第三代半导体材料制造工艺.
- 格式:ppt
- 大小:2.29 MB
- 文档页数:43
半导体器件的制造工艺半导体器件是现代电子技术中不可或缺的重要组成部分,它们被广泛应用于计算机、通信、医疗、军事等领域。
而半导体器件的核心是芯片,芯片上集成着数亿个晶体管等器件,通过这些器件控制电流,完成信息的处理和传输。
那么,半导体器件的制造工艺是怎样的呢?首先,要制造一颗芯片,首先需要选择适合的半导体材料,例如硅、镓、锗等。
目前,硅是最常用的半导体材料,因为它的物理性质稳定、易于加工,并且具有较好的电学特性。
在材料选择后,需要洁净化处理,为后续的工艺步骤做好准备。
接下来,是制造半导体芯片的关键工艺——沉积。
沉积是指将物质沉积在半导体表面上,用于制造各种器件。
主要有化学气相沉积(CVD)、分子束外延(MBE)等技术。
其中,CVD是最常用的沉积工艺,它通过在高温下将气体分子分解成原子,然后使其在半导体表面沉积,形成一层薄膜。
完成沉积后,需要进行光刻工艺,在芯片表面上覆盖一层光阻,然后利用光刻机将需要制造的器件图形映射到光阻层上,最后使用化学溶液将未被覆盖的部分刻蚀掉,形成器件的图形。
接下来,就是最难的工艺:离子注入。
这一步需要将芯片表面注入所需要的杂质元素,通过控制注入剂量和质量比等参数,改变半导体材料的电学性质。
这一步需要高度精确的控制,因为注入的元素数量一定要精确,否则器件无法正常工作。
完成离子注入后,需要进行电极制作。
这一步需要将金属电极制作在芯片表面,为芯片提供电流。
这个过程非常重要,因为涉及到电极材料与半导体的粘附力、金属材料与半导体的反应性等问题。
注入的杂质元素本身也可以用作电极材料。
最后,进行封装和测试。
封装是将芯片封装在保护性的外壳中,以防止对芯片器件的损伤。
测试是检查芯片工作的正常性和稳定性,通常包括温度测试、电性测量和反复使用测试等。
然而,在制造半导体器件的过程中,还有很多其他的技术问题需要解决,例如微影工艺、微细加工技术、超精密仪器和设备等。
这些都是保证半导体芯片能够得到完美制造的重要技术要素。
实现第三代半导体行业前景在中国有意打击房地产等传统行业、大力扶持新能源企业、积极鼓励科技创新的背景下,未来十年经济增长的动力将发生显著变化。
当下,中国经济正处于新一轮产业转型的关键时期。
以新能源汽车为代表的新能源汽车产业,以芯片半导体为代表的科技创新企业,势必成为经济发展的命脉。
在这种情况下,无论内外部条件多么艰难,中国的芯片半导体产业都必须逆势而上,走出一条自己的路,否则我们不仅会在全球经济转型的关键阶段失去机遇,还会处处受制于人第三代半导体是什么半导体是电子产品的核心、现代工业的“粮食”。
第一代半导体主要包括硅和锗。
硅因其自然储量大、制备工艺简单,成为制造半导体产品的主要原料,广泛应用于集成电路等低压、低频、低功耗场景。
然而,第一代半导体材料难以满足大功率、高频器件的要求。
砷化镓(GaAs)是第二代半导体材料的代表,其高电子迁移率使其应用于光电子学和微电子学领域。
它是制造半导体发光二极管和通讯器件的核心材料。
但砷化镓禁带宽度小,击穿电场低,毒性大,无法在高温、高频、大功率器件领域推广。
第三代半导体材料以碳化硅、氮化镓为代表,与前两代半导体材料相比最大的优势是较宽的禁带宽度,保证了其可击穿更高的电场强度,适合制备耐高压、高频的功率器件半导体的核心产品之一就是芯片,在如今智能化的时代,一切电子产品都要依赖芯片;小到手机、电视、电脑乃至家用电器,大到电动汽车、5g基站、航空航天装备等新兴领域硅是半导体的主要原材料,发展半导体产业的基石,碳化硅又是基础中的基础碳化硅的产业链:碳化硅衬底材料的制备、外延层的生长、器件制造以及下游应用市场,通常采用物理气相传输法(pvt 法)制备碳化硅单晶,再在衬底上使用化学气相沉积法(cvd 法)生成外延片,最后制成器件。
原材料在外延片制造中的生产成本占比超过80%。
根据nerl的测算,在美国生产碳化硅外延片的生产成本约是758美元/片,最低售价约是1290美元/片,其中材料成本约为600美元,占生产成本的80%以上。
第三代半导体材料之氮化镓(GaN)解析半导体材料(semiconductor material)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)、可用来制作半导体器件和集成电路的电子材料。
相对于半导体设备市场,半导体材料市场长期处于配角的位置,其中半导体材料市场的60%都是芯片制造材料,以硅晶圆和光掩膜为主,此外还有湿化学试剂、溅射靶等。
但随着芯片出货量增长,材料市场将保持持续增长。
一开始,日本是世界最大的半导体材料市场,随后中国台湾、韩国等地区也逐渐开始崛起,材料市场的崛起体现了器件制造业在这些地区的发展。
晶圆制造材料市场和封装材料市场双双获得增长,未来增长将趋于缓和,但增长势头仍将保持。
第三代半导体材料崛起如今,半导体材料已经发展到第三代,逐代来看:第一代半导体材料以硅和锗等元素半导体材料为代表。
其典型应用是集成电路,主要应用于低压、低频、低功率晶体管和探测器中,在未来一段时间,硅半导体材料的主导地位仍将存在。
但是硅材料的物理性质限制了其在光电子和高频电子器件上的应用,如其间接带隙的特点决定了它不能获得高的电光转换效率。
且其带隙宽度较窄(1.12eV)饱和电子迁移率较低(1450cm2/V·s),不利于研制高频和高功率电子器件。
第二代半导体材料以砷化镓和磷化铟(InP)为代表。
砷化镓材料的电子迁移率是硅的6倍,具有直接带隙,故其器件相对硅器件具有高频、高速的光电性能,公认为是很合适的通信用半导体材料。
同时,其在军事电子系统中的应用日益广泛且不可替代。
然而,其禁带宽度范围仅涵盖了1.35eV(InP)~2.45eV(AlP),只能覆盖波长506~918 nm的红光和更长波长的光,而无法满足中短波长光电器件的需要。
由于第二代半导体材料的禁带宽度不够大,击穿电场较低,极大的限制了其在高温、高频和高功率器件领域的应用。
另外由于GaAs材料的毒性可能引起环境污染问题,对人类健康存在潜在的威胁。
摘要第三代半导体材料GaN由于具有优良性质使其在微电子和光电子领域有广阔的应用前景,目前制备GaN的方法主要有分子束(MBE)、氯化物气相外延(HVPE)、金属有机物化学气相沉积(MOCVD)。
本文介绍了MOCVD法在蓝宝石衬底上外延生长GaN材料并利用其无掩模横向外延生长GaN 薄膜与同样生长条件下,在未经腐蚀预处理的蓝宝石衬底上外延的GaN 薄膜进行对比测试[1]。
测试分析结果表明,经过腐蚀预处理的GaN 衍射峰的半峰宽及强度、表面平整度、腐蚀坑密度都明显优于未经腐蚀预处理的GaN 薄膜,使原有生长条件下GaN薄膜位错密度下降50%。
并且通过Hal l 测试、x 射线双晶衍射结果、室温PL 谱测试[2]成功地制备出GaN单晶薄膜材料, 取得了GaN 材料的初步测试结果。
测试研究发现增加缓冲层厚度、多缓冲层结构可以有效地降低位错密度、提高薄膜质量,其中通过中温插入层结构实验获得了质量最好的GaN 外延层[3]。
关键字:GaN MOCVD 蓝宝石衬底预处理缓冲层外延生长STUDY OF EPITAXIAL LATERAL OVERGROWTH OF GALLIUM NITRIDE ON SAPPHIRE BYMOCVDByHaiqing JiangSupervisor: Prof.Xianying DaiABSTRACTGallium-nitride-semiconductor offers good potential value for application in a wide range of optical display, optical recording and illumination due to its excellent quality. At present, molecular beam epitaxity (MBE), Chloride vapor phase epitaxy (HVPE) and metal organic chemical vapor deposition (MOCVD) are used to prepare GaN.This text introduces overgrowth of Gallium-nitride on sapphire by MOCVD and compares the result with that on non-corrode sapphire. The results proved that thinner full-width at half- maximum(FWHM),higher intensity value of X-ray diffraction,smoother surface and lower density value of the etching pit were received using patterned substrate, which made sure that under the same growth process the density of the dislocations decreased 50%.After that, it also uses Hall Test, X-ray macle diffraction Test, and PL Spectrum Test under room temperature to check the GaN thin-film material. The results showed that multi-buffer-layer structure could decrease the density of the dislocations and improve the quality of the crystal structure. The GaN epilayer with Intermediate-Temperature insert layer had the best results of all the samples.KEY WORDS: GaN MOCVD surface pretreatment on sapphire substrate cushion epitaxial growth第一章绪论1.1GaN 材料的基本特性1.2现有的GaN 基化合物的制备技术1.3GaN 现有制备技术对比第二章 MOCVD 中影响成膜因素第三章蓝宝石衬底表面预处理3.1蓝宝石衬底与处理的原因3.2实验探究与结果分析第四章研究缓冲层结构及其改进4.1传统缓冲层及其局限4.2实验探究及其结果分析第五章GaN 薄膜的生长研究5.1GaN材料的生长5.2生长的GaN 材料的测试结果第六章结论致谢参考文献第一章绪论1.1GaN 材料的基本特性GaN 首先由Johnson 等人合成,合成反应发生在加热的Ga 和NH3 之间,600~900℃的温度范围,可生成白色、灰色或棕色粉末(是含有O 或未反应的Ga 所致)[4]。
第三代半导体材料SiC晶体生长设备技术及进展郑泰山;阮毅;王寅飞【摘要】第三代半导体设备技术是第三代半导体技术发展的重要支撑和基础。
简要介绍了以SiC为代表的第三代半导体材料,重点介绍了SiC晶体生长方法,SiC 晶体生长设备基本构成,设备技术国内外进展情况,最后指出了将设备研发和生长工艺相结合研制出更加成熟的SiC晶体生长设备的重要性。
%The third generation semiconductor equipment technologies are important base supporting the developments of the third generation semiconductor technologies . The third generation semiconductor is briefly introduced using SiC as the representative in this paper. The technologies of SiC crystal growth , equipment, and the domestic and foreign developments are mainly reviewed. In the end, it is pointed out that the synergetic development of the equipment and the growth technique of SiC crystal growth equipment is important.【期刊名称】《机电工程技术》【年(卷),期】2016(045)003【总页数】4页(P20-23)【关键词】第三代半导体;SiC晶体;SiC晶体生长设备;SiC晶体生长工艺【作者】郑泰山;阮毅;王寅飞【作者单位】广东省机械研究所,广东广州 510635;广东省机械研究所,广东广州 510635;广东省机械研究所,广东广州 510635【正文语种】中文【中图分类】TN304.05*广东省科技计划资助项目(编号:2014B070706031)半导体产业的发展先后经历了以硅(Si)为代表的第一代半导体材料,以砷化镓(GaAs)为代表的第二代半导体材料,以碳化硅(SiC)和氮化镓(GaN)为代表的第三代半导体材料[1]。
第三代半导体材料是什么随着科学技术的不断发展,半导体材料作为一种重要的材料在电子学领域扮演着至关重要的角色。
传统的半导体材料如硅、锗等在电子器件中广泛应用,但随着电子产业的不断发展,对半导体材料的性能、功耗和集成度等方面提出了更高的要求。
在这种背景下,第三代半导体材料应运而生。
第三代半导体材料是指传统半导体材料之外的具有更优异性能的新型材料,具有更高的载流子迁移率、更宽的禁带宽度、更高的工作温度以及更好的热稳定性等优点。
目前,主要的第三代半导体材料包括氮化镓(GaN)、碳化硅(SiC)和氮化铟(InN)等。
氮化镓(GaN)是第三代半导体材料中较为重要的一种材料。
GaN具有宽带隙、高电子饱和漂移速度、高击穿场强等优点,使其在功率器件领域有着广泛的应用前景。
例如,GaN材料可以用于高频功率放大器、LED照明等领域,其高功率密度和高工作温度使其成为一种理想的替代材料。
碳化硅(SiC)是另一种重要的第三代半导体材料。
SiC具有较高的电子迁移率、热导率和击穿场强等优点,使其在高温、高频等极端环境下具有较优异的性能。
SiC材料广泛应用于功率电子器件、射频器件、光电器件等领域,为电子器件的高性能发展提供了强有力的支持。
氮化铟(InN)作为第三代半导体材料的新兴材料之一,具有较大的禁带宽度和较高的载流子迁移率,适用于高频电子器件和光电器件。
InN材料在光电子领域有着广阔的应用前景,如在太阳能电池、光电探测器等方面具有潜在的发展空间。
总的来说,第三代半导体材料的涌现为电子器件的发展带来了新的可能性。
其优越的性能使其在功率电子、通信、光电等领域具有广泛的应用前景,将为电子产业的发展注入新的活力。
未来随着第三代半导体材料的不断研究和发展,相信其在电子领域中将发挥越来越重要的作用。
第三代半导体器件工作频率
第三代半导体器件是指使用碳化硅(SiC)和氮化镓(GaN)等材料制造的器件。
这些材料相比传统的硅材料具有更高的电子饱和漂移速度和更好的热导性能,因此能够实现更高的工作频率。
对于碳化硅(SiC)器件,其工作频率通常可以达到数百千赫兹(kHz)至数百兆赫兹(MHz)的范围。
碳化硅器件的高频特性使其在功率电子、射频通信和其他高频应用中具有广泛的应用前景。
而对于氮化镓(GaN)器件,由于其优异的高频特性,工作频率可以达到数千兆赫兹(GHz)甚至更高。
这使得氮化镓器件在射频功率放大器、毫米波通信和雷达系统等领域有着重要的应用。
需要指出的是,具体的工作频率取决于器件的具体设计、制造工艺和应用场景。
此外,随着技术的不断进步和研发投入,第三代半导体器件的工作频率也在不断提升。
总的来说,第三代半导体器件由于其优异的高频特性,能够实现更高的工作频率,从而在诸多领域展现出巨大的应用潜力。