点为点(3,2).∴C ,E 两点不可能同时在抛物线y =a(x -1)2+k(a >0)上. (2)解:点A 不在抛物线上.理由:若点A(1,0)在抛物线y =a(x -1)2+k(a >0)上,则k =0.∴y =a(x -1)2. 易知B(0,-1),D(2,-1)都不在抛物线上. 由(1)知C ,E 两点不可能同时在抛物线上.∴与抛物线经过其中三个点矛盾.∴点A 不在抛物线上.(3)解:由(2)可知A 不在抛物线上.结合(1)的结论易知B ,D 一定在抛物线y =a(x -1)2+k(a >0)上.①若点C(-1,2)在此抛物线上,则⎩⎪⎨⎪⎧a +k =-1,4a +k =2,解得⎩⎪⎨⎪⎧a =1,k =-2.②若点E(4,2)在此抛物线上,则⎩⎪⎨⎪⎧a +k =-1,9a +k =2,解得⎩⎨⎧a =38,k =-118.综上可知,⎩⎪⎨⎪⎧a =1,k =-2,或⎩⎨⎧a =38,k =-118.5.解:y =3x 2-6x +5可化为y =3(x -1)2+2,据对称式可知:(1)两图象关于x 轴对称,所求解析式为y =-3(x -1)2-2,即y =-3x 2+6x -5.(2)两图象关于y 轴对称,所求解析式为 y =3(x +1)2+2,即y =3x 2+6x +5.(3)两图象关于经过抛物线y =3x 2-6x +5的顶点且平行于x 轴的直线对称,所求解析式为y =-3(x -1)2+2,即y =-3x 2+6x -1.6. (1)证明:∵y =(x -m)2-(x -m)=(x -m)(x -m -1),∴由y =0得x 1=m ,x 2=m +1.∵m≠m +1,∴抛物线与x 轴一定有两个公共点:(m ,0),(m +1,0).(2)解:①∵y =(x -m)(x -m -1)=x 2-(2m +1)x +m(m +1),∴抛物线的对称轴为直线x =--(2m +1)2.∴2m +12=52,解得m =2.∴抛物线对应的函数解析式为y =x 2-5x +6.②∵y =x 2-5x +6=⎝⎛⎭⎫x -522-14,∴该抛物线沿y 轴向上平移14个单位长度后,得到的抛物线与x 轴只有一个公共点.。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!22.1.1 二次函数知识点:1.二次函数的定义:一般地,形如的函数,叫做二次函数,其中x 是 ,c b a ,,分别是函数表达式的 , , 。
2.当0=a 时,这个函数还是二次函数吗?为什么?b 或c 能为0吗?一、选择题1.下列各式中表示二次函数的是( )A.112++=x x y B. 22x y -= C.221x xy -= D 22)1(x x y --=2.国家决定对某药品价格分两次降价,若设平均每次降价的百分比为x ,该药品的原价为36元,降价后的价格为y 元,则y 与x 之间的函数关系为( )A.)1(72x y -=B. )1(36x y -=C. )1(362x y -=D. 2)1(36x y -=3.下列函数中:(1))4)(1(2+-=x x y ; (2) 2)1(32+-=x y ;(3)1122++=xx y ; (4)22)3(x x y --= .不是二次函数的是( )A. (1)(2) B. (3)(4) C. (1)(3) D. (2)(4)4. 若3)(1222+-+=--x x m m y m m 是关于x 的二次函数,则( )A.31=-=m m 或B. 01≠-≠m m 且C. 1-=mD.3=m5.若函数⎩⎨⎧>≤+=)2(2)2(22x x x x y ,则当函数值8=y 时,自变量的值是( )A.6± B. 4 C. 46或± D.64-或6.适合解析式12+-=x y 的一对值是( )A. (1,0)B. (0,0)C. (0,-1)D. (1,1) 二.填空题1.二次函数4322+-=x x y ππ中,二次项系数是 ,一次项系数是 。
人教版数学九年级上册第22章二次函数221. 抛物线y =3x 2-3的顶点坐标是( )A .(0,3)B .(0,-3)C .(3,0)D .(-3,0)2. 二次函数y =-3x 2+7的图象是将( )A .抛物线y =3x 2向左平移7个单位失掉的B .抛物线y =-3x 2向左平移7个单位失掉的C .抛物线y =3x 2向上平移7个单位失掉的D .抛物线y =-3x 2向上平移7个单位失掉的3. 关于抛物线y =7x 2+5与和y =-7x 2,以下结论:①抛物线的外形相反;②抛物线的启齿方向相反;③抛物线的对称轴相反;④抛物线的顶点相反.其中,结论正确的有( )A .1个B .2个C .3个D .4个4. 二次函数y =ax 2+b 的图象如下图,那么以下判别正确的选项是( )A .a >0,b <0B .a >0,b >0C .a <0,b <0D .a <0,b >04. 抛物线y =14x 2+1具有如下性质:该抛物线上恣意一点到定点F(0,2)的距离与到x 轴的距离一直相等,如图,点M 的坐标为(3,3),P 是抛物线 y =14x 2+1上一个动点,那么△PMF 周长的最小值是( )A .3B .4C .5D .65. 把抛物线y =3x 2向右平移1个单位所得的抛物线解析式为( )A .y =3x 2+1B .y =3(x +1)2C .y =3x 2-1D .y =3(x -1)26. 将函数y =x 2的图象用以下方法平移后,所得的图象不经过点A(1,4)的方法是( )A .向左平移1个单位B .向右平移3个单位C .向上平移3个单位D .向下平移1个单位7. 抛物线y =-3x 2-2的启齿向 ,对称轴是 ,顶点坐标是 .8. 二次函数y =ax 2+k 的图象是一条抛物线 .它与抛物线y =ax 2的外形相反,只是顶点位置不同,它的对称轴为 轴,顶点坐标为 .9. 二次函数y =ax 2+k 的图象可由抛物线y =ax 2平移 失掉.当k >0时,抛物线y =ax 2向上平移 个单位得y =ax 2+k.当k <0时,抛物线y =ax 2向 平移|k|个单位得y =ax 2+k.10. 抛物线y =x 2+1的最小值为 .11. 假定点(x 1,y 1)和(x 2,y 2)在二次函数y =-13x 2-2的图象上,且x 1<x 2<0,那么y 1与y 2的大小关系为 .12. 抛物线y =ax 2+c 向下平移2个单位失掉抛物线y =-3x 2+2,那么a = ,c = .13. 抛物线y =13(x +2)2可以看成是由抛物线y =13x 2向 平移 个单位失掉的.14. 二次函数y =-2(x -3)2,当x 时,y 随x 的增大而增大,当x 时,y 的值随x 的增大而减小,当x 时,函数取最 值,最 值 y = .15.某抛物线和y =2x 2的图象外形相反,对称轴平行于y 轴,并且顶点坐标是(-1,0),那么此抛物线的函数关系式为 .16. 抛物线y =2xa 2-4a -3+(a -5)的顶点在x 轴下方.求a 的值,并写出当x <0时,y 随x 的增大而如何变化?17. 抛物线y =12(x -2)2. (1)画出此函数的图象;(2)指出该函数图象的启齿方向、对称轴和顶点坐标;(3)说明该函数图象与二次函数y =12x 2的图象之间的关系. 参考答案:1---6 BDDCD D7. 下 y 轴 (0,-2)8. y (0,k)9. k 下10. 111. y 1<y 212. -3 413. 左 214. <3 >3 =3 大 大 015. y =2(x +1)216. 解: ⎩⎪⎨⎪⎧ a 2-4a -3=2a -5<0,解得⎩⎪⎨⎪⎧ a =-1或a =5,a <5∴a =-1,∴抛物线解析式为y =2x 2-6.当x <0时,y 随x 的增大而减小.17. 解:(1)略 (2)启齿向上,对称轴是直线x =2,顶点坐标为(2,0) (3)该函数图象与函数y =12x 2图象外形相反,把抛物线y =12x 2向右平移2个单位失掉抛物线y =12(x -2)2.。
解码专训一:二次函数与几何的应用名师点金:二次函数与几何的应用非常广泛,解决这类问题的关键是要学会数形结合,一方面,抓住几何图形的特征,灵活运用点的坐标与线段长度之间的相互转化,从而解决与二次函数有关的问题;另一方面,已知二次函数解析式可求出特殊点的坐标,进而求出线段长度,从而解决有关几何问题.二次函数与三角形的综合1.如图,在直角坐标系xOy 中,△ABC 是等腰直角三角形,∠BAC =90°,A(1,0),B(0,2),抛物线y =12x 2+bx -2过点C.求抛物线的解析式.(第1题)二次函数与平行四边形的综合2.如图所示,在平面直角坐标系xOy 中,正方形OABC 的边长为2 cm ,点A ,C 分别在y 轴的负半轴和x 轴的正半轴上,抛物线y =ax 2+bx +c 经过点A ,B ,且12a +5c =0.(1)求抛物线的解析式.(2)如果点P 由点A 开始沿AB 边以2 cm /s 的速度向点B 移动,同时点Q 由点B 开始沿BC 边以1 cm /s 的速度向点C 移动.一点到达终点后另一点停止移动.①移动开始后第t s 时,设S =PQ 2(cm 2),试写出S 与t 之间的函数解析式,并写出t 的取值范围.②当S 取得最小值时,在抛物线上是否存在点R ,使得以P ,B ,Q ,R 为顶点的四边形是平行四边形?如果存在,求出R 点的坐标;如果不存在,请说明理由.(第2题)二次函数与矩形、菱形、正方形的综合(第3题)3.二次函数y =23x 2的图象如图所示,点A 0位于坐标原点,点A 1,A 2,A 3,…,A n 在y 轴的正半轴上,点B 1,B 2,B 3,…,B n ,在二次函数位于第一象限的图象上,点C 1,C 2,C 3,…,C n 在二次函数位于第二象限的图象上.四边形A 0B 1A 1C 1,四边形A 1B 2A 2C 2,四边形A 2B 3A 3C 3,…,四边形A n -1B n A n C n 都是菱形,∠A 0B 1A 1=∠A 1B 2A 2=∠A 2B 3A 3=…=∠A n -1B n A n =60°,则菱形A n -1B n A n C n 的周长为________.4.(中考·孝感)如图所示,已知正方形ABCD 的边长为1,点E 在边BC 上,若∠AEF =90°,且EF 交正方形外角的平分线CF 于点F.(1)图①中,若点E 是边BC 的中点,我们可以构造两个三角形全等来证明AE =EF ,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明).(2)如图②,若点E 在线段BC 上滑动(不与点B ,C 重合).①AE =EF 是否总成立?请给出证明.②在如图②所示的平面直角坐标系中,当点E 滑动到某处时,点F 恰好落在抛物线y =-x 2+x +1上,求此时点F 的坐标.(第4题)解码专训一(第1题)1.解:如图,过点C 作CD ⊥x 轴于点D ,则∠CAD +∠ACD =90°,又∠BAC =90°,∴∠OAB +∠CAD =90°,∴∠OAB =∠ACD.又∵AB =AC ,∠AOB =∠CDA =90°,∴△AOB ≌△CDA(AAS ),∴AO =CD =1,BO =AD =2,∴OD =OA +AD =3,∴C(3,1).∵点C(3,1)在抛物线y =12x 2+bx -2上,∴1=12×32+3b -2,解得b =-12.∴抛物线的解析式为y =12x 2-12x -2. 2.解:(1)根据题意知:A(0,-2),B(2,-2).∵A 点在抛物线上,∴c =-2.∵12a +5c =0,∴a =56. 由AB =2知抛物线的对称轴为直线x =1,∴-b 2a=1. ∴b =-53. ∴抛物线的解析式为y =56x 2-53x -2. (2)①由题意知:PB =(2-2t) cm ,BQ =t cm ,∴S =PQ 2=PB 2+BQ 2=(2-2t)2+t 2,即S =5t 2-8t +4(0≤t≤1).②假设存在点R ,可构成以P ,B ,R ,Q 为顶点的平行四边形.∵S =5t 2-8t +4=5⎝⎛⎭⎫t -452+45(0≤t≤1), ∴当t =45时,S 取得最小值45, 这时PB =0.4 cm ,BQ =0.8 cm ,易知P(1.6,-2),Q(2,-1.2).分情况讨论:(ⅰ)假设R 在BQ 的右边,这时QR 綊PB ,则点R 的横坐标为2.4,纵坐标为-1.2,即R(2.4,-1.2).将x =2.4代入y =56x 2-53x -2,得y =-1.2, ∴点R 在抛物线上,即这时存在R(2.4,-1.2)满足题意.(ⅱ)假设R在BQ的左边,PB的上方,这时PR綊QB,则点R的横坐标为1.6,纵坐标为-1.2,即R(1.6,-1.2).易验证点R不在抛物线y=56x2-53x-2上.(ⅲ)假设R在PB的下方,这时PR綊QB,则R(1.6,-2.8).易验证点R不在抛物线y=56x2-53x-2上.综上所述,存在点R(2.4,-1.2)满足题意.3.4n4.解:(1)如图①,取AB的中点G,连接EG.△AGE与△ECF全等.(第4题)(2)①若点E在线段BC上滑动,AE=EF总成立.证明:如图②,在AB上截取AM=EC.∵AB=BC,∴BM=BE,∴△MBE是等腰直角三角形,∴∠AME=180°-45°=135°.又∵CF平分正方形的外角,∴∠ECF=135°,∴∠AME=∠ECF.而∠BAE+∠AEB=∠CEF+∠AEB=90°,∴∠BAE=∠CEF,∴△AME≌△ECF,∴AE=EF.②如图②,过点F作FH⊥x轴于点H.由①知,FH=BE=CH.设BH=a,则FH=a-1,∴点F的坐标为(a,a-1).∵点F恰好落在抛物线y=-x2+x+1上,∴a-1=-a2+a+1,∴a2=2,a=2或-2 (负值不合题意,舍去),∴a-1=2-1.∴点F的坐标为(2,2-1).。
人教版九年级上册数学第二十二章二次函数含答案一、单选题(共15题,共计45分)1、将抛物线y=x2+2先向左平移1个单位,再向下平移3个单位,所得的抛物线解析式是()A.y=(x+1)2+1B.y=(x+1)2﹣1C.y=(x﹣1)2﹣1D.y=(x-1)2+12、将抛物线y=﹣(x+1)2+4平移,使平移后所得抛物线经过原点,那么平移的过程为()A.向下平移3个单位B.向上平移3个单位C.向左平移4个单位 D.向右平移4个单位3、若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx =5的解为( )A. B. C. D.4、如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x-m)2+n 的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为-3,则点D的横坐标最大值为( )A.-3B.1C.5D.85、已知二次函数向左平移h个单位,再向下平移k个单位,得到二次函数,则h和k的值分别为()A.1,3B.3,-4C.1,-3D.3,-36、如图,预防新冠肺炎疫情期间,某校在校门口用塑料膜围成-一个临时隔离区,隔离区一面靠长为5m的墙,隔离区分成两个区域,中间用塑料膜隔开。
已知整个隔离区塑料膜总长为12m,如果隔离区出入口的大小不计,并且隔离区靠墙的一面不能超过墙长。
小明认为:隔离区的最大面积为12m2;小亮认为:隔离区的面积可能为9m2。
则:()A.小明正确,小亮错误B.小明错误,小亮正确C.两人均正确 D.两人均错误7、已知二次函数y=2(x﹣3)2﹣2,下列说法:①其图象开口向上;②顶点坐标为(3,﹣2);③其图象与y轴的交点坐标为(0,﹣2);④当x≤3时,y 随x的增大而减小,其中正确的有()A.1个B.2个C.3个D.4个8、已知二次函数y=(2﹣a),在其图象对称轴的左侧,y随x的增大而减小,则a的值为()A. B.± C.﹣ D.09、已知二次函数的图象如图所示,有下列5个结论:①;② ;③ ;④ ;⑤ ,(的实数)其中正确的结论有()A.2个B.3个C.4个D.5个10、二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限11、抛物线的顶点坐标是()A.(–3,1)B.(3,1)C.(3,–1)D.(–3,–1)12、把抛物线y=x2+bx+c向左平移2个单位,再向上平移3个单位,得到抛物线y=x2-2x+1,则b,c的值分别是( )A.b=2,c=-2B.b=-2,c=-2C.b=-6,c=-6D.b=-6,c=613、某商场经营一种小商品,已知进购时单价是20元.调查发现:当销售单价是30元时,月销售量为240件,而销售单价每上涨1元,月销售量就减少10件,但每件商品的售价不能高于40元.当月销售利润最大时,销售单价为()A.35元B.36元C.37元D.36或37元14、已知关于n的函数s=an2+bn(n为自然数),当n=9时,s<0;当n=10时,s>0.则n取()时,s的值最小.A.3 B.4C.5D.615、如图,二次函数y=ax2+bx+c的图象与x轴的交点的横坐标分别为﹣1、3,则下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④对于任意x均有ax2﹣a+bx﹣b>0,其中正确的个数有()A.1B.2C.3D.4二、填空题(共10题,共计30分)16、二次函数,当x=________时,y有最________值,这个值是________.17、二次函数y=(x-2)2+3的顶点坐标是________.18、抛物线开口向下,且经过原点,则________.19、如图,二次函数y=ax2+bx+c的图象与轴交于A、B两点,顶点为C,其中点A、C坐标如图所示,则一元二次方程ax2+bx+c=0的根是________.20、小亮同学在探究一元二次方程ax2+bx+c=0的近似解时,填好了下面的表格:x 3.23 3.24 3.25 3.26ax2+bx+c ﹣0.06 ﹣0.02 0.03 0.09根据以上信息请你确定方程ax2+bx+c=0的一个解的范围是________ .21、如果关于x的二次函数y=x2﹣2x+k与x轴只有1个交点,则k=________22、关于x的一元二次方程x2-x-n=0无实数根,则抛物线y=x2-x-n的顶点在第________象限.23、二次函数y=x2+4x﹣3的最小值是________.24、如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加________ m.25、二次函数y=﹣2(x﹣3)2﹣8的最大值为________.三、解答题(共5题,共计25分)26、已知抛物线的顶点坐标是(3,-1),与y轴的交点是(0,-4),求这个二次函数的解析式.27、已知:二次函数,求证:无论m为任何实数,该二次函数的图象与x轴都在两个交点;28、如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,-),且与y 轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).(1)求抛物线的解析式及A,B两点的坐标;(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;(3)在以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE的解析式.29、如图,一块草地是长80 m,宽60 m的矩形,欲在中间修筑两条互相垂直的宽为xm的小路,这时草坪面积为y m2.求y与x的函数关系式,并写出自变量x的取值.30、m取何值时,函数是以x为自变量的二次函数?参考答案一、单选题(共15题,共计45分)1、B2、A4、D5、A6、B7、C8、C9、B10、D11、C12、D13、C14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
人教版九年级数学上册第二十二章22.1.1二次函数课后作业【提升版】学校:___________ 姓名:___________ 班级:__________1.下列函数中是二次函数的是( )A .211y x =-B .22(1)y x x =-+C .22101y x x =-+-D .25y ax x=+2.若函数2221mm y m m x --=(+) 是二次函数,那么m 的值是( )A .2B .1-或3C .3D .1-3.下面问题中,y 与x 满足的函数关系是二次函数的是( )①面积为210cm 的矩形中,矩形的长()cm y 与宽()cm x 的关系;②底面圆的半径为5cm 的圆柱中,侧面积()2cm y 与医柱的高()cm x 的关系;③某商品每件进价为80元,在某段时间内以每件x 元出售,可卖出()1002x -件.利润y (元)与每件进价x (元)的关系.A .①B .②C .③D .①③4.用一根长60cm 的铁丝围成一个矩形,那么矩形的面积2()y cm 与它的一边长()x cm 之间的函数关系式为( )A .230(030)y x x x =-<<B .230(030)y x x x =-+<…C .230(030)y x x x =-+<<D .230(030)y x x x =-+<…5.如图,分别在正方形ABCD 边AB AD 、上取E F 、点,并以AE AF 、的长分别作正方形.已知3,5DF BE ==.设正方形ABCD 的边长为x ,阴影部分的面积为y ,则y 与x 满足的函数关系是( )A .一次函数关系B .二次函数关系C .正比例函数关系D .反比例函数关系6.函数y=ax 2+bx+c(a ,b ,c 是常数)是二次函数的条件是( )A .a≠0,b≠0,c≠0B .a<0,b≠0,c≠0C .a>0,b≠0,c≠0D .a≠07.若函数224m m y mx ++=+是二次函数,则m 的值为( )A .0或1-B .0或1C .1-D .18.二次函数2y ax c =+的图象与22y x =的图象形状相同,开口方向相反,且经过点()1,1,则该二次函数的解析式为( )A .221y x =-B .223y x =+C .221y x =--D .223y x =-+9.下列函数:①2y x =-,②3y x =,③2y x =,④234y x x =++,y 是x 的反比例函数的个数有( ).A .1个B .2个C .3个D .4个10.若用(1)、(2)、(3)、(4)四幅图分别表示变量之间的关系,将下面的(a )、(b )、(c )、(d )对应的图象排序( )(1) (2) (3) (4)(a )面积为定值的矩形(矩形的相邻两边长的关系)(b )运动员推出去的铅球(铅球的高度与时间的关系)(c )一个弹簧不挂重物到逐渐挂重物(弹簧长度与所挂重物质量的关系)(d )某人从A 地到B 地后,停留一段时间,然后按原速返回(离开A 地的距离与时间的关系)A .(3)(4)(1)(2)B .(3)(2)(1)(4)C .(4)(3)(1)(2)D .(3)(4)(2)(1)11.如图,△ABC 中,AB =AC ,CD ⊥AB 于D ,BD =1,设BC =x ,AD =y ,当x 时,y 关于x 的函数解析式为 .12.方程28150x x -+=的两个根分别是一个直角三角形的两条边长,则直角三角形的第三条边长是 .13.如图,ABC V 和'''A B C 是边长分别为5和2的等边三角形,点B'、'C 、B 、C 都在直线l 上,ABC V 固定不动,将'''A B C 在直线l 上自左向右平移.开始时,点'C 与点B 重合,当点B'移动到与点C 重合时停止.设'''A B C 移动的距离为x ,两个三角形重叠部分的面积为y ,请写出y 与x 之间的函数关系式 .14.下列各式:()()()()2222212;2;;;12;2(1)2;2122y x y x y y y x x y x y x x x x x=+====-+=-+=+--;其中y 是x 的二次函数的有 (只填序号)15.某果园有100棵枇杷树.每棵平均产量为40千克,现准备多种一些枇杷树以提高产量,但是如果多种树,那么树与树之间的距离和每一棵树接受的阳光就会减少,根据实践经验,每多种一棵树,投产后果园中所有的枇杷树平均每棵就会减少产量0.25千克,若设增种x 棵枇杷树,投产后果园枇杷的总产量为y 千克,则y 与x 之间的函数关系式为 .16.抛物线24y ax ax =-经过原点,且与x 轴的正半轴交于点A ,顶点C 的坐标为()2,4-.(1)a 的值为 ;(2)若点P 为抛物线上一动点,其横坐标为t ,作PQ x ⊥轴,且点Q 位于一次函数4y x =-的图像上.当4t <时,PQ 的长度随t 的增大而增大,则t 的取值范围是 .17.矩形周长等于40,设矩形的一边长为x ,那么矩形面积S 与边长x 之间的函数关系式为 .18.观察下列图形规律,当1n =图形中的“•”的个数和“〇”个数和4,当2n =图形中的“•”的个数和“〇”个数和9,那么当图形中的“•”的个数和“〇”个数和为85时,n 的值为 .19.解方程:(1)210x x +-=(2)(3)26x x x +=+.20.如图,在平面直角坐标系中,ABC V 的三个顶点都边长为1的正方形网格的格点上.(1)写出A ,B ,C 的坐标_______;(2)画出ABC V 关于x 轴对称的111A B C △;(3)111A B C △的面积为_______.21.已知函数24(2)m m y m x +-=+是关于x 的二次函数.(1)求满足条件的m 的值;(2)m 为何值时,抛物线有最高点?求出这个最高点的坐标,这时,抛物线的增减性如何?22.已知点A 在直线3y x =-+上,将点A 向右平移3个单位长度得到点B ,设点A 的纵坐标为t ,线段AB 与抛物线223y x x =-++的交点个数为a .(1)当0a =时,t 的取值范围为________;(2)当1a =时,t 的取值范围为________;(3)当2a =时,t 的取值范围为________.同学们!已知线段AB 的长度为1,点(),2A m ,(),2B n ,则抛物线223y x x =-++与线段AB 的交点情况可自行探究.23.四边形OABC 是一张放在平面直角坐标系中的长方形纸片,点A 在x 轴上,点C 在y 轴上,将边BC 沿直线CE 折叠,使点B 落在OA 边上的点D 处.(1)CDE ∠的大小=______(度);(2)若3AE k =,4AD k =,用含k 的代数式表示DE ,BE ,OC .则DE =______,BE =______,OC =______.(3)在(2)的条件下,已知折痕CE 的长为E 的坐标.24.如图ABC V 是等边三角形,BD 是中线,延长BC 到E ,使CE CD =.(1)求E ∠的度数.(2)求证:DB DE =.25.启正中学某节社团课上,老师给每个学生发了一张腰长为20cm 的等腰直角三角形硬卡片(如图①,图②中,20cm AB AC ==,90A ∠=︒),让学生们利用它裁出一块长方形卡片制作明信片,要求裁出的长方形卡片的四个顶点都在三角形硬卡片的边上,并且裁出的长方形卡片的面积为275cm.(1)方方同学很快完成了自己的设计(如图①),并完成计算,请你求出他裁出的长方形卡片的长和宽;(2)圆圆同学看了方方同学的设计后提出了不同的设计方案,请利用图②大致画出草图,并求出圆圆同学裁出的长方形卡片的长和宽.1.C【分析】根据二次函数的定义判断即可.【详解】解:A. 211y x =-含有分式21x ,不是二次函数,不符合题意;B. 2221(1)y x x x =-=--+是一次函数,不是二次函数,不符合题意;C. 22101y x x =-+-是二次函数,符合题意;D. 25y ax x =+,若0a =,原函数为一次函数,不符合题意;故选:C .【点睛】本题主要考查了二次函数的判断,明确二次函数的定义是解题的关键.2.C【分析】根据二次函数的定义:()20y ax bx c a =++≠,进行计算即可.【详解】解:由题意得:221=2m m --,解得:1m =-或=3m ;又∵2+0m m ≠,解得:1m ≠-且0m ≠,∴=3m .故选C .【点睛】本题考查二次函数的定义.熟练掌握二次函数的定义是解题的关键.注意二次项系数不为零.3.C【分析】本题考查了二次函数的定义,正比例函数的定义,反比例函数的定义,根据题意正确列出函数解析式并进行判断是解题的关键.①根据矩形的面积公式计算,然后根据函数解析式判断是否是二次函数即可;②根据圆柱的侧面积公式计算,然后根据函数解析式判断是否是二次函数即可;③根据利润=(售价-进价)⨯销售量列出关系式,然后根据函数解析式判断是否是二次函数即可.【详解】解:①10,y x=y 是x 的反比例函数,故题不符合题意;2510,y x x ππ=⨯=②y 是x 的正比例函数,故②不符合题意;③()()228010021002800016022608000y x x x x x x x =--=--+=-+-,y 是x 的二次函数,故③符合题意;故选:C .4.C【分析】由矩形另一边长为周长的一半减去已知边长求得另一边的长,进一步根据矩形的面积等于相邻两边长的积列出关系式即可.【详解】由题意得:矩形的另一边长=60÷2-x=30-x ,矩形的面积y (cm 2)与它的一边长x (cm )之间的函数关系式为y=x (30-x )=-x 2+30x (0<x <30).故选:C .【点睛】此题考查根据实际问题列二次函数关系式,掌握矩形的边长与所给周长与另一边长的关系是解题的关键.5.A【分析】本题考查函数关系的识别,完全平方公式,列函数关系式,根据题意表示出AE 、AF 的长度,再结合阴影部分的面积等于以AE AF 、的长的正方形的面积之差可得416y x =-,理解题意,列出函数关系式是解决问题的关键.【详解】解:由题意可得:5AE AB BE x =-=-,3AF AD DF x =-=-,则阴影部分的面积为()()222235691025416y x x x x x x x =---=-+-+-=-,即:416y x =-,为一次函数,故选:A .6.D【详解】试题解析:根据二次函数定义中对常数a ,b ,c 的要求,只要a≠0,b ,c 可以是任意实数,故选D .7.C【分析】利用二次函数定义可得222m m ++=,且0m ≠,再解即可.【详解】解:由题意得:222m m ++=,且0m ≠,解得:1m =-或0m =且0m ≠,故1m =-,故选:C .【点睛】本题考查了二次函数的定义,一般地,我们把形如²y ax bx c =++(其中a ,b ,c 是常数,0a ≠)的函数叫做二次函数,其中a 称为二次项系数,b 为一次项系数,c 为常数项.8.D【分析】根据二次函数y=ax 2+c 的图象与y=2x 2的图象形状相同,开口方向相反,得到a=−2,然后把点(1,1)代入y=−2x 2+c 求出对应的c 的值,从而可得到抛物线解析式.【详解】∵二次函数y=ax 2+c 的图象与y=2x 2的图象形状相同,开口方向相反,∴a=−2,∴二次函数是y=−2x 2+c ,∵二次函数y=ax 2+c 经过点(1,1),∴1=−2+c ,∴c=3,∴抛该二次函数的解析式为y=−2x 2+3;故选D.【点睛】此题考查二次函数的性质,解题关键在于利用待定系数法求解.9.A【分析】根据反比例函数、一次函数、二次函数的性质,对各个选项逐个分析,即可得到答案.【详解】2y x =-是一次函数,故选项①不符合题意;3y x=是反比例函数,故选项②符合题意;2y x =是二次函数,故选项③不符合题意;234y x x =++是二次函数,故选项④不符合题意;∴y 是x 的反比例函数的个数有:1个故选:A .【点睛】本题考查了反比例函数、二次函数、一次函数的知识;解题的关键是熟练掌握反比例函数、二次函数、一次函数的定义,从而完成求解.10.A【分析】根据每个类别的数量关系,判断函数图象的变化规律,选择正确结论.【详解】解:根据题意分析可得:(a )面积为定值的矩形,其相邻两边长的关系为反比例关系,对应图象为(3);(b )运动员推出去的铅球,铅球的高度随时间先增大再减小,对应图象为(4);(c )一个弹簧不挂重物到逐渐挂重物,弹簧长度随所挂重物质量增大而增大;对应图象为(1);(d )某人从A 地到B 地后,停留一段时间,然后按原速返回,对应图象为(2).故选:A .【点睛】本题考查了函数图象,主要利用了反比例函数图象,抛物线,一次函数图象,分析得到各小题中的函数关系是解题的关键.11.(2112y x x =-【分析】由BD=1,AD=y ,可得AB=AC=y+1,在Rt △ACD 中,CD 2=AC 2-AD 2=2y+1,在Rt △BCD 中,CD 2=BC 2-BD 2=x 2-1,即得2y+1=x 2-1,可得答案.【详解】解:∵BD=1,AD=y , ∴AB=y+1, ∵AB=AC , ∴AC=y+1,在Rt △ACD 中,CD 2=AC 2-AD 2=(y+1)2-y 2=2y+1, 在Rt △BCD 中,CD 2=BC 2-BD 2=x 2-12=x 2-1, ∴2y+1=x 2-1, ∴2112y x =-.故答案为:(2112y x x =-.【点睛】本题考查勾股定理的应用,解题的关键是将CD 2作等量,列出y 与x 的关系式.124【分析】本题考查了解一元二次方程和勾股定理,能求出符合的所有情况是解此题的关键.先求出方程的解,再分为两种情况,根据勾股定理求出第三边即可.【详解】解:解方程28150x x -+=得:13x =或25x =,即直角三角形的两边为3或5,当长为5=当长为54=;4.13.22(02)5))(57)x y x x x <≤=<≤-<≤【分析】根据运动过程可分三种情况讨论:当02x <≤时,两个三角形重叠部分为BC D'△的面积,当25x <≤时,两个三角形重叠部分为A B C ''' 的面积,当57x <≤时,两个三角形重叠部分为B CD '△的面积,分别求解即可.【详解】当02x <≤时,如图1所示,两个三角形重叠部分为BC D '△的面积,由题意得,BC x '=,ABC V 和'''A B C 是边长分别为5和2的等边三角形,BC D '∴ 是边长x 的等边三角形,过点D 作DE ⊥BC 于点E ,12BE x ∴=,DE x ∴=,21122BC D S BC DE x x ''∴=⋅⋅=⋅= ,即2y x =;当25x <≤时,如图2所示,两个三角形重叠部分为A B C ''' 的面积,由题意得,2BC '=,过点A '作A E B C '''⊥于点E ,A E '∴,11222A B C S B C A E ''''''∴=⋅⋅== ,即y =当57x <≤时,如图3所示,两个三角形重叠部分为B CD '△的面积,由题意得,BC x '=,ABC V 和'''A B C 是边长分别为5和2的等边三角形,BC D '∴ 是等边三角形,且7B C x '=-,过点D 作DE ⊥BC 于点E ,)DE x ∴=-,211(7)))22B CD S B C DE x x x ''∴=⋅⋅=⋅--=- ,即2)y x =-;综上,写出y 与x之间的函数关系式为22(02)5))(57)x x y x x x <≤=<≤-<≤.【点睛】本题考查了等边三角形的判定和性质,列二次函数解析式,勾股定理,平移与三角形面积问题,熟练掌握知识点并能够分类讨论是解题的关键.14.②⑤⑥【分析】根据二次函数的定义与一般形式即可求解.【详解】解:y 是x 的二次函数的有②,⑤,⑥.故答案是:②,⑤,⑥.【点睛】本题考查了二次函数的定义,一般形式是y=ax 2+bx+c (a≠0,且a ,b ,c 是常数,x 是未知数).15.()()100400.25y x x =+-【分析】投产后果园枇杷的总产量=每棵树的产量×树的棵树=(40-减少的产量)×(100+增加的棵树),把相关数值代入即可求解.【详解】∵每多种一棵树,投产后果园中所有的枇杷树平均每棵就会减少产量0.25千克,∴每多种x 棵树,投产后果园中所有的枇杷树平均每棵就会减少产量0.25x 千克,∴每棵树的产量为(40-0.25x )千克,∵原来有100棵树,现在增加了x棵,∴现在有(100+x )棵,∴y=(100+x )(40-0.25x ).【点睛】解决本题的关键是找到所求枇杷的总产量的等量关系,难点是得到增加树木棵树后平均每棵树的产量.16.1512t <<【分析】本题考查二次函数的图像与性质、坐标与图形,熟练掌握二次函数的性质是解答的关键.(1)将顶点C 坐标代入抛物线表达式中求解即可;(2)先求得抛物线和直线的交点坐标,设()2,4P t t t -,(),4Q t t -,分1t ≤和14t <<两种情况,利用坐标与图形性质,用t 表示出PQ ,根据二次函数的性质分别求解即可.【详解】解:(1)由题意,将()2,4-代入24y ax ax =-中,得484a a -=-,解得1a =,故答案为:1;(2)由(1)得抛物线的表达式为24y x x =-,联立方程组244y x x y x ⎧=-⎨=-⎩,解得13x y =⎧⎨=-⎩或40x y =⎧⎨=⎩,∴抛物线24y x x =-与直线4y x =-的交点坐标为()1,3-,()0,4,设()2,4P t t t -,(),4Q t t -,当1t ≤时,()244PQ t t t =---254t t =-+25924t ⎛⎫=-- ⎪⎝⎭,∵10>,∴当1t ≤时,PQ 的长度随t 的增大而减小,不符合题意;当14t <<时,()244PQ t t t =---254t t =-+-25924t ⎛⎫=--+ ⎪⎝⎭,∵10-<,∴当512t <<时,PQ 的长度随t 的增大而增大,当52t >时,PQ 的长度随t 的增大而减小,故答案为:512t <<.17.220S x x=-+【分析】根据矩形的周长、一边长,可得另一边长,根据矩形的面积公式,可得答案.【详解】解:设矩形的一边长为x 米,另一边长为(20-x )米,∴由矩形的面积公式,得2(20)20S x x x x=-=-+【点睛】本题考查了函数解析式,利用了矩形的面积公式.18.10【分析】本题主要考查图形变化的规律,根据所给图形用含n 的代数式表示出第n 个图形中“•”的个数和“〇”的个数之和是解题的关键.根据所给图形,依次求出图形中“•”的个数和“〇”的个数之和并发现规律即可,然后根据规律求解即可.【详解】解:由所给图形可知,第1个图形中“•”的个数和“〇”的个数之和为:124132⨯=⨯+;第2个图形中“•”的个数和“〇”的个数之和为:239232⨯=⨯+;第3个图形中“•”的个数和“〇”的个数之和为:3415332⨯=⨯+;……,依次类推,第n 个图形中“•”的个数和“〇”的个数之和为:()231373222n n n n n ++=+.当2785322n n +=时,解得:17n =-或10(舍弃负值),即10n =.故答案为:10.19.(1)12x x =(2)122,3x x ==-【分析】本题考查的是用因式分解法和公式法解一元二次方程,熟知解一元二次方程的因式分解法和公式法是解答此题的关键(1)直接利用公式法求出x 的值即可;(2)先把原方程移项后进行因式分解,再求出x 的值即可;【详解】(1)解:210x x +-=∴1,1,1a b c ===-,∴()2Δ141150,=-⨯⨯-=>∴x =∴12x x =(2)解:(3)26x x x +=+,()(3)230x x x +-+=,()()230x x -+=20,30x x -=+=,∴122,3x x ==-20.(1)()()()1,3,2,0,3,1A B C ---(2)图见解析(3)9【分析】本题考查坐标与轴对称:(1)直接写出三点坐标即可;(2)根据轴对称的性质,画出111A B C △即可;(3)分割法求出三角形的面积即可.【详解】(1)解:由图可知:()()()1,3,2,0,3,1A B C ---;故答案为:()()()1,3,2,0,3,1A B C ---;(2)如图,111A B C △即为所求;(3)由图可知:111A B C △的面积为:()11134533249222⨯+⨯-⨯⨯-⨯⨯=;故答案为:9.21.(1)2m =或3m =-(2)当3m =-时,抛物线有最高点,最高点坐标为(0,0),当0x >时,y 随x 的增大而减小;当0x <时,随x 的增大而增大【分析】本题考查了二次函数的二次函数的性质,以及二次函数的定义,熟练掌握二次函数的性质是解题的关键.(1)根据二次函数的定义得到20m +≠且242m m +-=,进而可得到满足条件的m 的值;(2)根据二次函数的性质得到当3m =-时,抛物线开口向下,函数有最大值,则2y x =-,然后根据二次函数的性质确定最大值和增减性.【详解】(1)根据题意得,242m m +-=且20m +≠,解得2m =或3m =-(2)当2m =时,240m +=>,抛物线开口向上,该抛物线有最低点,当3m =-时,210m +=-<抛物线开口向下,该抛物线有最高点.此时抛物线解析式为2y x =-,则最高点坐标为(0,0),当0x >时,y 随x 的增大而减小;当0x <时,随x 的增大而增大.22.(1)4t >或0t <;(2)4t =或03t ≤<;(3)34t ≤<【分析】本题考查了二次函数图象与系数的关系、二次函数和一次函数图象上的点的坐标特征、坐标的平移,解决本题的关键是综合利用二次函数的图象和性质.(1)根据题意画出图象,结合函数图象分析即可;(2)根据题意画出图象,结合函数图象分析即可;(3)根据题意画出图象,结合函数图象分析即可.【详解】(1)直线3y x =-+与与抛物线223y x x =-++图象如下:联立2323y x y x x =-+⎧⎨=-++⎩,解得03x y =⎧⎨=⎩或30x y =⎧⎨=⎩,∴直线3y x =-+与与抛物线223y x x =-++交点坐标为()3,0,(0,3),∵()222314y x x x =-++=--+,∴当1x =时,223y x x =-++有最大值,令3y x t =-+=,解得3x t =-,则()3,A t t -,∵将点A 向右平移3个单位长度得到点B ,∴()6,B t t -,当0a =时,线段AB 与抛物线223y x x =-++的交点个数为0,由图象可得此时4t >或33t ->解得4t >或0t <,故答案为:4t >或0t <;(2)当1a =时,线段AB 与抛物线223y x x =-++的交点个数为1,由图象可得此时4t =或033t <-≤,解得4t =或03t ≤<,故答案为:4t =或03t ≤<;(3)当2a =时,线段AB 与抛物线223y x x =-++的交点个数为2,当3y =时,2233y x x =-++=,解得120,2x x ==,当3t =时,A(0,3),()3,3B ,此时线段AB 与抛物线223y x x =-++的交点个数为2,由图象可得线段AB 与抛物线223y x x =-++的交点个数为2时34t ≤<,故答案为:34t ≤<.23.(1)90(2)5k ,5k ,8k(3)()10,3【分析】本题主要考查了勾股定理,折叠的性质,点的坐标的表示,涉及的基础知识较多,解决本题的关键是折叠前后的两个图形全等的灵活应用以及合理的使用勾股定理.(1)利用折叠的性质:对应角相等即可得出答案;(2)在Rt ADE 中,利用勾股定理得出DE 的长度,进而得出BE 的长度,根据OC AB AE BE ==+可得OC 的长度;(3)设CB x =,在Rt OCD △中得出10x k =,在Rt CBE △中得出1k =,进而求出点E 的坐标即可.【详解】(1)解:∵边BC 沿直线CE 折叠,使点B 落在OA 边上的点D 处,∵由折叠的性质可知:CDE CBE △≌△,∵=90CDE CBE ∠∠=︒,故答案为:90;(2)由题意可知:=90DAE ∠︒,∴在Rt ADE 中,由勾股定理得:222DE AD AE =+,即:5DE k ==,由折叠的性质可知:CDE CBE △≌△,∴5BE DE k ==,8OC AB AE BE k ==+=,故答案为:5k ,5k ,8k ;(3)设CB x= 四边形OABC 是长方形,OA CB x ∴==,4OD OA AD x k =-=-,8OC AB k ==,由折叠后点B 与点D 重合,由折叠的性质可知:CDE CBE △≌△,CD CB x∴==在Rt OCD 中,由勾股定理得:222=CD OC OD +即:()()22284x k x k =+-,解得:10x k =,10CB k ∴=,在Rt CBE 中,由勾股定理得:222CE CB BE =+,即:(()()222105k k =+,解得1k =负值舍去,10OA ∴=,3AE =,∴点E 的坐标为()10,3.24.(1)30E ∠=︒(2)见解析【分析】此题主要考查等边三角形的性质及三角形外角的性质的理解及运用;利用三角形外角的性质得到30∠=︒CDE 是正确解答本题的关键.(1)根据等边三角形的性质得到60ABC ACB ∠=∠=︒,30DBC ∠=︒,证明E CDE ∠=∠,结合三角形的外角的性质可得答案;(2)根据角之间的关系求得DBC CED ∠=∠,根据等角对等边即可得到DB DE =.【详解】(1)解:∵三角形ABC 是等边ABC V ,∴60ACB ABC ∠=∠=︒,又∵CE CD =,∴E CDE ∠=∠,又∵ACB E CDE ∠=∠+∠,∴1302E ACB ∠=∠=︒;(2)证明:∵等边ABC V 中,D 是AC 的中点,∴11603022∠=∠=︒︒⨯=DBC ABC ,由(1)知30E ∠=︒,∴30DBC E ∠=∠=︒,∴DB DE =;25.(1)长方形卡片的长和宽分别为和(2)图见解析,长方形卡片的长和宽分别为15cm 和5cm【分析】本题主要考查了一元二次方程的实际应用,等腰直角三角形的性质与判定,勾股定理,矩形的性质等等:(1)先利用勾股定理和等边对等角得到BC =,45B C ∠==︒∠,再由矩形的性质得到90DGF EFG ∠=∠=︒,则可证明DGB 和EFC 是等腰直角三角形,得到DG BG EF FC ===,设DG 长为cm x ,则GF 长为()2cm x ,再根据矩形面积公式列出方程求解即可;(2)先根据题意作图,设长方形的长AF 为cm a ,则宽为()20cm a -,再根据矩形面积公式列出方程求解即可.【详解】(1)解:∵20cm AB AC ==,90A ∠=︒,∴BC ==,45B C ∠==︒∠,∵四边形DEFG 是矩形,∴90DGF EFG ∠=∠=︒,∴90DGB EFC ∠=∠=︒,∴DGB 和EFC 是等腰直角三角形,∴DG BG EF FC ===,设DG 长为cm x ,则GF 长为()2cm x -,由题意,得()275x x =,整理,得22750x -+=,解得1x =,2x =∴12x -=,22x =∴长方形卡片的长和宽分别为和;(2)解:根据题意画图如下:设长方形的长AF 为cm a ,则宽为()20cm a -,由题意,得()2075a a -=,整理得220750a a -+=,解得115a =,25a =.经检验,115a =,25a =都符合题意.∴长方形卡片的长和宽分别为15cm 和5cm .。
22.1.1 二次函数
课后作业:方案(A)
一、教材题目:P41复习巩固T1、T2、T8
1.一个矩形的长是宽的2倍,写出这个矩形的面积关于宽的函数解析式,
2.某种商品的价格是2元,准备进行两次降价.如果每次降价的百分率都是x,经过两次降价后的价格y(单位:元)随每次降价的百分率x的变化而变化,y与x之间的关系可以用怎样的函数来表示?
8.如图,在△ABC中,∠B=90°,AB=12 mm,BC=24 mm,动点P从点A开始沿边AB向点B以2 mm/s的速度移动,动点Q从点B开始沿边BC向点C以4 mm/s的速度移动.如果P,Q两点分别从A,B两点同时出发,那么△PBQ的面积S随出发时间t如何变化?写出S关于t的函数解析式及t的取值范围.
(第8题)
二、补充题目:来源于《典中点》
6.下列说法中,正确的是( )
A .二次函数中两个变量的值是非零实数
B .二次函数中自变量的值可以是所有实数
C .形如y =ax 2+bx +c 的函数叫二次函数
D .二次函数y =ax 2+bx +c 中a ,b ,c 的值均不能为零 7.对于任意实数m ,下列函数一定是二次函数的是( ) A .y =mx 2+3x -1 B .y =(m -1)x 2 C .y =(m -1)2x 2 D .y =(-m 2-1)x 2
10.(2015·温州)如图,∠AOB =90°,在∠AOB 的平分线ON 上依次取点C ,F ,M ,过点C 作DE ⊥OC ,分别交OA ,OB 于点D ,E ,以FM 为对角线作菱形FGMH ,已知∠DFE =∠GFH =120°,FG =FE.设OC =x ,图中阴影部分面积为y ,则y 与x 之间的函数关系式是( )
(第10题)
A .y =
32
x 2
B .y =3x 2
C .y =23x 2
D .y =33x 2
11.下列函数关系中,不是二次函数的是( ) A .边长为x 的正方形的面积y 与边长x 的函数关系
B .一个直角三角形两条直角边长的和是6,则这个直角三角形的面积y 与一条直角边
长x的函数关系
C.在边长为5的正方形内挖去一个边长为t的小正方形,剩余面积S与t的函数关系D.多边形的内角和m与边数n的函数关系
13.已知函数y=(m2-m)x2+(m-1)x+m+1.
(1)若这个函数是关于x的一次函数,求m的值;
(2)若这个函数是关于x的二次函数,则m的值应是多少?
14.一直角三角形两直角边长之和为15,其中一条直角边长为x,求它的面积S关于x 的函数关系式,并写出自变量的取值范围.
17.某广告公司设计一幅周长为12 m的矩形广告牌,设计费为每平方米1 000元,设矩形一边的长为x m,面积为S m2.
(1)求S与x之间的函数关系式,并确定自变量x的取值范围;
(2)若要求设计的广告牌边长为整数,请你填写下表,并探究当x取何值时,广告牌的设计费最多.
18.如图,正方形ABCD的边长为4 cm,动点P,Q同时从点A出发,以1 cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动.设运动时间为x s,由点P,B,D,Q 确定的图形的面积为y cm2,求y与x(0≤x≤8)之间的函数关系式.
(第18题)
答案
一、
教材
1.解:设矩形的面积为S ,宽为x ,
矩形的面积关于宽的函数解析式为S =2x·x ,即S =2x 2. 2.解:y =2(1-x)2.
8.解:动点P 从点A 到点B 所需时间为:12
2=6(s ),动点Q 从点B 到点C 所需时间为:
244=6(s ),所以0<t <6.因为AP =2t ,所以BP =12-2t.又因为BQ =4t ,所以S =12·BP·BQ =12
×(12-2t)·4t =-4t 2+24t(0<t <6). 点拨:本题注意时间t 的取值范围. 二、
典中点
6.B
7.D 10.B 11.D
13.解:(1)若y =(m 2-m)x 2+(m -1)x +m +1是关于x 的一次函数,
则⎩
⎪⎨⎪⎧m 2-m =0,m -1≠0,解得m =0. (2)若y =(m 2-m)x 2+(m -1)x +m +1是关于x 的二次函数,则m 2-m≠0,解得m≠0且m≠1.
∴m 可以是除了1和0的所有实数. 14.解:S =12x(15-x)=-12x 2+152x.
自变量的取值范围为0<x <15.
点拨:最终的结果要化成二次函数的一般形式,且自变量的取值要符合题意. 17.解:(1)S =x ⎝⎛⎭⎫122-x =-x 2
+6x(0<x <6). (2)
18.解:由题意可知,当0≤x≤4时,AP =AQ =x cm , y =4×4-12×4×4-12x 2,即y =8-12x 2;
当4<x≤8时,CQ =CP =(8-x)cm ,
y =4×4-12×4×4-12(8-x)2,即y =-1
2x 2+8x -24.
综上可知,所求的函数关系式为
y =2218(04),21824(48).2
x x x x x ⎧-≤≤⎪⎪⎨⎪-+-<≤⎪⎩。