电力电子技术整流波形图
- 格式:ppt
- 大小:2.99 MB
- 文档页数:7
《电力电子技术》教学中工作波形绘制的技巧【摘要】在《电力电子技术》课程技术培训中,工作波形的正确绘制对熟练掌握和应用课程技术有着十分重要的意义。
往往三相变流器电路工作波形的绘制对学习者来说有着较大的难度,本文总结了工作波形绘制的技巧可以使波形的正确绘制起到驾轻就熟的作用。
【关键词】工作波形波头顺序状态转换线电力电子技术是由电力电子器件实现的对电能转换和控制的一门技术,实现了强电和弱电的完美结合,在电子电气应用领域一直倍受重视,因此在维修电工等专业技术工种职业技能鉴定中,都是作为应知应会的重要考核模块。
通过变流电路改变电源电压、电流、频率等参数来实现电能的转换和控制,实质上就是改变电源的输出波形来实现的,因此能否正确绘制变流器工作波形是考察学生能否掌握好这门技术的关键,对熟练掌握和应用课程技术有着十分重要的意义。
往往三相整流器电路工作波形的绘制对学习者来说有着较大的难度,对于教师来说,如何改进教学方法,使学生掌握波形绘制的方法,将尤为重要。
我在课程教学中研究了一套波形绘制的技巧和教学方法,现总结出来,以便你能驾轻就熟地绘制工作波形。
第一步按波头顺序标注各相相电压和线电压。
在用虚线绘制了u、v、w三相对称相电压及其线电压的波形纸上按波头顺序标注各相相电压及其线电压(如图1所示),并把欲绘制的工作波形名称(图中是ud、id)标注在纵轴上。
第二步根据触发脉冲要求作出状态转换线。
在三相可控整流器电路中,晶闸管触发导通的时刻,往往也是电路状态转换的时刻。
若是电力二极管,则在三相相电压自然换相点管子导通时刻,也是电路状态转换的时刻。
所以在分析好哪种类型的电路基础上,用虚直线在波形纸上自上而下作好状态转换线,这是正确便捷绘制工作波形的关键。
如图2所示,由上而下虚直线是晶闸管触发脉冲控制角α=60°,电路为三相全控桥整流电路时的状态转换线,①~⑥分别表示VT1~VT6晶闸管触发脉冲出现时刻。
图1相线电压波头标注图2α=60°时状态转换线第三步作出触发脉冲ug工作波形图。
《电力电子技术》单相半波可控整流电路MATLAB仿真实验一、实验目的:(1) 单相半波可控整流电路(电阻性负载)电路的工作原理电路设计与仿真。
(2) 单相半波可控整流电路(阻-感性负载)电路的工作原理电路设计与仿真。
(3) 单相半波可控整流电路(阻-感性负载加续流二极管)电路的工作原理电路设计与仿真。
(4)了解三种不同负载电路的工作原理及波形。
二、电阻性负载电路1、电路及其工作原理图1.1单向半波可控整流电路(电阻性负载)如图1.1所示,单向半波可控制整流电路原理图,晶闸管作为开关,变压器T起到变换电压与隔离的作用。
其工作原理:(1)在电源电压正半波(0~π区间),晶闸管承受正向电压,脉冲uG在ωt=α处触发晶闸管,晶闸管开始导通,形成负载电流id,负载上有输出电压和电流。
(2)在ωt=π时刻,u2=0,电源电压自然过零,晶闸管电流小于维持电流而关断,负载电流为零。
(3)在电源电压负半波(π~2π区间),晶闸管承受反向电压而处于关断状态,负载上没有输出电压,负载电流为零。
(4)直到电源电压u2的下一周期的正半波,脉冲uG 在ωt=2π+α处又触发晶闸管,晶闸管再次被触发导通,输出电压和电流又加在负载上,如此不断重复。
2、MATLAB下的模型建立2.1 适当连接后,可得仿真电路。
如图所示:2.2 仿真结果与波形分析下列所示波形图中,波形图分别代表了晶体管VT上的电流、晶体管VT 上的电压、电阻加电感上的电压。
设置触发脉冲α分别为30°、60°、90°、120°时的波形变化。
α=30°α=60°α=90°α=120°分析:与电阻性负载相比,负载电感的存在,使得晶闸管的导通角增大,在电源电压由正到负的过零点也不会关断,输出电压出现了负波形,输出电压和电流平均值减小;大电感负载时输出电压正负面积趋于相等,输出电压平均值趋于零。
21. 单相半波可控整流电路对电感负载供电, L =20mH , U 2=100V ,求当 α=0 和 60 时的负载电流 I d ,并画出 u d 与 i d 波形。
解: α=0 时,在电源电压 u 2 的正半周期晶闸管导通时,负载电感 导通时刻,负载电流为零。
在电源电压u 2 的负半周期,负载电感导通。
因此,在电源电压 u 2 的一个周期里,以下方程均成立:L di d 2U 2 sin tdt2考虑到初始条件:当 t =0时 i d =0可解方程得:2U 2 i d(1 cos t)L1 2 2U 22(1 cos t)d( t) L2U 2=2u d 与 i d 的波形如下图:量在 u 2负半周期180 ~300 期间释放,因此在 u 2 一个周期中 60 ~300 期间以下微分方程成 立: L d d itd2U 2 sin t其平均值为此时 u d 与 i d 的波形如下图:α = 60 °时, L 储能, 电感 L 储藏的能L 储能,在晶闸管开始 L 释放能量,晶闸管继续I d考虑初始条件:当t = 60 时 i d = 0 可解方程得:i d2U 2 L 1( cos t)I d52U 2 1 33 2U L 2 (12 cos t)d( t) =2U 22L =11.25(A)2.图2-9 为具有变压器中心抽头的单相全波可控整流电路,问该变压器还有直流磁化问题吗?试说明:①晶闸管承受的最大反向电压为2 2U2 ;②当负载是电阻或电感时,其输出电压和电流的波形与单相全控桥时相同。
答:具有变压器中心抽头的单相全波可控整流电路,该变压器没有直流磁化的问题。
因为单相全波可控整流电路变压器二次测绕组中,正负半周内上下绕组内电流的方向相反,波形对称,其一个周期内的平均电流为零,故不会有直流磁化的问题。
以下分析晶闸管承受最大反向电压及输出电压和电流波形的情况。
①以晶闸管VT 2为例。