北师大版七年级上
- 格式:ppt
- 大小:561.50 KB
- 文档页数:18
新北师大版七年级英语上册电子课本第一单元:My Classmates1.1 重点词汇1. classmate2. teacher3. student4. friend5. man6. woman7. school8. class9. floor10. desk1.2 语法点1. 一般现在时2. 名词所有格1.3 功能句型1. What's your name?2. My name is...3. What class are you in?4. I'm in Class...5. What does your mother do?6. She's a...第二单元:My Family 2.1 重点词汇1. family2. father3. mother4. brother5. sister6. son7. daughter8. grandma9. grandpa10. uncle2.2 语法点1. 一般现在时2. 家庭成员的介绍2.3 功能句型1. This is my...2. She's a...3. He's a...4. They are...第三单元:My School3.1 重点词汇1. school2. subject3. teacher4. student5. class6. library7. laboratory8. playground9. basketball10. football 3.2 语法点1. 一般现在时2. 名词所有格3.3 功能句型1. What subject do you like?2. I like...3. What time does your class start?4. It starts at...第四单元:My Hobbies4.1 重点词汇1. hobby2. read3. write4. swim5. play6. listen7. music8. watch9. movie10. sports4.2 语法点1. 一般现在时2. 动词短语4.3 功能句型1. What's your hobby?2. I like...3. Do you like...?4. Yes, I do. No, I don't.第五单元:Food and drinks 5.1 重点词汇1. food2. drink3. meat4. fish5. vegetable6. fruit7. rice8. bread9. milk10. water5.2 语法点1. 一般现在时2. 食物和饮料的名称5.3 功能句型1. What do you like to eat/drink?2. I like...3. Do you like...?4. Yes, I do. No, I don't.第六单元:Healthy Lifestyle6.1 重点词汇1. healthy2. lifestyle3. exercise4. sleep5. diet6. smoke7. drink8. coffee9. tea10. sugar6.2 语法点1. 一般现在时2. 形容词和副词6.3 功能句型1. What's a healthy lifestyle?2. A healthy lifestyle includes...3. Do you have a healthy lifestyle?4. Yes, I do. No, I don't.第七单元:Animals7.1 重点词汇1. animal2. cat3. dog4. fish5. bird6. elephant7. tiger8. lion9. bear10. panda7.2 语法点1. 一般现在时2. 动物的名称7.3 功能句型1. What's this animal?2. It's a...3. Do you like this animal?4. Yes, I do. No, I don't. 第八单元:Seasons 8.1 重点词汇1. season2. spring3. summer4. autumn5. winter6. hot7. cold8. warm9. cool10. sunny8.2 语法点1. 一般现在时2. 季节的名称和描述8.3 功能句型1. What season is it?2. It's...3. Do you like this season?4. Yes, I do. No, I don't.参考答案请参考课本末尾的参考答案部分,以获取本册英语电子课本的练题和测试题的答案。
七年级上册北师大数学
七年级上册北师大数学主要包括以下内容:
1. 有理数及其运算:包括有理数的概念、数轴、相反数、绝对值、加减法、乘除法、乘方等。
2. 代数式与方程:包括代数式的概念、单项式与多项式、合并同类项、去括号、方程的概念、一元一次方程的解法等。
3. 图形与几何:包括直线、射线、线段、角的度量、角的比较与运算、余角和补角、平行线的性质和判定、相交线和平行线、对称图形等。
4. 统计与概率:包括数据的收集与整理、统计表和统计图、平均数、中位数、众数、方差和标准差等。
此外,还包括一些数学史和数学文化方面的内容,如古代数学家的贡献、数学在现代生活中的应用等。
在学习过程中,学生需要掌握各个知识点的基本概念和性质,能够运用所学知识解决一些实际问题,同时培养数学思维和解决问题的能力。
此外,学生还需要注意数学语言的规范性和准确性,逐步提高数学表达的能力。
第一章丰富的图形世界☺柱体的上、下两个面是能完全重合的,☺棱柱的上、下两个面能完全重合,侧面的棱与上、下底面垂直.☺锥体只有一个下底面,如圆锥的下底面是圆,向上慢慢集中成一个锥尖(一个点).母线与下底面成一锐角;棱锥的下底面为多边形,侧棱与下底面不垂直,☺图形是由点,线,面构成的:(1)几何体都是由面围成的,有的几何体是由平面围成的,有的几何体是由曲面围成的,有的几何体是由平面和曲面共同围成的.如:长方体有六个面,都是平的;圆柱有两个底面是平的,侧面是曲的;球体有一个面,是曲的.(2)几何体中面与面相交的地方形成线,线与线相交的地方形成点,面与面相交形成线.如:长方体中,面与面相交形成的线是直线,而在圆柱中,两个底面与侧面相交所形成的线是曲线,在长方体中,线与线相交有8个点;线是由无数个点组成的。
点动成线,成面,面动成体。
☺表面展开图:把一个几何体的表面展开成平面图形,这个平面图形称为相应几何体的表面展开图.☺棱柱的表面展开图:棱柱的上、下底面的形状、大小一样,侧面由长方形组成,几棱柱的表面展开图由几个长方形和两个底面组成。
平面图形折叠成棱柱与棱柱展开成平面图形是互逆过程。
☺圆柱的表面展开图是由两个相同的圆和一个长方形组成的。
要展开一个圆柱体,得先展开两个底面圆,然后展开侧面(垂直底面剪一刀即可);☺圆锥的表面展开图是由一个圆和一个扇形组成。
圆锥和棱锥的表面展开图,也要先将底面剪开,再将侧面展开。
正方体的表面展开图是由6个大小完全相同的正方形组成,由于在剪开的棱上选择不一样,所以展开图有11种,如下图所示。
凡是出现“田”形的一定不是,凡是出现“凹”形的也一定不是,五连长链和六连长链均不是正方体的展开图。
截面:用一个平面去截一个几何体,截出的面叫做截面。
用平面截几何体所得截面的形状(1)用平面截几何体时,几何体的形状不同,截的方向不同,所得截面的形状可能不同;(2)截面的形状一般随着截法的改变而改变,多为多边形和圆,也可能为不规则图形;(3)一般情况下,截面与几何体的几个面相交,就得到几条交线,截面就是几边形。
北师大版数学七年级上册知识点一、有理数。
1. 有理数的概念。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
例如:3是正整数,-5是负整数,(1)/(2)是分数,0.25=(1)/(4)是有限小数属于分数,0.3̇=(1)/(3)是无限循环小数属于分数。
2. 数轴。
- 规定了原点、正方向和单位长度的直线叫做数轴。
- 数轴上的点与有理数的关系:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数(还可以表示无理数)。
例如,2在数轴上原点右侧2个单位长度处,-1.5在原点左侧1.5个单位长度处。
3. 相反数。
- 只有符号不同的两个数叫做互为相反数。
0的相反数是0。
例如,3和-3互为相反数,-(2)/(3)的相反数是(2)/(3)。
- 在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等。
4. 绝对值。
- 正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
即| a|=a(a > 0) 0(a = 0) -a(a < 0)。
例如,|5| = 5,| - 3|=3。
- 两个负数比较大小,绝对值大的反而小。
如-5和-3,| - 5| = 5,| - 3|=3,因为5>3,所以-5 < - 3。
5. 有理数的加减法。
- 有理数加法法则:- 同号两数相加,取相同的符号,并把绝对值相加。
例如,3 + 5=8,-2+(-3)=-(2 + 3)=-5。
- 异号两数相加,绝对值相等时和为0(互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
例如,3+(-2)=3 - 2 = 1,-5+3=-(5 - 3)=-2。
- 一个数同0相加,仍得这个数。
- 有理数减法法则:减去一个数,等于加上这个数的相反数。
例如,5-3 =5+(-3)=2,3-5 = 3+(-5)=-2。
6. 有理数的乘除法。
北师大版数学七年级上册4.1《线段、射线、直线》教案一. 教材分析《线段、射线、直线》是北师大版数学七年级上册第4章的第一节内容。
本节内容主要让学生了解线段、射线和直线的定义及其性质,掌握它们的表示方法,并为后续学习几何图形打下基础。
教材通过生动的实例和丰富的图形,引导学生观察、思考、探索,从而掌握线段、射线和直线的基本概念。
二. 学情分析七年级的学生已经具备了一定的空间想象能力和逻辑思维能力,他们对平面几何图形有一定的了解。
但对于线段、射线和直线的定义及性质,他们可能还比较陌生。
因此,在教学过程中,教师需要借助图形和实例,让学生直观地理解这些概念,并能够运用它们解决实际问题。
三. 教学目标1.了解线段、射线和直线的定义及其性质。
2.能够正确表示线段、射线和直线。
3.培养学生的空间想象能力和逻辑思维能力。
4.学会运用线段、射线和直线解决实际问题。
四. 教学重难点1.重点:线段、射线和直线的定义及其性质。
2.难点:线段、射线和直线的表示方法。
五. 教学方法1.采用直观演示法,通过展示实物和图形,让学生直观地理解线段、射线和直线的概念。
2.采用引导发现法,引导学生观察、思考、探索,从而发现线段、射线和直线的性质。
3.采用实践操作法,让学生动手画图,巩固所学知识。
4.采用分组合作法,让学生分组讨论,培养团队协作能力。
六. 教学准备1.准备相关的实物和图形,如直尺、射线枪等。
2.准备多媒体教学课件,包括线段、射线、直线的动画演示。
3.准备练习题和课后作业。
七. 教学过程1.导入(5分钟)利用实物和图形,引导学生观察、思考,让学生举例说明生活中常见的线段、射线和直线。
例如,教室里的地板砖可以看作是矩形,而地板砖的边可以看作是线段、射线或直线。
2.呈现(10分钟)通过多媒体课件,展示线段、射线和直线的动画演示,让学生直观地了解它们的定义和性质。
同时,教师引导学生发现线段、射线和直线的共同特点和不同之处。
3.操练(10分钟)让学生分组合作,每组选择一种线段、射线或直线,用直尺和射线枪进行实际操作,画出相应的图形。
北师大版七年级上册数学教案(精选5篇)北师大版七班级上册数学教案精选篇1教学目标1、学问:熟悉简洁的空间几何棱柱、圆柱、圆锥、球等,把握其中的相同之处和不同之处2、力量:通过比较,学会观看物体间的特征,体会几何体间的联系和区分,并能依据几何体的特征,对其进行简洁分类。
3、情感:有意识地引导同学乐观参加到数学活动过程中,培育与他人合作沟通的力量。
教学重点:熟悉一些基本的几何体,并能描述这些几何体的特征教学难点:描述几何体的特征,对几何体进行分类。
教学过程:一、设疑自探1.创设情景,导入新课在学校的时候学习了那些平面图形和几何图形,在生活你还见到那些几何体?2.同学设疑让同学自己先思索再提问3.老师整理并出示自探题目①生活常见的几何体有那些?②这些几何体有什么特征③圆柱体与棱柱体有什么的相同之处和不同之处④圆柱体与圆锥体有什么的相同之处和不同之处⑤棱柱的分类⑥几何体的分类4.同学自探(并有简明的自学方法指导)举例说说生活中的物体那些类似圆柱、圆锥、正方体、长方体、棱柱、球体?说说它们的区分二、解疑合探1.针对圆柱、圆锥、正方体、长方体、棱柱、球体特征的熟悉不彻底进行再探2、对这些类似圆柱、圆锥、正方体、长方体、棱柱、球体的分类2.活动原则:学困生回答,中等生补充、优等生评价,老师引领点拨提升总结。
三、质疑再探:说说你还有什么怀疑或问题(由同学或老师来解答所提出的问题)四、运用拓展:1.引导同学自编习题。
请结合本节所学的学问举例说明生活简洁基本的几何体,并说说其特征2.老师出示运用拓展题。
(要依据教材内容尽可能要试题类型全面且有代表性)3.课堂小结4.作业布置五、教后反思北师大版七班级上册数学教案精选篇2一、教学目标:通过观看生活中的大量物体,熟悉基本的几何体。
经过比较不同的物体学会观看物体间的不同特征,体会几何体间的联系与区分。
二、教学过程:1、引入:(1)幻灯投影P2的彩图,利用现实生活的背景让同学说出熟识的几何体(如球体、长方体、正方体等) (2)展出圆柱、圆锥、正方体、棱柱、球的模型,让同学分别说出这几种几何体的名称。
第一章丰富的图形世界第一课时介绍单元整体说明本章在小学数学和中学数学的联系中起着承上启下的作用。
编写本章的目的在于:(1)帮助学生梳理小学的数学知识和数学方法。
(2)为学生学习中学数学作必要的准备。
本章较充分地体现了课程标准的基本理论,学习本章将为其他各章的学习提供了一个示范。
本章体现的数学思想方法、数学人文精神、数学应用意识、数学价值观等都应该在其他各章的学习中得到贯彻。
本章按照如下线索展开内容:数学伴我成长——人类离不开数学——人人都能学会数学——让我们来做数学贯穿于内容的始终。
课程内容标准使学生初步认识到数学与现实世界的密切联系,懂得数学的价值,形成用数学的意识。
使学生初步体验到数学是一个充满着观察、实验、归纳、类比和猜测的探索过程。
使学生对数学产生一定的兴趣,获得学好数学的自信心。
使学生学会与他人合作,养成独立思考与合作交流的习惯。
使学生在数学活动中获得对数学良好的感性认识,初步体验到什么是“做数学”。
结构体系单元教学建议鉴于本章承上启下的特点,故教材内容只是给教师提供一个教学思路,教师可根据教学目标,结合学生的具体情况,补充适当的素材,灵活安排教学内容,调节课时数。
教学的总要求是以学生为主体,使学生在活动中主动构建对数学的认识,具体应注意以下几点:1.适当补充一些能引起学生学习兴趣的素材。
2.注意引导学生通过实验得出结论。
如第3页的练习第2题、第5页的练习第2题、习题1.1的第3题与第4题、第11页的练习第1题以及习题1.2的第6题都应该让学生通过实验,主动探索得出结论。
3.通过多媒体演示,帮助学生理解。
如第3页的练习第2题、第5页的练习第2题、习题1.1的第3题与第4题以及第11页的练习第1题等都可以通过多媒体的演示来帮助学生理解。
4.给学生提供实地考察、调查的机会。
有条件的话,应给让学生实地考察一些生产、生活中应用数学的例子。
5.给学生提供合作、讨论与自我展示的机会。
本章应尽可能多地采用小组学习形式。
2024生物新教材培训:北师大版初中生物学七年级上册教学建议通过小学科学的学习及生活经验,学生具备了一定的生物学知识和能力,但刚升入初中接触生物学这门学科,学生仍然觉得新奇而陌生。
尤其面对微观且需要抽象思维的“细胞结构”“生物体的结构层次”及物质与能量变化相结合的“光合作用和呼吸作用”,学生常常感觉比较困难,不易区分。
因此,七年级的生物教学需要教师充分调动学生学习的积极性,开展行之有效的活动,帮助学生在观察理解的基础上进行分析,形成生物学的重要概念,并逐步建立生物学核心素养。
1.教材内容由浅入深,带领学生感知生物及生物学在身边,激发学生像科学家一样探究的兴趣学生天生对自然界充满兴趣,他们喜欢自然界的花草树木、虫鱼鸟兽。
教材引言“走进生命世界”从学生熟悉的生物说起,呈现了很多个“为什么”,肯定学生强烈的好奇心和求知欲。
在第1单元“探索生命奥秘”中开始带领学生走进真正的“生命学”课堂,从区别生物与非生物开始,认识生物学家的活动、生物学发展的历程,生物学研究的基本方法等,由易向难,为学生进一步的学习打下能力基础。
第2单元利用显微镜观察肉眼看不见的微观世界——细胞、草履虫等,学生成就感油然而生;第3单元学生像科学家一样设计实验,观察到植物的光合作用、呼吸作用等现象,观察植物从种子萌发、植物生长到开花结果的生命历程,习以为常的生命世界在学生眼中开始变得不一样,丰富的活动让他们既有兴趣也有能力在课下进一步研究感兴趣的生命现象。
2.充分利用教材内容,在教学中注重培养学生的生物学核心素养从内容上,本册教材的教学是培养和提升学生生物学核心素养的良好载体。
(1)充分利用教材内容,促进学生形成结构与功能相适应、部分与整体相统一、物质变化与能量转化相伴发生等生命观念。
生物体的结构与功能相适应,体现在生物体的各个结构层次:细胞、组织、器官、系统和个体,也贯穿整个生物学的研究和学习。
教师在第2章“细胞”的教学中,要引导学生通过“观察、制作模型”等学习过程,认同和形成细胞结构与功能相适应的生命观点;在第3章“生物体的结构层次”的教学中,帮助学生从微观和宏观两个尺度学习和认识生物体的结构层次,阐明生物体在结构和功能上相适应并形成一个有机整体,初步形成部分与整体相统一的生命观念。
第一章:丰富的图形世界考点1:三视图例题1:如图是某几何体的从正面、左面、上面看,所得到的图形,它对应的几何体是下图中的( )A. B. C. D.例题2:下面的正六棱柱从正方向看的图形是( )A. B. C. D.例题3:如图是由小立方块构成的立体图形的从正面、左面、上面看,所得到的图形,构成这个立体图形的小立方块有_____个练习题1:如图是下列一个立体图形的从正面、左面、上面看,所得到的图形,则这个立体图形是( )A.圆锥B.球C.圆柱D.正方体练习题2:在一个仓库里堆积着正方体的货箱若干,要搬运这些箱子很困难,可是仓库管理员要落实一下箱子的数量,于是就想出一个办法:将这堆货物的物体从正面、左面、上面看,所得到的图形画了出来,如图,你能根据从正面、左面、上面看,所得到的图形,帮他清点一下箱子的数量吗?这些正方体箱的个数是_____箱.练习题3:下列几何体中,同一个几何体的从上面图形看的图形与从正面看的图形不同的是______.①正方体②圆锥③球考点2:正方体对面对应的文字例题1:将右边正方体的平面展开图重新折成正方体后,“董”字对面的字是( )例题2:如图是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注代数式的值相等,则x的值是______.例题3:在立方体六个面上,分别标上“勤、奋、成、就、未、来”,如图是立体的三种不同摆法,则三种摆法的底面上三个字分别是______.练习题1:如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是______.练习题2:如图.正方体的每一个面上都有一个正整数,并且相对面所写的两个数的和都相等,若10的对面是数a,16的数的对面是b,21的对面是数c,则代数式 (a−b)2+(b−c)2+(c−a)2的值是___1___.一个正方体的表面展开图如图所示,则原正方体中的“★”所在面的对面所标的字是_____.考点1:有理数的概念例题1:如果m是一个有理数,那么﹣m是()A.正数B.0C.负数D.以上三者情况都有可能例题2:π不是有理数,那么___1___有理数(填“是”或“不是”)例题3:在12.3、-0.5、-100、-8、88、4.01、中,分数有______, 负有理数有______.(按从大到小的顺序填写)练习题1:有理数2,7.5,-0.03,-0.4,0,1313中,非负数是______.(按从大到小的顺序填写,用逗号隔开)练习题2:有理数1.7,-17,0,,-0.001,,2003和-1中,负整数有_____个,负分数有______个练习题3:______, 正分数是_____.(按从大到小的顺序填写)例题1:若x>1.5,化简=______例题2:若|x+4|+|2﹣y|=0,则xy=_____.例题3:化简:|π−4|+|π−3.14|=_____(用小数表示)练习题1:当x>3时化简:|x+2|−|1−x|=_____练习题2:已知||a|+1|=2,则a =______练习题3:若|a+1|与|b﹣2|互为相反数,则ab=______.考点3:有理数加减混合运算例题1:计算:|−2/2|−(−2.5)+1−|1−2/2|=_____例题2:1﹣2+3﹣4+5﹣6+7﹣8+…+2015﹣2016的结果是______例题3:已知|a|=1,|b|=2,|c|=3,且a>b>c,那么a+b﹣c=______练习题1:规定图形表示运算a﹣b+c,图形表示运算x+z﹣y﹣w.则+=______(直接写出答案).练习题2:若m、n互为相反数,则|m﹣3+n|=()练习题3: −3.5+|−5/2|−(−2) =______.考点3:有理数的乘除例题1:-2013×2014×0=_____例题2:(+15)×(−8.234)×0×(−23/3)= =______.例题3:在数﹣5,﹣3,﹣2,2,6中,任意两个数相乘,所得的积中最小的数是______ 练习题1: 两个有理数的乘积为负数,在这两个有理数中,有______个负数.练习题2:数a、b在数轴上的位置如图所示,则ab______0.(用“>”或“<”号连接)练习题3:(−2)×(−3/2)=___1___.例题1: 把(−2)×(−2)×(−2)×(−2)×(−2)写成幂的形式是_____.例题2:计算(−1)^2017=______.例题3:计算(−2)^1000×(1/2)^999的结果是_____.练习题1: 计算:(−2013)^2013×(−2014)^2014×(−2015)^2015的结果可能是( ). 练习题2:下列判断正确的有_____(请依次填写正确答案的序号).3^4<4^3 −3^4<(−4)^3 −3^2>(−3)^2 (−3×2)^2<−3×2^2练习题3:(−2)^3的底数是______,结果为______;−2^3的底数是_____,结果为_____.考点5:有理数偶次方的非负性例题1:若(a+3)^2+(3b−1)^2=0,则a^2003⋅b^2004=______.例题2:已知(x−1)^2+ |y−1|^2=0,则x^y的值为______.例题3:式子(x−1)^2+2的最小值是( ).练习题1:当xx=___1___时,式子(x+3)^2+2012有最小值,这个最小值是______;当y=______ 时,式子2013−(y−1)^2有最大值,这个最大值是_____.练习题2:若x是有理数,则x^2+1一定是( ).A.等于1B.大于1C.不小于1D.不大于1练习题3:下列说法,其中正确的有( ).1、a为任意有理数,a^2+1总是正数;2、如果a+|a|=0,则a是负数;3、当a<b时,a^2<b^2;4、x、y为任意有理数, 5−(x+y)^2的最大值是5;考点6:科学计数法例题1:全球每年大约有577000000000000m^3的水从海洋和陆地转化为大气中的水汽,将数577000000000000用科学记数法表示为( ).A.5.77×10^14B.0.577×10^15C.577×10^12D.5.77×10^13练习1:2016年10月16日上午7:45南京马拉松正式开跑,约21000名中外运动爱好者参加了此次活动.21000用科学记数法可表示为( ) A.0.21×10^5 B.0.21×10^4 C.2.1×10^4 D.2.1×10^3考点7:有理数的混合运算例题1:已知数a 、b 、c 在数轴上的位置如图所示,化简|a+b|−|a −b|+|a+c|=______.例题2: 计算2×(−3)^3+4×(−3)的结果______.例题3:计算(−8)×3÷(−2)^2得( ).练习题1:−1^2016+16÷(−2)^3×|−3|=______.练习题2:现定义一种新运算“∗∗”,规定a ∗b=ab+a −b ,如1∗3=1×3+1−3,则(2∗5)∗5等于______.练习题3:算式[−5−(−11)]÷(32×4)之值为______.第三章:整式及其加减考点一:代数式例题1:长为a ,宽为b 的长方形周长是 。
七年级上册北师大版生物知识点总结一、生物与环境。
1. 生物的特征。
- 生物的生活需要营养:植物通过光合作用制造有机物,动物以植物或其他动物为食。
- 生物能进行呼吸:绝大多数生物需要吸入氧气,呼出二氧化碳。
- 生物能排出身体内产生的废物:如动物通过排尿、出汗和呼出气体排出废物,植物通过落叶带走一部分废物。
- 生物能对外界刺激作出反应:例如含羞草受到触碰会合拢叶片。
- 生物能生长和繁殖:生物能够由小长大,并且能够繁殖后代,如种子的萌发、母鸡下蛋等。
- 生物都有遗传和变异的特性:遗传是指亲子间的相似性,变异是指亲子间和子代个体间的差异。
- 除病毒外,生物都是由细胞构成的。
2. 生物与环境的关系。
- 环境对生物的影响。
- 非生物因素:包括阳光、温度、水、空气等。
例如,沙漠中水分少,只有少数耐旱植物能生存;海拔高度不同,温度不同,植被类型也不同。
- 生物因素:指影响某种生物生活的其他生物。
生物与生物之间存在着捕食(如狼吃羊)、竞争(如稻田里的水稻和杂草争夺阳光、养料等)、合作(如蚂蚁群体内部成员之间的分工合作)、寄生(如蛔虫寄生在人体肠道内)等关系。
- 生物对环境的适应和影响。
- 生物对环境的适应:如骆驼尿液少、出汗少适应干旱环境;海豹皮下脂肪厚适应寒冷环境。
生物的适应是普遍存在的,具有相对性。
- 生物对环境的影响:如蚯蚓疏松土壤;大树底下好乘凉,植物的蒸腾作用能增加空气湿度、降低温度等。
二、生态系统。
1. 生态系统的概念和组成。
- 概念:在一定的空间范围内,生物与环境所形成的统一的整体叫做生态系统。
- 组成:- 生物部分:- 生产者:主要是绿色植物,它们能够通过光合作用制造有机物,为自身和其他生物提供物质和能量。
- 消费者:包括各种动物,根据食性可分为草食动物、肉食动物和杂食动物等,它们直接或间接以植物为食。
- 分解者:主要是细菌和真菌等微生物,它们能够把动植物遗体、遗物中的有机物分解成无机物,供生产者重新利用。
第一章丰富的图形世界七年级上册第1节生活中的立体图形一、生活中常见的几何体1、柱体:分为棱柱和圆柱(1)棱柱①相关概念(如图1-1-1所示)A、底面:两个互相平行的平面叫做棱柱的底面。
B、侧面:两个底面之外的平面叫做棱柱的侧面。
C、棱:相邻两个面的交线叫做棱柱的棱。
D、侧棱:相邻两个侧面的交线叫做棱柱的侧棱。
E、顶点:侧面与底面的公共顶点叫做棱柱的顶点。
F、高:两个底面的距离叫做棱柱的高。
②分类A、按侧棱是否与底面边垂直分为:直棱柱和斜棱柱。
(如图1-1-2所示)B、按底面图形的边数分为:三棱柱、四棱柱、五棱柱、六棱柱……(如图1-1-3所示),它们的底面图形的形状依次是三角形、四边形、五边形、六边形……【说明】长方体和正方体都是四棱柱。
③性质A、棱柱的上、下底面形状相同。
B、棱柱的侧面的形状都是平行四边形,直棱柱的侧面是长方形。
C、棱柱的侧棱都平行且相等,直棱柱的侧棱都平行且与高相等。
④元素间的关系A、底面多边形的边数n确定该棱柱是n棱柱B、n棱柱有2n个顶点,3n条棱,n条侧棱,(n+2)个面,n个侧面。
(2)圆柱①相关概念(如图1-1-4所示)以长方形的一边AB所在直线为旋转轴,其余三边旋转形成的面所围成的几何体叫做圆柱。
其中AB叫做圆柱的轴,AB的长叫做圆柱的高,所有平行于AB的线段,如DC,叫做圆柱的母线,AD与BC旋转形成的两个圆叫做圆柱的底面,DC旋转形成的曲面叫做圆柱的侧面。
②性质A、圆柱的上、下底面形状相同,是能够重合的两个圆。
B、圆柱有无数条母线,它们都平行且与高相等。
③圆柱与棱柱的异同A、相同点a、都有上、下两个底面,且两个底面的大小、形状完全相同;b、它们的高都是上、下底面的距离;c、它们的体积都等于底面积乘以高,侧表面积都等于底面周长乘以高。
B、不同点a、圆柱的底面是圆,而棱柱的底面是多边形;b、圆柱侧面是光滑的曲面,而棱柱侧面是有一条边互相重合的顺次相连的四边形。
2、锥体:分为棱锥和圆锥(1)棱锥①相关概念(如图1-1-5所示)A、底面:棱锥的多边形叫做棱锥的底面,如四边形ABCD。