药代动力学定义、理论与体内过程
- 格式:ppt
- 大小:1.15 MB
- 文档页数:81
药理学——药动学知识点归纳一、药物的体内过程药物从进入机体至离开机体,可分为四个过程:简称ADME系统→与膜的转运有关。
(一)药物的跨膜转运:※药物在体内的主要转运方式是:被动转运中的简单扩散!Ⅰ、被动转运——简单扩散1.概念:指药物由浓度高的一侧向浓度低的一侧扩散,以浓度梯度为动力。
2.特点:(1)不消耗能量。
(2)不需要载体。
(3)转运时无饱和现象。
(4)不同药物同时转运时无竞争性抑制现象。
(5)当膜两侧浓度达到平衡时转运即停止。
3.影响简单扩散的药物理化性质(影响跨膜转运的因素)(1)分子量分子量小的药物易扩散。
(2)溶解性脂溶性大,极性小的物质易扩散。
(3)解离性非离子型药物可以自由穿透。
离子障是指离子型药物被限制在膜的一侧的现象。
4.体液pH值对弱酸或弱碱药物的解离的影响:从公式可见,体液pH算数级的变化,会导致解离与不解离药物浓度差的指数级的变化,所以,pH值微小的变动将显著影响药物的解离和转运。
例题:一个pK a=8.4的弱酸性药物在血浆中的解离度为A.10%B.40%C.50%D.60%E.90%『正确答案』A『答案解析』pH对弱酸性药物解离影响的公式为:10 pH-pKa=[解离型]/[非解离型],即解离度为10 7.4-8.4=10-1=0.1。
※总结:体液pH值对药物解离度的影响规律:◇酸性药物在酸性环境中解离少,容易跨膜转运。
达到扩散平衡时,主要分布在碱侧。
◇碱性药物在碱性环境中解离少,容易跨膜转运。
达到扩散平衡时,主要分布在酸侧。
同性相斥、异性相吸或“酸酸碱碱促吸收;酸碱碱酸促排泄”例题:某弱酸性药物pK a=3.4,若已知胃液、血液和碱性尿液的pH 值分别是1.4、7.4和8.4。
问该药物在理论上达到平衡时,哪里的浓度高?A.碱性尿液>血液>胃液B.胃液>血液>碱性尿液C.血液>胃液>碱性尿液D.碱性尿液>胃液>血液E.血液>碱性尿液>胃液『正确答案』A『答案解析』同性相斥、异性相吸。
药物代谢动力学名词解释-概述说明以及解释1.引言1.1 概述药物代谢动力学是研究药物在体内转化的速率和机制的科学领域。
它涉及到药物在体内转化的各个过程,包括吸收、分布、代谢和排泄等。
药物代谢动力学的研究对于合理使用药物、开发新药以及预测药物在人体内的药效和不良反应具有重要的意义。
药物代谢是药物在体内被转化成代谢产物的过程。
这个过程是通过一系列的生化反应来完成的,主要发生在肝脏中的细胞内。
药物代谢可以分为两种主要类型:相应代谢和非相应代谢。
相应代谢是指药物在体内以一定比例被转化为代谢产物,而非相应代谢则是指药物在体内的转化不受药物剂量的影响。
药物代谢动力学的研究对于药物的临床应用和药物治疗具有重要的意义。
了解药物在体内的代谢速率和代谢途径可以帮助我们解释药物的功效和副作用。
在药物研发过程中,研究药物代谢动力学可以评估药物的安全性和有效性,选择合适的剂量和给药途径,提高药物的疗效。
此外,药物代谢动力学还可以帮助我们了解药物之间的相互作用。
某些药物可能会影响其他药物的代谢,导致药物的药效或毒性发生变化。
通过研究药物代谢动力学,我们可以预测药物相互作用的可能性,并采取相应的措施以确保药物疗效的安全性。
总之,药物代谢动力学是一个重要的研究领域,对于药物的合理使用、药物治疗以及药物研发都具有重大的意义。
通过深入研究药物代谢动力学,我们可以更好地理解药物在体内的行为,为临床使用和研究提供基础和指导。
文章结构部分的内容可以如下编写:1.2 文章结构本文将按照以下结构进行论述:(1)引言:介绍药物代谢动力学的概念和背景,说明药物代谢动力学的重要性并阐述本文的目的和意义。
(2)正文部分:分为三个部分进行论述。
2.1 药物代谢动力学的定义:详细解释药物代谢动力学的含义,与其他相关概念进行区分。
2.2 药物代谢过程:介绍药物在生物体内的代谢过程,包括药物的吸收、分布、代谢和排泄等。
2.3 药物代谢动力学的重要性:讨论药物代谢动力学在药物研发和治疗中的重要作用,包括药物的安全性评价、药效学的优化和药代动力学模型的建立等。
药代动力学如何进行pk曲线解读药代动力学是药理学的一个重要分支,研究的是药物在体内的吸收、分布、代谢和排泄过程,以及这些过程与给药剂量之间的关系。
而pk 曲线则是药代动力学研究中重要的工具之一,它可以帮助我们更深入地理解药物在体内的变化规律,为药物的合理使用提供重要依据。
本文将从药代动力学的基本概念入手,深入解读如何进行pk曲线的解读。
一、药代动力学基本概念1. 药物的吸收吸收是药物从给药部位进入体内循环系统的过程,通常发生在消化道、皮肤或黏膜等部位。
吸收速度和程度会影响药物在体内的血浆浓度和作用效果。
2. 药物的分布药物在体内的分布受到组织血流、细胞通透性以及蛋白结合等因素的影响。
不同的组织器官对药物的分布也会产生不同的影响。
3. 药物的代谢药物在体内经过代谢作用,其中肝脏是最主要的代谢器官。
药物代谢可以降解药物分子,也可以使药物转化成更容易排泄的代谢产物。
4. 药物的排泄药物排泄通常通过肾脏、胆汁、呼吸和汗液等途径。
药物的半衰期可以反映出药物在体内的排泄速度。
二、pk曲线的解读在药代动力学研究中,pk曲线是一个非常重要的概念。
它是指药物在体内的血浆浓度随时间的变化曲线。
通过对pk曲线的解读,我们可以了解药物在体内的吸收、分布、代谢和排泄等动力学过程,从而指导合理用药。
1. 解读pk曲线的基本方法通过测定药物在体内的血浆浓度,我们可以绘制出药物的pk曲线。
在解读pk曲线时,需要关注以下几个方面:- 峰浓度(Cmax):即药物在体内达到的最高血浆浓度,反映了药物的最大吸收速度和程度。
- 时间-浓度曲线(AUC):AUC反映了药物在体内的总曝露量,即药物的有效浓度与时间的累积关系。
- 半衰期(T1/2):半衰期是指药物在体内浓度下降50%所需的时间,可反映出药物的消失速度。
2. pk曲线解读的对应应用在临床实践中,通过对pk曲线的解读,可以指导合理用药,包括药物的剂量选择、给药间隔的确定、个体化用药和合理用药方案的制定等。
药药代动力学研究方法目录一、内容概览 (2)1. 研究背景与意义 (3)1.1 药物研发的重要性 (4)1.2 药物代谢动力学研究的目的与意义 (5)2. 研究方法与论文结构 (6)2.1 研究方法介绍 (7)2.2 论文组织结构 (9)二、药代动力学基础概念与理论 (10)1. 药代动力学定义及研究内容 (11)1.1 药代动力学的概念 (13)1.2 药代动力学研究的主要内容 (13)2. 药物在体内的过程 (15)2.1 药物的吸收 (16)2.2 药物的分布 (18)2.3 药物的代谢 (20)2.4 药物的排泄 (21)三、药代动力学研究方法与技术 (22)1. 实验设计 (23)1.1 实验动物的选择与分组 (24)1.2 给药方案的设计 (26)1.3 采样点的设置与样本处理 (26)2. 药学实验技术与方法应用 (28)一、内容概览药药代动力学(Pharmacokinetics,简称PK)研究方法主要关注药物在体内的动态变化过程,包括药物的吸收、分布、代谢和排泄等过程。
这些研究方法的应用对于理解药物的安全性、有效性和合理性具有重要意义。
在本研究中,我们采用多种先进的药药代动力学研究方法,以确保结果的准确性和可靠性。
具体包括:血药浓度法:通过测定不同时间点血液中的药物浓度,计算出药物的消除速率常数、生物利用度等参数。
这种方法适用于大多数口服和静脉注射给药的药物。
生理药物代动力学模型:基于解剖学和生理结构建立的药物体内动态模型,能够模拟药物在体内的分布、代谢和排泄过程,提供更为精确的药代动力学参数。
统计矩方法:通过对血药浓度时间曲线进行拟合,计算出药物的吸收速率常数、达峰时间、半衰期等参数。
这种方法适用于非线性药动学特征明显的药物。
生物效应法:通过观察药物对生物体的药理效应,间接反映药物在体内的动态变化过程。
这种方法适用于那些药理作用与血药浓度无直接关系的药物。
模型模拟与实验验证:将建立的数学模型与实验数据进行对比和分析,不断优化模型的结构和参数,以提高研究的准确性和可靠性。
药代动力学药物代谢动力学:是定量研究药物在生物体内吸收,分布,排泄,代谢(简称体内过程)规律的一门学科。
药物代谢和排泄过程合称药物消除。
药物在体内的吸收,分布,排泄与代谢过程,统称体内过程,又称药物处置。
常见药物跨膜转运的类型:1被动扩散:借助于在生物膜中的脂溶性顺浓度差实施药物跨膜转运。
特点:(1)顺浓度梯度转运,(2)药物跨膜转运无选择性,(3)药物跨膜转运无饱和现象,(4)药物跨膜转运无竞争性抑制作用。
2孔道转运:生物膜上有水通道或蛋白质分子孔道,一些物质包括水和某些电解质等可以通过这些孔道转运。
特点:该转运与药物分子结构,大小有关。
转运率取决于相应组织血流速率和生物膜性质。
3.特殊转运过程通常有主动转运,载体转运和受体介导的转运(异化扩散),主要包括载体及酶两种机制。
特点:逆浓度差,从低浓度到高浓度。
生物利用度:药物由给药部位到达血液循环中的相对量。
受过效应:口服给药,药物在到达体循环之前,经肠道,肠壁和肝脏的代谢分解,使进入体内的相对药量降低。
+影响药物吸收的因素:1药物和剂型:药物制剂的释放速率和在胃肠中溶解速率影响药物吸收速率和程度2胃肠排空作用:碱性药物在胃中溶解,若延长胃排空时间则促进其吸收。
而酸性药物则相反。
3首过效应:对于首过效应大的药物,口服给药生物利用度较低,难以获得满意疗效。
4肠上皮的外排机制5疾病6药物相互作用:两个或以上的药物合用时,可通过以下途径影响药物吸收:(1)影响肠腔PH,改变药物离子化程度,(2)改变药物溶解度(3)影响胃肠蠕动或胃排空(4)形成复合物(5)影响药物在肠粘膜上皮细胞代谢或转运体功能血浆蛋白结合率的测定方法:平衡透析法和超滤法血脑屏障:血-脑及血-脑脊液构成的屏障,主要屏障是脑毛细血管内皮细胞构成的屏障。
影响药物通过训啊哦屏障的因素:1药物因素:a药物脂溶性b分子量大小2生理因素和病理因素:(1)渗透压改变(2)作用中枢神经系统药物改变血脑屏障功能(3)电荷性改变(4)各种原因引起的脑损伤(5)炎症及其炎症介质促进血脑屏障开放肾药物排泄特点及其影响因素:1肾小球滤过:多数药物以膜孔扩散的方式经肾小球滤过,只有游离药物才能滤过,滤液中药物浓度与血浆中游离药物浓度相等2肾小管主动分泌:一些有机酸化合物出肾小球滤过外,还有肾小管主动分泌参与,其肾清除率可能大于肾小球滤过率。
药物代谢动力学〔pharmacokinetics〕简称药代动学或药动学,主要是定量研究药物在生物体内的过程〔吸收、分布、代谢和排泄〕,并运用数学原理和方法阐述药物在机体内的动态规律的一门学科。
确定药物的给药剂量和间隔时间的依据,是该药在它的作用部位能否到达平安有效的浓度。
药物在作用部位的浓度受药物体内过程的影响而动态变化。
在创新药物研制过程中,药物代谢动力学研究与药效学研究、毒理学研究处于同等重要的地位,已成为药物临床前研究和临床研究的重要组成局部。
包括药物消除动力学:一级消除动力学〔单位时间内消除的药量与血浆药物浓度成正比,又叫恒比消除〕和零级消除动力学〔单位时间内体内药物按照恒定的量消除,又叫恒量消除〕药物代谢动力学的重要参数:1、药物去除半衰期〔half life,t1/2〕,是血浆药物浓度下降一半所需要的时间。
其长短可反映体内药物消除速度。
2、去除率〔clearance,CL〕,是机体去除器官在单位时间内去除药物的血浆容积,即单位时间内有多少体积的血浆中所含药物被机体去除。
使体内肝脏、肾脏和其他所有消除器官去除药物的总和。
3、表观分布容积〔apparent volume of distribution,V d〕,是指当血浆和组织内药物分布到达平衡后,体内药物按此时的血浆药物浓度在体内分布时所需的体液容积。
4、生物利用度〔bioavailability,F〕,即药物经血管外途径给药后吸收进入全身血液循环药物的相对量。
可分为绝对生物利用度和相对生物利用度。
体内过程即药物被吸收进入机体到最后被机体排出的全部历程,包括吸收、分布、代谢和排泄等过程。
其中吸收、分布和排泄属物理变化称为转运。
代谢属于化学变化亦称转化。
机体对药物作用的过程,表现为体内药物浓度随时间变化的规律。
药物动力学是研究药物体内过程规律,特别是研究血药浓度随时间而变化的规律。
1.吸收〔absorption〕药物从给药部位进入血液循环的过程称为吸收。