函数单调性和奇偶性的综合应用题
- 格式:doc
- 大小:231.00 KB
- 文档页数:5
函数单调性和奇函数性质的综合应用题题目描述给定函数 $f(x) = x^3 - 3x^2 + 2x + 1$,请回答以下问题:1. 函数 $f(x)$ 的定义域是什么?2. 函数 $f(x)$ 的奇偶性如何?3. 在开区间 $(0, 3)$ 上,函数 $f(x)$ 的单调性如何?4. 在闭区间 $[-1, 2]$ 上,函数 $f(x)$ 的最大最小值分别是多少?解答1. 函数 $f(x)$ 的定义域是所有实数集 $(-\infty, +\infty)$,因为对任意实数 $x$,$f(x)$ 的定义都存在。
2. 函数 $f(x)$ 的奇偶性是奇函数。
为了验证函数的奇偶性,我们需要检查函数是否满足 $f(-x) = -f(x)$。
对于函数 $f(x) = x^3 -3x^2 + 2x + 1$,我们有 $f(-x) = (-x)^3 - 3(-x)^2 + 2(-x) + 1 = -x^3 +3x^2 - 2x + 1$。
可以看到 $f(-x) = -f(x)$ 成立,所以函数 $f(x)$ 是奇函数。
3. 在开区间 $(0, 3)$ 上,函数 $f(x)$ 是递增函数。
为了验证函数的单调性,我们需要检查函数在该区间上的导数是否大于等于零。
计算函数的导数 $f'(x)$,我们有 $f'(x) = 3x^2 - 6x + 2$。
将其带入$0 < x < 3$,我们可以看到 $f'(x) > 0$。
因此,函数 $f(x)$ 在开区间$(0, 3)$ 上是递增的。
4. 在闭区间 $[-1, 2]$ 上,函数 $f(x)$ 的最大值是 $f(2) = 11$,最小值是 $f(-1) = -1$。
为了找出最大最小值,我们可以求函数在该区间内的驻点和区间的端点处的函数值。
计算导数 $f'(x) = 3x^2 -6x + 2$ 的根,可得 $x = 1 \pm \frac{\sqrt{3}}{3}$。
函数单调性、奇偶性、周期性的综合应用一、单选题1.已知()f x 是R 上的奇函数 且满足(6)()f x f x += 当(0,4)x ∈时 2()2f x x = 则f (2021)等于( ) A .-2B .-98C .98D .22.已知()()()1f x x x b =+-是偶函数 且其定义域为[]21,a a - 则a b +的值是 ( )A .13-B .43C .23D .23-3.已知函数321()21x x f x x -=++ 则不等式(2)(1)0f a f a +->的解集为( )A .(0,)+∞B .[1,)-+∞C .(1,)-+∞D .(1,0)-4.函数y =f (x )在区间[0 2]上单调递增 且函数f (x +2)是偶函数 则下列结论成立的是( )A .57(1)22f f f⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭ B .()75122f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()75122f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭D .57(1)22f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭5.已知函数()f x 的定义域为R ()54f = ()3f x +是偶函数 任意[)12,3,x x ∈+∞满足()()12120f x f x x x ->- 则不等式()314f x -<的解集为( )A .2,33⎛⎫⎪⎝⎭B .()2,2,3⎛⎫-∞+∞ ⎪⎝⎭C .()2,3D .2,23⎛⎫ ⎪⎝⎭6.已知函数()f x 为R 上的奇函数 且()(2)f x f x -=+ 当[0,1]x ∈ ()22x xaf x =+则(2019)(2022)f f +的值为( )A .32-B .0C .32D .2147.已知函数()(ln sin 2f x a x b x =++ 若()37f -= 则()3f ( )A .等于7-B .等于5-C .等于3-D .无法确定8.设()'f x 是奇函数()f x 的导函数 (1)0f -= 当0x >时 ()2()xf x f x '> 则使得()0f x <成立的x 的取值范围是( ) A .(1- 0)(0⋃ 1) B .(-∞ 1)(1-⋃ )+∞ C .(1- 0)(1⋃ )+∞D .(-∞ 1)(0-⋃ 1)1.定义在R 上的函数()f x 满足()()0f x f x 且(1)()f x f x +=-.当(0,1)x ∈时3()31xxf x =+. (1)求()f x 在[1,1]-上的解析式;(2)若关于x 的方程()2f x m =在区间[0,1]上有实数解 求实数m 的取值范围.2.函数()f x 对于任意实数m n 有()()()f m n f m f n +=+ 当0x >时 ()0f x >. (1)求证:()f x 在(),-∞+∞上是增函数;(2)若()11f = ()22log 2f x x m +⎡⎤⎣⎦-<对任意实数[]0,2x ∈恒成立 求实数m 的取值范围.3.定义在R 上的函数()f x 满足:①()00f ≠;②当0x >时 ()1f x >;③对任意实数xy 都有()()()f x y f x f y +=⋅.(1)证明:当0x <时 ()01f x <<; (2)判断()f x 在R 上的单调性; (3)解不等式()()221f x f x x ⋅->.4.已知定义域为R 的函数()1221x af x =-++是奇函数.(1)求a 的值 并判断函数()f x 的单调性(只需简单说明 不需证明);(2)若关于 m 的不等式()()222120f m m f m mt -+++-≤在()1,2m ∈有解 求实数t 的取值范围参考解析1.A【解析】∵(6)()6f x f x T +=⇒= ()()()()20213366551f f f f =⨯+==- 又∵()f x 是R 上的奇函数 ∴()()()2021112f f f =-=-=-.故选:A. 2.B【解析】()()21f x x b x b =+-- 因为函数是偶函数 所以满足()()f x f x -= 得1b =偶函数的定义域关于原点对称 所以210a a -+= 得13a = 所以43a b +=.故选:B3.C【解析】332121()()2121x x x x f x x x f x -----=-=--=-++ 则函数()f x 为奇函数32()121x f x x =+-+ 则函数()f x 在R 上单调递增(2)(1)f a f a >-- (2)(1)f a f a ∴>- 即21a a >- 1a >- 故选:C4.B【解析】因为函数f (x +2)是偶函数 所以f (x +2)=f (-x +2) 即函数f (x )的图象关于x =2对称 又因为函数y =f (x )在区间[0 2]上单调递增 所以函数y =f (x )在区间[2 4]上单调递减.因为()()13f f =75322>> 所以()75322f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭ 即()75122f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭故选:B. 5.D【解析】因为()3f x +是偶函数 所以()f x 的图像关于直线3x =对称 则()()514f f == 因为任意[)12,3,x x ∈+∞满足()()12120f x f x x x ->-所以()f x 在[)3,+∞上单调递增 在(),3-∞上单调递减 故()314f x -<等价于1315x <-< 解得223x <<.故选:D 6.A【解析】根据题意,函数()f x 为R 上的奇函数 则(0)=0f 又由[0,1]x ∈时()22xxaf x =+则有(0)10f a =+= 解可得:a =-1 则有1()22x xf x =-.又由()(2)f x f x -=+即()()2f x f x +=- 则有()()()42f x f x f x +=-+= 即函数()f x 是周期为4的周期函数. 则3(2019)(14505)(1)(1)2f f f f =-+⨯=-=-=-(2022)(24505)(2)(0)(0)0f f f f f =+⨯==-==所以33(2019)(2022)=0=22f f +-+-.故选:A7.C【解析】设(()ln g x x = 显然定义域为R又((22()()ln ln ln ln10g x g x x x x ⎛⎫+-=+-+=-==⎪⎝⎭则()()g x g x -=- 所以(()ln g x x =是R 上的奇函数;又sin y x =也是R 上的奇函数 所以()2f x -也是R 上的奇函数 因此()(3)2(3)2f f --=-- 则(3)4(3)473f f =--=-=-.故选:C. 8.D【解析】令2()()f x g x x =则3()2(())xf x x x f x g '-=' 当0x >时 有()2()xf x f x '> 即()2()0xf x f x '-> ()0g x '∴>即函数()g x 在(0,)+∞上单调递增.又()f x 是R 上的奇函数 ()()f x f x ∴-=-2()()()f x g x g x x -∴-==- 故函数()g x 为奇函数 由奇函数的对称性可得()g x 在(),0-∞上单调递增. 又()10f = ()10f ∴-= ()(1)101f g == ()()110g g ∴-=-=. 所以当1x >时()0g x > 当01x <<时()0g x < 当10x -<<时()0g x > 当1x <-时()0g x < 由()0f x <可得 2()()f x g x x=即要使()0f x <成立 只需()0<g x 成立; 所以()0f x <的解集为()(),10,1-∞-⋃。
高中数学:函数单调性和奇偶性的综合练习及答案1.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=x3B.y=|x|+1C.y=-x2+1D.y=2-|x|2.f(x)=x2+|x|()A.是偶函数,在(-∞,+∞)上是增函数B.是偶函数,在(-∞,+∞)上是减函数C.不是偶函数,在(-∞,+∞)上是增函数D.是偶函数,且在(0,+∞)是增函数3.已知函数f(x)=3x-(x≠0),则函数()A.是奇函数,且在(0,+∞)上是减函数B.是偶函数,且在(0,+∞)上是减函数C.是奇函数,且在(0,+∞)上是增函数D.是偶函数,且在(0,+∞)上是增函数4.定义在R上偶函数f(x)在[1,2]上是增函数,且具有性质f(1+x)=f(1-x),则函数f(x)()A.在[-1,0]上是增函数B.在[-1,-]上增函数,在(-,0]上是减函数C.在[1,0]上是减函数D.在[-1,-]上是减函数,在(-,0]上是增函数5.f(x)是定义在R上的增函数,则下列结论一定正确的是()A.f(x)+f(-x)是偶函数且是增函数B.f(x)+f(-x)是偶函数且是减函数C.f(x)-f(-x)是奇函数且是增函数D.f(x)-f(-x)是奇函数且是减函数6.已知偶函数f(x)在区间[0,+∞)上的解析式为f(x)=x+1,下列大小关系正确的是()A.f(1)>f(2)B.f(1)>f(-2)C.f(-1)>f(-2)D.f(-1)<f(2)7.已知f(x)是偶函数,对任意的x1,x2∈(-∞,-1],都有(x2-x1)[f(x2)-f(x1)]<0,则下列关系式中成立的是()A.f<f(-1)<f(2)B.f(-1)<f<f(2)C.f(2)<f(-1)<fD.f(2)<f<f(-1)8.定义在区间(-∞,+∞)上的奇函数f(x)为增函数;偶函数g(x)在区间[0,+∞)上的图象与f (x)的图象重合.设a>b>0,给出下列不等式①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a).其中成立的是()A.①与④B.②与③C.①与③D.②与④9.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0](x1≠x2),有(x2-x1)·[f(x2)-f (x1)]>0,则当n∈N*时,有()A.f(-n)<f(n-1)<f(n+1)B.f(n-1)<f(-n)<f(n+1)C.f(n+1)<f(-n)<f(n-1)D.f(n+1)<f(n-1)<f(-n)10.若函数f(x)是奇函数,且在(-∞,0)上是增函数,又f(-2)=0,则x·f(x)<0的解集是()A.(-2,0)∪(0,2)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(2,+∞)11.已知定义在R上的函数f(x)在(-∞,-2)上是减函数,若g(x)=f(x-2)是奇函数,且g(2)=0,则不等式xf(x)≤0的解集是()A.(-∞,-2]∪[2,+∞)B.[-4,-2]∪[0,+∞)C.(-∞,-4]∪[-2,+∞)D.(-∞,-4]∪[0,+∞)12.设f(x)为奇函数,且在(-∞,0)内是减函数,f(-2)=0,则x·f(x)<0的解集为()A.(-1,0)∪(2,+∞)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(0,2)13.若函数f(x)=ax2+(2+a)x+1是偶函数,则函数f(x)的单调增区间为()A.(-∞,0]B.[0,+∞)C.(-∞,+∞)D.[1,+∞)14.已知函数f(x)=x|x|-2x,则下列结论正确的是________.(填写序号)①f(x)是偶函数,递增区间是(0,+∞);②f(x)是偶函数,递减区间是(-∞,1);③f(x)是奇函数,递减区间是(-1,1);④f(x)是奇函数,递增区间是(-∞,0).15.若f(x)是偶函数,其定义域为(-∞,+∞),且在[0,+∞)上是减函数,设f=m,f=n,则m,n的大小关系是________.16.已知函数f(x)=(k-2)x2+(k-1)x+3是偶函数,则f(x)的单调递增区间是________.17.已知函数y=f(x)的图象关于原点对称,且当x>0时,f(x)=x2-2x+3.(1)试求f(x)在R上的解析式;(2)画出函数的图象,根据图象写出它的单调区间.18.设f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=x2+2x,求函数f(x),g(x)的解析式.19.已知函数f(x)=-x3+3x.求证:(1)函数f(x)是奇函数;(2)函数f(x)在区间(-1,1)上是增函数.20.已知函数f(x)=ax++c(a,b,c是常数)是奇函数,且满足f(1)=,f(2)=. (1)求a,b,c的值;(2)试判断函数f(x)在区间上的单调性并证明.21.设定义域为R的函数f(x)=(1)在平面直角坐标系内作出函数f(x)的图象,并指出f(x)的单调区间(不需证明);(2)若方程f(x)+2a=0有两个解,求出a的取值范围(只需简单说明,不需严格证明);(3)设定义为R的函数g(x)为奇函数,且当x>0时,g(x)=f(x),求g(x)的解析式.22.已知函数f(x)=ax+(x≠0,常数a∈R).(1)讨论函数f(x)的奇偶性,并说明理由;(2)若函数f(x)在x∈[3,+∞)上为增函数,求a的取值范围.答案1.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=x3B.y=|x|+1C.y=-x2+1D.y=2-|x|【答案】B【解析】∵y=x3在定义域R上是奇函数,∴A不对;y=-x2+1在定义域R上是偶函数,但在(0,+∞)上是减函数,故C不对;D中y=2-|x|=|x|虽是偶函数,但在(0,+∞)上是减函数,只有B对.2.f(x)=x2+|x|()A.是偶函数,在(-∞,+∞)上是增函数B.是偶函数,在(-∞,+∞)上是减函数C.不是偶函数,在(-∞,+∞)上是增函数D.是偶函数,且在(0,+∞)是增函数【答案】D3.已知函数f(x)=3x-(x≠0),则函数()A.是奇函数,且在(0,+∞)上是减函数B.是偶函数,且在(0,+∞)上是减函数C.是奇函数,且在(0,+∞)上是增函数D.是偶函数,且在(0,+∞)上是增函数【答案】C【解析】因为f(-x)=-3x+=-(3x-)=-f(x),又因为f(x)在(0,+∞)上是增函数,所以f(x)是奇函数,且在(0,+∞)上是增函数.4.定义在R上偶函数f(x)在[1,2]上是增函数,且具有性质f(1+x)=f(1-x),则函数f(x)()A.在[-1,0]上是增函数B.在[-1,-]上增函数,在(-,0]上是减函数C.在[1,0]上是减函数D.在[-1,-]上是减函数,在(-,0]上是增函数【答案】A【解析】因为f(1+x)=f(1-x),所以函数f(x)的图象关于直线x=1对称,又f(x)为偶函数,且在[1,2]上是增函数,所以f(x)在[-1,0]上是增函数.5.f(x)是定义在R上的增函数,则下列结论一定正确的是()A.f(x)+f(-x)是偶函数且是增函数B.f(x)+f(-x)是偶函数且是减函数C.f(x)-f(-x)是奇函数且是增函数D.f(x)-f(-x)是奇函数且是减函数【答案】C【解析】A错误.设f(x)=x,是增函数,但f(x)+f(-x)=x-x=0是常数函数;同理B错误;C正确.设g(x)=f(x)-f(-x),则g(-x)=f(-x)-f(x)=-[f(x)-f(-x)]=-g(x),函数g(x)是奇函数.任取x1,x2∈R,且x1<x2,则-x1>-x2,g(x1)=f(x1)-f(-x1),g(x2)=f(x2)-f(-x2),因为f(x)是定义在R上的增函数,所以f(x1)<f(x2),f(-x1)>f(-x2),即-f(-x1)<-f(-x2).所以f(x1)-f(-x1)<f(x2)-f(-x2),即g(x1)<g(x2).所以函数g(x)=f(x)-f(-x)是增函数;D错误.故选C.6.已知偶函数f(x)在区间[0,+∞)上的解析式为f(x)=x+1,下列大小关系正确的是()A.f(1)>f(2)B.f(1)>f(-2)C.f(-1)>f(-2)D.f(-1)<f(2)【答案】D【解析】∵当x≥0时,f(x)=x+1是增函数,∴f(1)<f(2),又∵f(x)为偶函数,∴f(1)=f(-1),f(2)=f(-2),7.已知f(x)是偶函数,对任意的x1,x2∈(-∞,-1],都有(x2-x1)[f(x2)-f(x1)]<0,则下列关系式中成立的是()A.f<f(-1)<f(2)B.f(-1)<f<f(2)C.f(2)<f(-1)<fD.f(2)<f<f(-1)【答案】B【解析】∵对任意的x1,x2∈(-∞,-1],都有(x2-x1)[f(x2)-f(x1)]<0,∴函数f(x)在(-∞,-1]上单调递减,∴f(-2)>f>f(-1).又∵f(x)是偶函数,∴f(-2)=f(2).∴f(-1)<f<f(2).8.定义在区间(-∞,+∞)上的奇函数f(x)为增函数;偶函数g(x)在区间[0,+∞)上的图象与f (x)的图象重合.设a>b>0,给出下列不等式()①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a).其中成立的是()A.①与④B.②与③C.①与③D.②与④【答案】C【解析】因为函数f(x)为增函数,偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合,所以函数g(x)在[0,+∞)上是增函数,在(-∞,0)上是减函数.a>b>0,f(a)>f(b),g(a)>g(b),所以f(a)+g(a)>f(b)+g(b);对于①:f(b)-f(-a)>g(a)-g(-b),即f(b)+f(a)>g(a)-g(b).正确;则②错误;对于③:f(a)-f(-b)>g(b)-g(-a),即f(a)+f(b)>g(b)-g(a).正确;则④错误.9.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0](x1≠x2),有(x2-x1)·[f(x2)-f (x1)]>0,则当n∈N*时,有()A.f(-n)<f(n-1)<f(n+1)B.f(n-1)<f(-n)<f(n+1)C.f(n+1)<f(-n)<f(n-1)D.f(n+1)<f(n-1)<f(-n)【答案】C【解析】由(x2-x1)[f(x2)-f(x1)]>0,得f(x)在x∈(-∞,0]上为增函数.又f(x)为偶函数,∴f(x)在x∈[0,+∞)上为减函数.又f(-n)=f(n)且0≤n-1<n<n+1,∴f(n+1)<f(n)<f(n-1),即f(n+1)<f(-n)<f(n-1).10.若函数f(x)是奇函数,且在(-∞,0)上是增函数,又f(-2)=0,则x·f(x)<0的解集是()A.(-2,0)∪(0,2)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(2,+∞)【答案】A【解析】因为函数f(x)是奇函数,且在(-∞,0)上是增函数,又f(-2)=0,所以可画出符合条件的奇函数f(x)的图象,如图所示.因为x·f(x)<0,所以或结合图象,得到答案为A.11.已知定义在R上的函数f(x)在(-∞,-2)上是减函数,若g(x)=f(x-2)是奇函数,且g(2)=0,则不等式xf(x)≤0的解集是()A.(-∞,-2]∪[2,+∞)B.[-4,-2]∪[0,+∞)C.(-∞,-4]∪[-2,+∞)D.(-∞,-4]∪[0,+∞)【答案】C【解析】g(x)=f(x-2)是把函数f(x)向右平移2个单位得到的,且g(2)=f(0),f(-4)=g (-2)=-g(2)=0,f(-2)=g(0)=0,所以函数f(x)的图象关于点(-2,0)对称,所以当x ≤-4或x≥-2时xf(x)≤0成立.12.设f(x)为奇函数,且在(-∞,0)内是减函数,f(-2)=0,则x·f(x)<0的解集为()A.(-1,0)∪(2,+∞)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(0,2)【答案】C【解析】因为函数f(x)为奇函数,且在(-∞,0)内是减函数,f(-2)=0,所以函数f(x)在(0,+∞)内也是减函数,且f(2)=0.则不等式x·f(x)<0可化为或解得x<-2或x>2.13.若函数f(x)=ax2+(2+a)x+1是偶函数,则函数f(x)的单调增区间为()A.(-∞,0]B.[0,+∞)C.(-∞,+∞)D.[1,+∞)【答案】A【解析】因为函数为偶函数,所以a+2=0,a=-2,即该函数为f(x)=-2x2+1,所以函数的单调增区间为(-∞,0].14.已知函数f(x)=x|x|-2x,则下列结论正确的是________.(填写序号)①f(x)是偶函数,递增区间是(0,+∞);②f(x)是偶函数,递减区间是(-∞,1);③f(x)是奇函数,递减区间是(-1,1);④f(x)是奇函数,递增区间是(-∞,0).【答案】③【解析】将函数f(x)=x|x|-2x去掉绝对值得f(x)=画出函数f(x)的图象,如图,观察图象可知,函数f(x)的图象关于原点对称,故函数f(x)为奇函数,且在(-1,1)上单调递减.15.若f(x)是偶函数,其定义域为(-∞,+∞),且在[0,+∞)上是减函数,设f=m,f=n,则m,n的大小关系是________.【答案】m≥n【解析】因为a2+2a+=(a+1)2+≥,又f(x)在[0,+∞)上是减函数,所以f≤f=f.16.已知函数f(x)=(k-2)x2+(k-1)x+3是偶函数,则f(x)的单调递增区间是________.【答案】(-∞,0]【解析】∵f(x)为偶函数,∴图象关于y轴对称,即k=1,此时f(x)=-x2+3,其单调递增区间为(-∞,0].17.已知函数y=f(x)的图象关于原点对称,且当x>0时,f(x)=x2-2x+3.(1)试求f(x)在R上的解析式;(2)画出函数的图象,根据图象写出它的单调区间.【答案】(1)因为函数f(x)的图象关于原点对称,所以f(x)为奇函数,则f(0)=0.设x<0,则-x>0,因为x>0时,f(x)=x2-2x+3.所以f(x)=-f(-x)=-(x2+2x+3)=-x2-2x-3.于是有f(x)=(2)先画出函数在y轴右侧的图象,再根据对称性画出y轴左侧的图象,如图.由图象可知函数f(x)的单调递增区间是(-∞,-1],[1,+∞),单调递减区间是(-1,0),(0,1).18.设f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=x2+2x,求函数f(x),g(x)的解析式. 【答案】∵f(x)是偶函数,g(x)是奇函数,∴f(-x)=f(x),g(-x)=-g(x),由f(x)+g(x)=2x+x2.①用-x代替x得f(-x)+g(-x)=-2x+(-x)2,∴f(x)-g(x)=-2x+x2,②(①+②)÷2,得f(x)=x2;(①-②)÷2,得g(x)=2x.19.已知函数f(x)=-x3+3x.求证:(1)函数f(x)是奇函数;(2)函数f(x)在区间(-1,1)上是增函数.【答案】(1)显然f(x)的定义域是R.设任意x∈R,因为f(-x)=-(-x)3+3(-x)=-(-x3+3x)=-f(x),所以函数f(x)是奇函数.(2)在区间(-1,1)上任取x1,x2,且x1<x2,则f(x2)-f(x1)=-(x2-x1)(+x2x1+)+3(x2-x1)=(x2-x1)(3--x2x1-).因为-1<x1<x2<1,所以x2-x1>0,(3--x2x1-)>0,所以f(x2)>f(x1).所以函数f(x)=-x3+3x在区间(-1,1)上是增函数.20.已知函数f(x)=ax++c(a,b,c是常数)是奇函数,且满足f(1)=,f(2)=. (1)求a,b,c的值;(2)试判断函数f(x)在区间上的单调性并证明.【答案】(1)∵f(x)为奇函数,∴f(-x)=-f(x),∴-ax-+c=-ax--c,∴c=0,∴f(x)=ax+.又∵f(1)=,f(2)=,∴∴a=2,b=.综上,a=2,b=,c=0.(2)由(1)可知f(x)=2x+.函数f(x)在区间上为减函数.证明如下:任取0<x1<x2<,则f(x1)-f(x2)=2x1+-2x2-=(x1-x2)=(x1-x2).∵0<x1<x2<,∴x1-x2<0,2x1x2>0,4x1x2-1<0.∴f(x1)-f(x2)>0,f(x1)>f(x2).∴f(x)在上为减函数.21.设定义域为R的函数f(x)=(1)在平面直角坐标系内作出函数f(x)的图象,并指出f(x)的单调区间(不需证明);(2)若方程f(x)+2a=0有两个解,求出a的取值范围(只需简单说明,不需严格证明);(3)设定义为R的函数g(x)为奇函数,且当x>0时,g(x)=f(x),求g(x)的解析式.【答案】(1)如图.单调增区间:[-1,0],[1,+∞),单调减区间(-∞,-1],[0,1].(2)在同一坐标系中同时作出y=f(x),y=-2a的图象,由图可知f(x)+2a=0有两个解,须-2a=0或-2a>1,即a=0或a<-.(3)当x<0时,-x>0,所以g(-x)=(-x)2-(-2x)+1=x2+2x+1,因为g(x)为奇函数,所以g(x)=-g(-x)=-x2-2x-1,且g(0)=0,所以g(x)=22.已知函数f(x)=ax+(x≠0,常数a∈R).(1)讨论函数f(x)的奇偶性,并说明理由;(2)若函数f(x)在x∈[3,+∞)上为增函数,求a的取值范围.【答案】(1)定义域(-∞,0)∪(0,+∞),关于原点对称.当a=0时,f(x)=,满足对定义域上任意x,f(-x)=f(x),∴当a=0时,f(x)是偶函数;当a≠0时,f(1)=a+1,f(-1)=1-a,若f(x)为偶函数,则a+1=1-a,a=0矛盾;若f(x)为奇函数,则1-a=-(a+1),1=-1矛盾,∴当a≠0时,f(x)是非奇非偶函数.(2)任取x1>x2≥3,f(x1)-f(x2)=ax1+-ax2-=a(x1-x2)+=(x1-x2)(a-). ∵x1-x2>0,f(x)在[3,+∞)上为增函数,∴a>,即a>+在[3,+∞)上恒成立.∵x1>x2≥3,+<+=,∴a≥.。
函数单调性和奇偶性应用【巩固练习】⑴函数y=(2k+1)x+b 在R 上是减函数,则实数k 的取值范围是 ______⑵函数f(x)=2x 2-mx+3当x ∈[2,+∞)时是增函数,则实数m 的取值范围 _____⑶设f (x)=ax 7+bx +5,已知f(-7)=-17,求f(7)的值。
⑷已知f (x)是奇函数,g(x)是偶函数,且f (x )-g(x )= ,求f(x)、g(x).【学习探究】 一、函数单调性的判断及应用 例1、试讨论函数 上的单调性【变式训练】试讨论函数f(x) 上的单调性,其中a 为非零常数.例2、函数f (x)=x 2-2ax -3在区间[1,2]上单调,则( )A .a ∈(-∞,1]B .a ∈[2,+∞)C .a ∈[1,2]D .a ∈(-∞,1]∪[2,+∞)【变式训练】 已知函数f (x)=x 2+2(a -1)x +2在区间(-∞,4]上是减函数,求实数a 的取值范围.例3、已知f (x)是定义在[-1,1]上的增函数,且f (x -2)〈f (1-x ),求x的取值范围二、函数奇偶性的判断和应用例4.判断下列函数的奇偶性(1)f (x)=5x+3 (2)f (x)=x -2+x 4(3) (4)【例5】已知)(x f 是定义域R 为的奇函数,当0<x 时,2)(2-+=x x x f , 求11+x ),0()0(,)(+∞≠+=在a x a x x f )在(1,1-12-=x ax 2211)(x x x f -++=⎪⎩⎪⎨⎧>++-=<-+=)0(32)0(0)0(32)(22x x x x x x x x f的解析式.三、单调性和奇偶性的的综合应用例1: 设函数()f x 为定义在R 上的偶函数,且()f x 在[0,)+∞为减函数,则(2),(),(3)f f f π--的大小顺序练习:1:()y f x =在(0,2)上是增函数,(2)y f x =+是偶函数,则157(),(),()222f f f 的大小关系2:若函数2()f x x mx n =++,对任意实数x ,都有(1)(3)f x f x -=+成立,试比较(1),(2),(4)f f f - 的大小关系3、已知函数21()4f x ax bx a b=+++是定义在[1,2]a a -上的奇函数,且(1)5f =,求a 、b4、若2()(2)(1)3f x K x K x =-+-+是偶函数,则()f x 的递减区间是 。
函数的单调性、奇偶性综合应用一、利用函数单调性求函数最值例1、已知函数y=f(x)对任意x,y ∈R 均为f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)= -32. (1)判断并证明f(x)在R 上的单调性;(2)求f(x)在[-3,3]上的最大、小值。
思维分析:抽象函数的性质要紧扣定义,并同时注意特殊值的应用。
解:(1)令x=y=0,f(0)=0,令x=-y 可得:f(-x)= -f(x),在R 上任取x 1<x 2,则x 2-x 1>0,所以f(x 2) -f(x 1)=f(x 2)+f(-x 1)=f(x 2-x 1).因为x 1<x 2,所以x 2-x 1>0。
又因为x>0时f(x)<0,所以f(x 2-x 1)<0,即f(x 2)<f(x 1).由定义可知f(x)在R 上是减函数.(2)因为f(x)在R 上是减函数,所以f(x)在[-3,3]上也是减函数.所以f(-3)最大,f(3)最小。
所以f(-3)= -f(3)=2即f(x)在[-3,3]上最大值为2,最小值为-2。
二、复合函数单调性例2、求函数y=322--x x 的单调区间,并对其中一种情况证明。
思维分析:要求出y=322--x x 的单调区间,首先求出定义域,然后利用复合函数的判定方法判断.解:设u=x 2-2x -3,则y=u .因为u ≥0,所以x 2-2x -3≥0.所以x ≥3或x ≤-1.因为y=u 在u ≥0时是增函数,又当x ≥3时,u 是增函数,所以当x ≥3时,y 是x 的增函数。
又当 x ≤-1时,u 是减函数,所以当x ≤-1时,y 是x 的减函数。
所以y=322--x x 的单调递增区间是[3,+ ∞),单调递减区间是(-∞,-1]。
证明略三、利用奇偶性,讨论方程根情况例3、已知y=f(x)是偶函数,且图象与x 轴四个交点,则方程f(x)=0的所有实根之和是( )A.4B.2C.0D.不知解析式不能确定 思维分析:因为f(x)是偶函数且图象与x 轴有四个交点,这四个交点每两个关于原点一定是对称的,故x 1+x 2+x 3+x 4=0.答案:C四、利用奇偶性,单调性解不等式例4、设f(x)是定义在[-2,2]上的偶函数,当x ≥0时,f(x)单调递减,若f(1-m)<f(m)成立,求m 的取值范围。
有关函数单调性、奇偶性的综合应用函数的单调性是对于函数定义域内某个子区间而言的“局部”性质,它反映了函数()f x 在区间上函数值的变化趋势;函数的奇偶性是相对于函数的定义域来说的“整体”性质,主要讨论的是函数的对称性.作为函数的两个最重要的性质,我们往往将二者结合起来研究.本文将针对这一方面的综合应用举例说明.例1 已知()y f x =是奇函数,它在(0,)+∞上是增函数,且()0f x <,试问1()()F x f x =在(,0)-∞上是增函数还是减函数?证明你的结论. 【分析】根据函数的单调性的定义,可以设210x x x ∆=-<,进而判断21()()Y F x F x ∆=-2111()()f x f x =-=1212()()()()f x f x f x f x - 的正负号. 【解析】任取12(,0)x x ∈-∞、,且210x x x ∆=-<,则有21()()0x x x -∆=--->. ()y f x =在(0,)+∞上是增函数,且()0f x <,∴12()()0f x f x ---<,又 ()y f x =是奇函数,∴()()f x f x -=-所以12()()0f x f x ->.于是21()()Y F x F x ∆=-2111()()f x f x =-=1212()()()()f x f x f x f x - 0>, ∴1()()F x f x =在(,0)-∞上是减函数. 【评析】本题最容易发生的错误是一开始就在(0,)+∞内任取21x x <,展开证明,这样就不能保证12,x x --在(,0)-∞内的任意性而导致错误.例2 已知函数()y f x =,(1,1)x ∈-,即是偶函数又是减函数,解不等式(1)(23)0f x f x -+-<.【解析】先求(1)(23)f x f x -+-的定义域:1111231x x -<-<⎧⎨-<-<⎩得0212x x <<⎧⎨<<⎩,∴定义域为{|12}x x <<∴不等式(1)(23)0f x f x -+-<即可写为:(1)[(23)]0f x f x ----<, 因为函数()y f x =是偶函数,有(23)(23)f x f x --=-,原不等式就是(1)(23)0f x f x ---<,已知函数是减函数,所以(1)(23)0x x x ∆=--->,即43x <, 由于x ∈{|12}x x <<,所以原不等式解集为:4{|1}3x x <<. 【评析】利用函数的性质,将不等式(1)(23)0f x f x -+-<中函数符号f 去掉,化为普通的不等式,同时要注意函数的定义域对x 的限制.。
函数单调性与奇偶性综合运用例1;设定义在[−3,3]上的偶函数f(x)在[0,3]上是单调递增,当f(a−1)<f(a)时,求a的取值范围.解:∵f(a−1)<f(a) ∴f(|a−1|)<f(|a|)而|a−1|,|a|∈[0,3].例2;定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间的图象与f(x)的图象重合,设a>b>0,给出下列不等式,其中成立的是_________.①f(b)−f(−a)>g(a)−g(−b);②f(b)−f(−a)<g(a)−g(−b);③f(a)−f(−b)>g(b)−g(−a);④f(a)−f(−b)<g(b)−g(−a).答案:①③.例3;设a为实数,函数f(x)=x2+|x−a|+1,x∈R,试讨论f(x)的奇偶性,并求f(x)的最小值.解:当a=0时,f(x)=x2+|x|+1,此时函数为偶函数;当a≠0时,f(x)=x2+|x−a|+1,为非奇非偶函数.(1)当x≥a时,[1]且[2]上单调递增,上的最小值为f(a)=a2+1.(2)当x<a时,[1]上单调递减,上的最小值为f(a)=a2+1[2]上的最小值为.小练习;选择题1.下面说法正确的选项( )A.函数的单调区间就是函数的定义域B.函数的多个单调增区间的并集也是其单调增区间C.具有奇偶性的函数的定义域定关于原点对称D.关于原点对称的图象一定是奇函数的图象2.在区间上为增函数的是( )A.B.C.D.3.已知函数为偶函数,则的值是( )A. B. C. D.4.若偶函数在上是增函数,则下列关系式中成立的是( )A.B.C.D.5.如果奇函数在区间上是增函数且最大值为,那么在区间上是( )A.增函数且最小值是B.增函数且最大值是C.减函数且最大值是D.减函数且最小值是6.函数f(x)是定义在[−6,6]上的偶函数,且在[−6,0]上是减函数,则( )A. f(3)+f(4)>0B. f(−3)−f(2)<0C. f(−2)+f(−5)<0D. f(4)−f(−1)>0 7.若函数在上是单调函数,则的取值范围是( ) A.B.C.D.8.若是偶函数,其定义域为,且在上是减函数,则的大小关系是( )A.>B.<C.D.填空题1.设奇函数的定义域为,若当时,的图象如右图,则不等式的解是____________.2.已知定义在上的奇函数,当时,,那么时,______.3.若函数在上是奇函数,则的解析式为________. 4.奇函数在区间上是增函数,在区间上的最大值为8,最小值为−1,则__________.5.若函数在上是减函数,则的取值范围为__________.6.若在区间上是增函数,则的取值范围是________.解答题1. 已知函数f(x)=x2−2ax+a2−1.(1)若函数f(x)在区间[0,2]上是单调的,求实数a的取值范围;(2)当x∈[−1,1]时,求函数f(x)的最小值g(a).解:(1)∵f(x)=(x−a)2−1 ∴a≤0或a≥2(2)1°当a<−1时,如图1,g(a)=f(−1)=a2+2a2°当−1≤a≤1时,如图2,g(a)=f(a)=−13°当a>1时,如图3,g(a)=f(1)=a2−2a,如图2. 已知函数f(x)在定义域(0,+∞)上为增函数,f(2)=1,且定义域上任意x、y都满足f(xy)=f(x)+f(y),解不等式:f(x)+f(x−2)≤3.解:令x=2,y=2,∴f(2×2)=f(2)+f(2)=2 ∴f(4)=2再令x=4,y=2,∴f(4×2)=f(4)+f(2)=2+1=3 ∴f(8)=3∴f(x)+f(x−2)≤3可转化为:f[x(x−2)]≤f(8).3. 判断函数上的单调性,并证明.证明:任取0<x1<x2,∵0<x1<x2,∴x1−x2<0,x1·x2>0(1)当时0<x1·x2<1,∴x1·x2−1<0∴f(x1)−f(x2)>0即f(x1)>f(x2)上是减函数.(2)当x1,x2∈(1,+∞)时,上是增函数.难点:x1·x2−1的符号的确定,如何分段.4.已知函数的定义域为,且同时满足下列条件:(1)是奇函数;(2)在定义域上单调递减;(3)求的取值范围.解:,则,5.已知函数的定义域为,且对任意,都有,且当时,恒成立,证明:(1)函数是上的减函数;(2)函数是奇函数.证明:(1)设,则,而∴∴函数是上的减函数;(2)由得即,而∴,即函数是奇函数.6.设函数与的定义域是且,是偶函数,是奇函数且,求和的解析式.解:∵是偶函数,是奇函数,∴,且而,得,即,∴,.7.已知函数的定义域是,且满足,,如果对于,都有,(1)求;(2)解不等式. 解:(1)令,则(2),则.8.已知函数的最大值不大于,又当,求的值. 解:,对称轴,当时,是的递减区间,而,即与矛盾,即不存在;当时,对称轴,而,且即,而,即∴.。
类型二、求函数的单调区间2. 判断下列函数的单调区间;(1)y=x2-3|x|+2;(2)解:(1)由图象对称性,画出草图∴f(x)在上递减,在上递减,在上递增.(2)∴图象为∴f(x)在上递增.举一反三:【变式1】求下列函数的单调区间:(1)y=|x+1|;(2)(3).解:(1)画出函数图象,∴函数的减区间为,函数的增区间为(-1,+∞);(2)定义域为,其中u=2x-1为增函数,在(-∞,0)与(0,+∞)为减函数,则上为减函数;(3)定义域为(-∞,0)∪(0,+∞),单调增区间为:(-∞,0),单调减区间为(0,+∞). 类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值)3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小.解:又f(x)在(0,+∞)上是减函数,则.4. 求下列函数值域:(1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1);(2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2].1)f(x)在[5,10]上单增,;2);(2)画出草图1)y∈[f(1),f(-1)]即[2,6];2).举一反三:【变式1】已知函数.(1)判断函数f(x)的单调区间;(2)当x∈[1,3]时,求函数f(x)的值域.解:(1)上单调递增,在上单调递增;(2)故函数f(x)在[1,3]上单调递增∴x=1时f(x)有最小值,f(1)=-2 x=3时f(x)有最大值∴x∈[1,3]时f(x)的值域为.5. 已知二次函数f(x)=x2-(a-1)x+5在区间上是增函数,求:(1)实数a的取值范围;(2)f(2)的取值范围.解:(1)∵对称轴是决定f(x)单调性的关键,联系图象可知只需;(2)∵f(2)=22-2(a-1)+5=-2a+11又∵a≤2,∴-2a≥-4∴f(2)=-2a+11≥-4+11=7 .举一反三:【变式1】(2011 北京理13)已知函数,若关于x的方程有两个不同的实根,则实数k的取值范围是________.解:单调递减且值域(0,1],单调递增且值域为,由图象知,若有两个不同的实根,则实数k的取值范围是(0,1).类型四、判断函数的奇偶性6. 判断下列函数的奇偶性:(1)(2)(3)f(x)=x2-4|x|+3(4)f(x)=|x+3|-|x-3| (5)(6(7)解:(1)∵f(x)的定义域为,不关于原点对称,因此f(x)为非奇非偶函数;(2)∵x-1≥0,∴f(x)定义域不关于原点对称,∴f(x)为非奇非偶函数;(3)对任意x∈R,都有-x∈R,且f(-x)=x2-4|x|+3=f(x),则f(x)=x2-4|x|+3为偶函数;(4)∵x∈R,f(-x)=|-x+3|-|-x-3|=|x-3|-|x+3|=-f(x),∴f(x)为奇函数;(5),∴f(x)为奇函数;(6)∵x∈R,f(x)=-x|x|+x ∴f(-x)=-(-x)|-x|+(-x)=x|x|-x=-f(x),∴f(x)为奇函数;(7),∴f(x)为奇函数.举一反三:【变式1】判断下列函数的奇偶性:(1);(2)f(x)=|x+1|-|x-1|;(3)f(x)=x2+x+1;(4).思路点拨:利用函数奇偶性的定义进行判断.解:(1);(2)f(-x)=|-x+1|-|-x-1|=-(|x+1|-|x-1|)=-f(x) ∴f(x)为奇函数;(3)f(-x)=(-x)2+(-x)+1=x2-x+1∴f(-x)≠-f(x)且f(-x)≠f(x) ∴f(x)为非奇非偶函数;(4)任取x>0则-x<0,∴f(-x)=(-x)2+2(-x)-1=x2-2x-1=-(-x2+2x+1)=-f(x)任取x<0,则-x>0 f(-x)=-(-x)2+2(-x)+1=-x2-2x+1=-(x2+2x-1)=-f(x)x=0时,f(0)=-f(0) ∴x∈R时,f(-x)=-f(x) ∴f(x)为奇函数.类型五、函数奇偶性的应用(求值,求解析式,与单调性结合)7.已知f(x)=x5+ax3-bx-8,且f(-2)=10,求f(2).解:法一:∵f(-2)=(-2)5+(-2)3a-(-2)b-8=-32-8a+2b-8=-40-8a+2b=10∴8a-2b=-50 ∴f(2)=25+23a-2b-8=8a-2b+24=-50+24=-26法二:令g(x)=f(x)+8易证g(x)为奇函数∴g(-2)=-g(2) ∴f(-2)+8=-f(2)-8∴f(2)=-f(-2)-16=-10-16=-26.举一反三:【变式1】(2011 湖南文12)已知为奇函数,,则为:解:,又为奇函数,所以.8. f(x)是定义在R上的奇函数,且当x<0时,f(x)=x2-x,求当x≥0时,f(x)的解析式,并画出函数图象.解:∵奇函数图象关于原点对称,∴x>0时,-y=(-x)2-(-x)即y=-x2-x又f(0)=0,,如图9.设定义在[-3,3]上的偶函数f(x)在[0,3]上是单调递增,当f(a-1)<f(a)时,求a的取值范围.解:∵f(a-1)<f(a) ∴f(|a-1|)<f(|a|)而|a-1|,|a|∈[0,3].类型六、综合问题10.定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间的图象与f(x)的图象重合,设a>b>0,给出下列不等式,其中成立的是_________.①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a).答案:①③.11. 求下列函数的值域:(1)(2)(3)思路点拨:(1)中函数为二次函数开方,可先求出二次函数值域;(2)由单调性求值域,此题也可换元解决;(3)单调性无法确定,经换元后将之转化为熟悉二次函数情形,问题得到解决,需注意此时t 的范围.解:(1);(2)经观察知,,;(3)令.12. 已知函数f(x)=x2-2ax+a2-1.(1)若函数f(x)在区间[0,2]上是单调的,求实数a的取值范围;(2)当x∈[-1,1]时,求函数f(x)的最小值g(a),并画出最小值函数y=g(a)的图象.解:(1)∵f(x)=(x-a)2-1 ∴a≤0或a≥2(2)1°当a<-1时,如图1,g(a)=f(-1)=a2+2a2°当-1≤a≤1时,如图2,g(a)=f(a)=-13°当a>1时,如图3,g(a)=f(1)=a2-2a,如图13. 已知函数f(x)在定义域(0,+∞)上为增函数,f(2)=1,且定义域上任意x、y都满足f(xy)=f(x)+f(y),解不等式:f(x)+f(x-2)≤3.解:令x=2,y=2,∴f(2×2)=f(2)+f(2)=2 ∴f(4)=2再令x=4,y=2,∴f(4×2)=f(4)+f(2)=2+1=3 ∴f(8)=3∴f(x)+f(x-2)≤3可转化为:f[x(x-2)]≤f(8).14. 判断函数上的单调性,并证明.证明:任取0<x1<x2,∵0<x1<x2,∴x1-x2<0,x1·x2>0(1)当时0<x1·x2<1,∴x1·x2-1<0∴f(x1)-f(x2)>0即f(x1)>f(x2)上是减函数.(2)当x1,x2∈(1,+∞)时,上是增函数.15. 设a为实数,函数f(x)=x2+|x-a|+1,x∈R,试讨论f(x)的奇偶性,并求f(x)的最小值. 解:当a=0时,f(x)=x2+|x|+1,此时函数为偶函数;当a≠0时,f(x)=x2+|x-a|+1,为非奇非偶函数.(1)当x≥a时,[1]且[2]上单调递增,上的最小值为f(a)=a2+1.(2)当x<a时,[1]上单调递减,上的最小值为f(a)=a2+1[2]上的最小值为综上:.。
函数单调性和奇偶性
【巩固练习】
⑴函数y=(2k+1)x+b 在R 上是减函数,则实数k 的取值范围是 ______ ,实数b 的取值范围是 _____
⑵函数f(x)=2x 2-mx+3当x ∈[2,+∞)时是增函数,则实数m 的取值范围 _____ ⑶设f(x)=ax 7
+bx +5,已知f(-7)=-17,求f(7)的值.
⑷已知f(x)是奇函数,g(x)是偶函数,且f(x)-g(x)=
,求f(x)、g(x).
一、函数单调性的判断及应用 例1、试讨论函数 上的单调性
【变式训练】试讨论函数f(x) 上的单调性,其中a 为非零常数。
例2、函数f(x)=x 2-2ax -3在区间[1,2]上单调,则( )
A .a ∈(-∞,1]
B .a ∈[2,+∞)
C .a ∈[1,2]
D .a ∈(-∞,1]∪[2,+∞)
【变式训练】已知函数f(x)=x 2+2(a -1)x +2在区间(-∞,4]上是减函数,求实数a 的取值范围.
例3、已知f(x)是定义在[-1,1]上的增函数,且f(x -2)<f(1-x),求x 的取值范围
11+x ),0()0(,)(+∞≠+=在a x a x x f )在(1,1-12-=x ax
二、函数奇偶性的判断和应用
例4.判断下列函数的奇偶性
(1)f(x)=5x+3 (2)f(x)=x -2+x 4
【例5】已知)(x f 是定义域R 为的奇函数,当0<x 时,2)(2-+=x x x f , 求的解析式.
三、单调性和奇偶性的的综合应用
例1: 设函数()f x 为定义在R 上的偶函数,且()f x 在[0,)+∞为减函数,则(2),(),(3)f f f π--的大小顺序
练习:
1:()y f x =在(0,2)上是增函数,(2)y f x =+是偶函数,则157(),(),()222
f f f 的大小关系
2:若函数2()f x x mx n =++,对任意实数x ,都有(1)(3)f x f x -=+成立,试比较(1),(2),(4)f f f - 的大小关系
3、已知函数21()4f x ax bx a b
=+++是定义在[1,2]a a -上的奇函数,且(1)5f =,求a 、b
4、若2()(2)(1)3f x K x K x =-+-+是偶函数,则()f x 的递减区间是 。
例2:已知()y f x =在定义域(1,1)-上是增函数且为奇函数,(1)(21)0f t f t -+-<,求实数t 的取值范围.
例3:已知()f x 是定义在R 上的奇函数,当0x >时,2()31f x x x =+-,
求()f x 的解析式.
例4:函数()y f x =是[2,2]-上的偶函数,当[0,2]x ∈时,()f x 是减函数,解不等式(1)()f x f x -<。
练习:已知()f x 是定义在(1,1)-的偶函数,且在(0,1)上为增函数,若(2)(3)f a f a -<-,求a 的取值范围。
例5:已知函数()f x 是R 上的奇函数且是增函数,解不等式(45)0f x -+>。
练习:1.()f x 是定义在(0,)+∞上的增函数,且()()()x f f x f y y
=-。
(1)求(1)f 的值; (2)若(6)1f =,解不等式1(3)()23
f x f +-<。
2.R +上的增函数满足()()()f xy f x f y =+,且(8)3f =,解不等
式(2)(2)f f x +-≥6
【课后作业】
1.若2(3)21f x x =-,则()f x 的解析式为 。
2.求函数定义域(1)5()||3
x f x x -=- (2)11y x x =-+- 3.已知2211()1f x x x x
-=++,则函数()f x 的解析式 4.函数822+--=x x y 的单调增区间为
5.已知函数2()(2)(1)3f x m x m x =-+-+是偶函数,则实数m 的值
6.已知函数53()8f x x ax bx =++-若(2)10f -=,则(2)f 的值
7.定义在实数集上的函数()f x ,对任意x y R ,∈,有f x y f x y f x f y ()()()()++-=2且
f ()00≠.(1)求证f ()01=;
(2)求证:y f x =()是偶函数。
8.已知定义在R 上的偶函数()f x 在区间[0,)+∞上是单调增函数,若(1)(lg )f f x <,求x 的取值
范围.
9. 函数2()1ax b f x x +=+是定义在(1,1)-上的奇函数,且12()25
f =. (1)确定函数()f x 的解析式;
(2)用定义证明()f x 在(1,1)-上是增函数;
(3)解不等式(1)()0f t f t -+<.
例6:定义在(-1,1)上的奇函数f(x)在整个定义域上是减函数,若f(1-a)+f(1-3a)<0,求实数a 的取值范围.
【变式练习】
已知f(x)是奇函数,且在[3,7]是增函数且最大值为4,那么f(x)在[-7,-3]上是 ____ 函数,且最_____值是_________ .
【课后作业】
1.已知函数f (x)是定义在(0,+∞)上的增函数,且f (2)=1,且f (x+5)<1,求x的取值范围
2.已知函数f (x)是R上的偶函数,在[0,+∞)上是减函数,且f (2)=0,求不等
式x f (x)<0的解.
3.已知函数f (x)是定义在[-2,2]上的减函数,且f (3x)<f (x+1),求x的取值范围.。