蓝宝石晶体是第三代半导体材料GaN外延层生长最好的衬底材料之一
- 格式:doc
- 大小:29.00 KB
- 文档页数:2
蓝宝石基氮化镓芯片制造工艺
蓝宝石基氮化镓芯片制造工艺是一种用于制造高性能电子器件的工艺流程。
以下是一般的蓝宝石基氮化镓芯片制造工艺的步骤:
1. 衬底制备:首先将蓝宝石晶体切成薄片作为衬底材料。
蓝宝石晶体具有良好的热导性和机械稳定性,适合用作高功率和高频率电子器件的衬底。
2. 衬底清洗:将蓝宝石衬底通过化学处理和物理处理等方法进行清洗,去除表面的污垢和杂质,保证材料的纯净度。
3. 氮化镓外延生长:采用化学气相沉积(CVD)技术,在蓝宝石衬底上生长氮化镓(GaN)薄膜。
CVD技术通过在反应室中使氮化镓的前体气体与衬底表面相互反应,使氮化镓沉积在衬底上。
生长过程需要严格控制温度、气氛和气体流量等参数。
4. 氮化镓薄膜整形:将生长的氮化镓薄膜进行打磨和抛光,使其表面平整,并去除不均匀的区域和缺陷。
5. 制作电极:在氮化镓薄膜上通过光刻和蒸发沉积等工艺制作电极,用于连接电子器件的输入输出。
6. 刻蚀工艺:采用化学蚀刻或离子束刻蚀等方法,去除不需要的氮化镓材料,形成芯片上的电子器件的结构。
7. 器件封装:将芯片表面进行封装,保护电子器件并提供外部电路的连接。
以上是简单介绍的蓝宝石基氮化镓芯片制造工艺的一般步骤,实际的制造工艺会有更多的细节和特殊要求,以满足不同电子器件的性能目标和应用需求。
三种衬底材料比较对于制作LED芯片来说,衬底材料的选用是首要考虑的问题。
应该采用哪种合适的衬底,需要根据设备和LED器件的要求进行选择。
目前市面上一般有三种材料可作为衬底:·蓝宝石(Al2O3)·硅 (Si)碳化硅(SiC)蓝宝石衬底通常,GaN基材料和器件的外延层主要生长在蓝宝石衬底上。
蓝宝石衬底有许多的优点:首先,蓝宝石衬底的生产技术成熟、器件质量较好;其次,蓝宝石的稳定性很好,能够运用在高温生长过程中;最后,蓝宝石的机械强度高,易于处理和清洗。
因此,大多数工艺一般都以蓝宝石作为衬底。
图1示例了使用蓝宝石衬底做成的LED芯片。
图1 蓝宝石作为衬底的LED芯片[/url]使用蓝宝石作为衬底也存在一些问题,例如晶格失配和热应力失配,这会在外延层中产生大量缺陷,同时给后续的器件加工工艺造成困难。
蓝宝石是一种绝缘体,常温下的电阻率大于1011Ω·cm,在这种情况下无法制作垂直结构的器件;通常只在外延层上表面制作n型和p型电极(如图1所示)。
在上表面制作两个电极,造成了有效发光面积减少,同时增加了器件制造中的光刻和刻蚀工艺过程,结果使材料利用率降低、成本增加。
由于P型GaN掺杂困难,当前普遍采用在p型GaN上制备金属透明电极的方法,使电流扩散,以达到均匀发光的目的。
但是金属透明电极一般要吸收约30%~40%的光,同时GaN基材料的化学性能稳定、机械强度较高,不容易对其进行刻蚀,因此在刻蚀过程中需要较好的设备,这将会增加生产成本。
蓝宝石的硬度非常高,在自然材料中其硬度仅次于金刚石,但是在LED器件的制作过程中却需要对它进行减薄和切割(从400nm减到100nm左右)。
添置完成减薄和切割工艺的设备又要增加一笔较大的投资。
蓝宝石的导热性能不是很好(在100℃约为25W/(m·K))。
因此在使用LED器件时,会传导出大量的热量;特别是对面积较大的大功率器件,导热性能是一个非常重要的考虑因素。
对于制作LED芯片来说,衬底材料的选用是首要考虑的问题。
应该采用哪种合适的衬底,需要根据设备和LED器件的要求进行选择。
目前市面上一般有三种材料可作为衬底:·蓝宝石(Al2O3)·硅 (Si)碳化硅(SiC)蓝宝石衬底通常,GaN基材料和器件的外延层主要生长在蓝宝石衬底上。
蓝宝石衬底有许多的优点:首先,蓝宝石衬底的生产技术成熟、器件质量较好;其次,蓝宝石的稳定性很好,能够运用在高温生长过程中;最后,蓝宝石的机械强度高,易于处理和清洗。
因此,大多数工艺一般都以蓝宝石作为衬底。
图1示例了使用蓝宝石衬底做成的LED芯片。
图1 蓝宝石作为衬底的LED芯片[/url]使用蓝宝石作为衬底也存在一些问题,例如晶格失配和热应力失配,这会在外延层中产生大量缺陷,同时给后续的器件加工工艺造成困难。
蓝宝石是一种绝缘体,常温下的电阻率大于1011Ω·cm,在这种情况下无法制作垂直结构的器件;通常只在外延层上表面制作n型和p型电极(如图1所示)。
在上表面制作两个电极,造成了有效发光面积减少,同时增加了器件制造中的光刻和刻蚀工艺过程,结果使材料利用率降低、成本增加。
由于P型GaN掺杂困难,当前普遍采用在p型GaN上制备金属透明电极的方法,使电流扩散,以达到均匀发光的目的。
但是金属透明电极一般要吸收约30%~40%的光,同时GaN基材料的化学性能稳定、机械强度较高,不容易对其进行刻蚀,因此在刻蚀过程中需要较好的设备,这将会增加生产成本。
蓝宝石的硬度非常高,在自然材料中其硬度仅次于金刚石,但是在LED器件的制作过程中却需要对它进行减薄和切割(从400nm减到100nm左右)。
添置完成减薄和切割工艺的设备又要增加一笔较大的投资。
蓝宝石的导热性能不是很好(在100℃约为25W/(m·K))。
因此在使用LED器件时,会传导出大量的热量;特别是对面积较大的大功率器件,导热性能是一个非常重要的考虑因素。
氮化镓这是一种具有较大禁带宽度的半导体,属于所谓宽禁带半导体之列。
它是微波功率晶体管的优良材料,也是蓝色光发光器件中的一种具有重要应用价值的半导体。
简介GaN材料的研究与应用是目前全球半导体研究的前沿和热点,是研制微电子器件、光电子器件的新型半导体材料,并与SIC、金刚石等半导体材料一起,被誉为是继第一代Ge、Si半导体材料、第二代GaAs、InP化合物半导体材料之后的第三代半导体材料。
它具有宽的直接带隙、强的原子键、高的热导率、化学稳定性好(几乎不被任何酸腐蚀)等性质和强的抗辐照能力,在光电子、高温大功率器件和高频微波器件应用方面有着广阔的前景。
化学式GaNGaN材料的特性总述GaN是极稳定的化合物,又是坚硬的高熔点材料,熔点约为1700℃,GaN具有高的电离度,在Ⅲ—Ⅴ族化合物中是最高的(0.5或0.43)。
在大气压力下,GaN晶体一般是六方纤锌矿结构。
它在一个元胞中有4个原子,原子体积大约为GaAs的一半。
因为其硬度高,又是一种良好的涂层保护材料。
化学特性在室温下,GaN不溶于水、酸和碱,而在热的碱溶液中以非常缓慢的速度溶解。
NaOH、H2SO4和H3PO4能较快地腐蚀质量差的GaN,可用于这些质量不高的GaN 晶体的缺陷检测。
GaN在HCL或H2气下,在高温下呈现不稳定特性,而在N2气下最为稳定。
结构特性表1列出了纤锌矿GaN和闪锌矿GaN的特性比较。
电学特性GaN的电学特性是影响器件的主要因素。
未有意掺杂的GaN在各种情况下都呈n型,最好的样品的电子浓度约为4×1016/cm3。
一般情况下所制备的P型样品,都是高补偿的。
很多研究小组都从事过这方面的研究工作,其中中村报道了GaN最高迁移率数据在室温和液氮温度下分别为μn=600cm2/v·s和μn= 1500cm2/v·s,相应的载流子浓度为n=4×1016/cm3和n=8×1015/cm3。
分子束外延生长AlGaN/GaN异质结与性能表征以GaN为代表的第三代半导体材料在高频高压领域的应用远优于第一代和第二代半导体。
而且由于自发极化和压电极化效应,第三代半导体材料在AlGaN/GaN异质结界面会形成高浓度二维电子气,在高电子迁移率晶体管HEMT器件方面有非常大的应用前景。
常见异质结外延手段有MOCVD、MBE和HVPE三种方法,其中MBE相对于其他两种外延手段外延精度更高,温度更低,适合于生长超薄外延层。
本文通过MBE 外延蓝宝石基AlGaN/GaN异质结,主要研究成果如下:1.蓝宝石基AlGaN/GaN异质结结构包括GaN缓冲层、AlN插入层、AlGaN势垒层和GaN盖帽层。
MBE外延势垒层时Ga源束流保持不变,通过控制Al源束流来控制势垒层组分,发现势垒层组分在0.247时异质结表现出二维电子气效应,室温(300K)最高迁移率为1020cm2/Vs。
MBE外延插入层时通过控制插入层生长时间来控制插入层厚度,当插入层厚度在1.19nm时异质结二维电子气输运特性最好,低温迁移率最高为3836cm2/Vs。
2.优化势垒层组分及插入层厚度等条件后的样品表征结果如下:(1)异质结势垒层精确组分为0.242。
(2)材料表面粗糙度为0.441 nm,界面均方根粗糙度为0.335nm。
(3)GaN缓冲层厚度为610nm,AlN插入层厚度为1.19nm,AlGaN势垒层厚度为20.2nm,GaN盖帽层厚度为6.13nm。
(4)异质结体材料平均位错密度为2.2×109/c1cm2,其中平均刃型位错密度为3.7×108/cm2,平均螺型位错密度为1.8×109/cm2,材料中螺型位错起主要作用。
异质结界面处位错密度为3.3×109/cm2,其中螺型位错密度为1.1×109/cm2,刃型位错密度为2.2×109/cm2,界面上刃型位错起主要作用。
晶体简介AlN晶体是第三代半导体材料的典型代表之一,具有宽带隙、高热导率、高电阻率、良好的紫外透过率、高击穿场强与较强的抗辐射能力,因而更适合用于制造高温、高频、抗辐射及大功率器件,如高能效光电子器件、高功率电子器件、固态激光探测器、高密度固态存储器等。
同时,AlN晶体也是外延生长Ⅲ族氮化物的理想衬底材料,能够弥补Si衬底、蓝宝石衬底、SiC衬底等所存在的晶格失配大、热失配大的缺点。
国际状况国外多家研究机构进行了大量的工作,在晶体的尺寸、商品级AlN晶圆的开发以及紫外LED的研制等方面取得了一定的成果。
美国CrystalIS公司制备的高质量AlN衬底已成功应用于紫外LED、深紫外量子阱LED以及毫瓦级深紫外LED等器件的制造。
俄罗斯N-Crystals公司也利用商品级AlN衬底,制造了深紫外LED,其性能明显优于利用蓝宝石衬底制造的同类器件。
德国埃朗根-纽伦堡大学进行的研究包括籽晶晶向对AlN生长的影响、AlN晶圆的光吸收图谱分析,到2011年已利用AlN籽晶生长出直径为25mm、厚度为15mm的AlN体单晶。
美国北卡罗莱纳州立大学于2010年获得了直径为15mm、高度为15mm的无裂纹AlN晶圆,并于2011年利用AlN衬底外延生长了高质量的AlN、AlGaN薄膜等AlN。
同年的工作还包括完成了265nmLED的制造与表征。
国内状况国内对于AlN晶体生长技术的研究尚处于起步阶段,主要研究机构有山东大学、中国科学院半导体研究所、中国科学院物理研究所、深圳大学光电子研究所等。
2006年,山东大学研究了在BN坩埚内制备AlN单晶,着重分析了生长温度对晶体形貌的影响,其中,在2200~2300℃得到了长度为几毫米的块状晶体。
2007年,中国科学院半导体研究所利用物理气相传输法制备出长40~50mm、厚8~10mm的多晶锭。
深圳大学郑瑞生教授的小组报道了一种制备AlN晶体的新方法,通过在钨坩埚盖中心位置开小孔来控制反应条件与结晶过程,制备出直径大于2mm的AlN单晶。
摘要第三代半导体材料GaN由于具有优良性质使其在微电子和光电子领域有广阔的应用前景,目前制备GaN的方法主要有分子束(MBE)、氯化物气相外延(HVPE)、金属有机物化学气相沉积(MOCVD)。
本文介绍了MOCVD法在蓝宝石衬底上外延生长GaN材料并利用其无掩模横向外延生长GaN 薄膜与同样生长条件下,在未经腐蚀预处理的蓝宝石衬底上外延的GaN 薄膜进行对比测试[1]。
测试分析结果表明,经过腐蚀预处理的GaN 衍射峰的半峰宽及强度、表面平整度、腐蚀坑密度都明显优于未经腐蚀预处理的GaN 薄膜,使原有生长条件下GaN薄膜位错密度下降50%。
并且通过Hal l 测试、x 射线双晶衍射结果、室温PL 谱测试[2]成功地制备出GaN单晶薄膜材料, 取得了GaN 材料的初步测试结果。
测试研究发现增加缓冲层厚度、多缓冲层结构可以有效地降低位错密度、提高薄膜质量,其中通过中温插入层结构实验获得了质量最好的GaN 外延层[3]。
关键字:GaN MOCVD 蓝宝石衬底预处理缓冲层外延生长STUDY OF EPITAXIAL LATERAL OVERGROWTH OF GALLIUM NITRIDE ON SAPPHIRE BYMOCVDByHaiqing JiangSupervisor: Prof.Xianying DaiABSTRACTGallium-nitride-semiconductor offers good potential value for application in a wide range of optical display, optical recording and illumination due to its excellent quality. At present, molecular beam epitaxity (MBE), Chloride vapor phase epitaxy (HVPE) and metal organic chemical vapor deposition (MOCVD) are used to prepare GaN.This text introduces overgrowth of Gallium-nitride on sapphire by MOCVD and compares the result with that on non-corrode sapphire. The results proved that thinner full-width at half- maximum(FWHM),higher intensity value of X-ray diffraction,smoother surface and lower density value of the etching pit were received using patterned substrate, which made sure that under the same growth process the density of the dislocations decreased 50%.After that, it also uses Hall Test, X-ray macle diffraction Test, and PL Spectrum Test under room temperature to check the GaN thin-film material. The results showed that multi-buffer-layer structure could decrease the density of the dislocations and improve the quality of the crystal structure. The GaN epilayer with Intermediate-Temperature insert layer had the best results of all the samples.KEY WORDS: GaN MOCVD surface pretreatment on sapphire substrate cushion epitaxial growth第一章绪论1.1GaN 材料的基本特性1.2现有的GaN 基化合物的制备技术1.3GaN 现有制备技术对比第二章 MOCVD 中影响成膜因素第三章蓝宝石衬底表面预处理3.1蓝宝石衬底与处理的原因3.2实验探究与结果分析第四章研究缓冲层结构及其改进4.1传统缓冲层及其局限4.2实验探究及其结果分析第五章GaN 薄膜的生长研究5.1GaN材料的生长5.2生长的GaN 材料的测试结果第六章结论致谢参考文献第一章绪论1.1GaN 材料的基本特性GaN 首先由Johnson 等人合成,合成反应发生在加热的Ga 和NH3 之间,600~900℃的温度范围,可生成白色、灰色或棕色粉末(是含有O 或未反应的Ga 所致)[4]。
LED蓝宝石图形化衬底制备工艺研讨摘要:随着社会经济的不断发展,能源的需求量不断增加,为了能够将有效降低能源的损耗,实现能源的可持续发展目标,我国对于节能环保事业的发展尤为的关注。
基于科学技术的发展,我国在照明领域开展的环保事业发展取得了一定的成就。
例如LED的研发和应用,其在使用的过程中不仅节能环保,同时也体积比较小,且功能时效时间比较长,与普通的照明源对比来讲更具有发展前景。
经过技术研发人员的不懈努力,找到了一种能够有效提升LED出光率的新技术,即通过蓝宝石图形化衬底实现LED高出光率的目标,为LED广泛应用于多个领域地奠定了坚实的基础。
本文通过对蓝宝石图形化衬底提升LED出光率的机理、表面微结构对LED发光率的影响进行了分析,并探讨了LED蓝宝石图形化衬底的制作过程。
关键词:LED;蓝宝石图形衬底;制备工艺引言:随着物质生活水平的提升,社会群众对于环保节能产业的发展也越发地关注,只有合理控制能源的消耗,才能够有效地提升能源和生态环境可持续发展的潜力。
环保节能在各行各业的发展中都是非常重要战略目标。
在照明领域最显著的发展便是LED的发展与应用,因为其具备良好的性能,尤其在环保节能方面表现出来的优势得到了社会群众的认可,所以被推广到很多的领域的实际应用当中,例如用于一般的照明、LCD背光源等。
随着蓝宝石图形化衬底制备工艺的不断发展,让LED制备白光逐渐成了现实,对于LED的进一步推广和应用有着非常显著的作用。
值得一提的是,LED虽然作为一种特别的固态光源与当前的社会环境倡导节能减排的理念具有极高的契合度,但是在LED实际的发展与应用中还是存在着一些问题,只有技术研发人员加强对LED的创新和优化,才能够为LED的广泛应用,在照明领域代替当前的所使用的传统光源。
为环保节能社会的建设提供良好的支持。
1.LED蓝宝石图形化衬底提高GaN基LED出光率的作用机理1.1降低GaN外延层位错密度在LED衬底材料中蓝宝石所具备的机械性能、可靠性以及易控制特性远超过其他的衬底材料,如单晶硅、单晶碳化硅等。
蓝宝石晶体是第三代半导体材料GaN外延层生长最好的衬底材料之一,其单晶制备工艺成熟。
GaN为蓝光LED制作基材。
一、GaN外延层的衬底材料
1、SiC
与GaN晶格失配度小,只有3.4%,但其热膨胀系数与GaN差别较大,易导致GaN外延层断裂,
并制造成本高,为蓝宝石的10倍。
2、Si
成本低,与GaN晶格失配度大,达到17%,生长GaN比较难,与蓝宝石比较发光效率太低。
3、蓝宝石
晶体结构相同(六方对称的纤锌矿晶体结构),与GaN晶格失配度大,达到13%,易导致GaN 外延层高位错密度(108—109/cm2)。
为此,在蓝宝石衬底上AlN或低温GaN外延层或SiO2层等,先进方法可使GaN外延层位错密度达到106/cm2水平。
二、蓝宝石、GaN的品质对光致发光的影响
蓝宝石单晶生长技术复杂,获得低杂质、低位错、低缺陷的单晶比较困难。
蓝宝石单晶质量对GaN外延层的质量有直接的影响,其杂质和缺陷会影响GaN外延层质量,从而影响器件质量(发
光效率、漏电极、寿命等)。
蓝宝石单晶的位错密度一般为104/cm2数量级,它对GaN外延层位错密度(108—109/cm2)影
响不大。
三、蓝宝石衬底制作
主要包括粘片、粗磨、倒角、抛光、清洗等,将2英寸蓝宝石衬底由350—450μm(4英寸600μm
左右)减到小于100μm(4英寸要厚一些)
四、蓝宝石基板
市场上2英寸蓝宝石基板的主要技术参数:
高纯度—— 99.99%以上(4—5N)
晶向——主要是C面,C轴(0001)±0.3°
翘曲度——20μm
厚度——330μm—430μm±25μm
表面粗糙度—— Ra<0.3nm
背面粗糙度——Ra<1μm(不是很严格)
yq_chu666 at 2010-7-06 08:53:02
这是美国公司的要求吧?
如何降低翘曲、弯曲呀?
ljw.jump at 2010-7-06 16:41:37
国内做蓝宝石的厂家我知道有个不错的,在安徽吧
qw905 at 2010-7-06 18:26:50
还是哈工大与俄罗斯合作的泡生法-钻孔取棒最成功!
qw905 at 2010-7-06 18:29:06
一篇蓝宝石研发总结
藍寶石單晶生長技術研發Sapphire Crystal Instruction.pdf
(2010-07-06 18:29:06, Size: 1.67 MB, Downloads: 28)
HP-led at 2010-7-20 12:00:50
在云南,不过他去年不咋地,今年慢慢恢复生产
caso at 2010-7-20 15:43:43
好像江苏这边的天龙光电蓝宝石生长已经开始产业化了啊
hu886 at 2010-7-21 17:07:08
国内长晶棒的都没有批量生产的吧,也不见哈工大的产品,只是听说做的怎么地怎么地好
HP-led at 2010-8-29 18:34:23
做GaN衬底的,目前只看到蓝晶的衬底。
其他家拉单晶的,没看到过他们的产品。
不知道是不
屑于做,还是说只做军工,还是说忽悠。