电力电子技术-整流电路
- 格式:ppt
- 大小:5.99 MB
- 文档页数:54
电力电子技术整流电路总结篇一:电力电子技术常见的整流电路特点总结电力电子技术常见的整流电路特点总结篇二:电力电子技术重要公式总结单相半波可控整流带电阻负载的工作情况:au1iRdbcde电阻负载的特点:电压与电流成正比,两者波形相同。
触发延迟角:从晶闸管开始承受正向阳极电压起到施加触发脉冲止的电角度,用a表示,也称触发角或控制角。
导通角:晶闸管在一个电源周期中处于通态的电角度,用θ表示。
直流输出电压平均值:1Ud????2U21?cos?2U2sin?td(?t)?(1?cos?)?0.45U22?2(3-1)VT的a移相范围为180?通过控制触发脉冲的相位来控制直流输出电压大小的方式称为相位控制方式简称相控方式。
带阻感负载的工作情况:bcdef阻感负载的特点:电感对电流变化有抗拒作用,使得流过电感的电流不发生突变。
续流二极管数量关系:idVT????id2?(3-5)(3-6)(3-7)iVT?idVdR?????id(?t)?2?id?2d????id2?12?iVdR???2??????id(?t)?id(3-8)2?2dabcdifgV单相半波可控整流电路的特点:1.VT的a移相范围为180?。
2.简单,但输出脉动大,变压器二次侧电流中含直流分量,造成变压器铁芯直流磁化。
3.实际上很少应用此种电路。
4.分析该电路的主要目的建立起整流电路的基本概念。
单相桥式全控整流电路带电阻负载的工作情况:bucdV图3-5单相全控桥式带电阻负载时的电路及波形数量关系:1?22U21?cos?1?cos?Ud??2U(:电力电子技术整流电路总结)2sin?td(?t)??0.9U2???22a角的移相范围为180?。
向负载输出的平均电流值为:(3-9)Ud22U21?cos?U21?cos?id???0.9R?R2R2流过晶闸管的电流平均值只有输出直流平均值的一半,即:(3-11)idVT1U21?cos??id?0.452R2(3-10)流过晶闸管的电流有效值:iVT1?2???1?(2U2U1???sin?t)2d(?t)?2sin2??R?2R2?(3-12)变压器二次测电流有效值i2与输出直流电流i有效值相等:2U2U22?1???。
21. 单相半波可控整流电路对电感负载供电, L =20mH , U 2=100V ,求当 α=0 和 60 时的负载电流 I d ,并画出 u d 与 i d 波形。
解: α=0 时,在电源电压 u 2 的正半周期晶闸管导通时,负载电感 导通时刻,负载电流为零。
在电源电压u 2 的负半周期,负载电感导通。
因此,在电源电压 u 2 的一个周期里,以下方程均成立:L di d 2U 2 sin tdt2考虑到初始条件:当 t =0时 i d =0可解方程得:2U 2 i d(1 cos t)L1 2 2U 22(1 cos t)d( t) L2U 2=2u d 与 i d 的波形如下图:量在 u 2负半周期180 ~300 期间释放,因此在 u 2 一个周期中 60 ~300 期间以下微分方程成 立: L d d itd2U 2 sin t其平均值为此时 u d 与 i d 的波形如下图:α = 60 °时, L 储能, 电感 L 储藏的能L 储能,在晶闸管开始 L 释放能量,晶闸管继续I d考虑初始条件:当t = 60 时 i d = 0 可解方程得:i d2U 2 L 1( cos t)I d52U 2 1 33 2U L 2 (12 cos t)d( t) =2U 22L =11.25(A)2.图2-9 为具有变压器中心抽头的单相全波可控整流电路,问该变压器还有直流磁化问题吗?试说明:①晶闸管承受的最大反向电压为2 2U2 ;②当负载是电阻或电感时,其输出电压和电流的波形与单相全控桥时相同。
答:具有变压器中心抽头的单相全波可控整流电路,该变压器没有直流磁化的问题。
因为单相全波可控整流电路变压器二次测绕组中,正负半周内上下绕组内电流的方向相反,波形对称,其一个周期内的平均电流为零,故不会有直流磁化的问题。
以下分析晶闸管承受最大反向电压及输出电压和电流波形的情况。
①以晶闸管VT 2为例。
1. 单相半波可控整流电路对电感负载供电,L =20mH ,U 2=100V ,求当α=0︒和60︒时的负载电流I d ,并画出u d 与i d 波形。
解:α=0︒时,在电源电压u 2的正半周期晶闸管导通时,负载电感L 储能,在晶闸管开始导通时刻,负载电流为零。
在电源电压u 2的负半周期,负载电感L 释放能量,晶闸管继续导通。
因此,在电源电压u 2的一个周期里,以下方程均成立:t U ti Lωsin 2d d 2d= 考虑到初始条件:当ωt =0时i d =0可解方程得:)cos 1(22d t L U i ωω-= ⎰-=πωωωπ202d )(d )cos 1(221t t L U I =LU ω22=22.51(A)u d 与i d 的波形如下图:当α=60°时,在u 2正半周期60︒~180︒期间晶闸管导通使电感L 储能,电感L 储藏的能量在u 2负半周期180︒~300︒期间释放,因此在u 2一个周期中60︒~300︒期间以下微分方程成立:t U ti Lωsin 2d d 2d= 考虑初始条件:当ωt =60︒时i d =0可解方程得:)cos 21(22d t L U i ωω-=其平均值为)(d )cos 21(2213532d t t L U I ωωωπππ-=⎰=L U ω222=11.25(A)此时u d 与i d 的波形如下图:2.图2-9为具有变压器中心抽头的单相全波可控整流电路,问该变压器还有直流磁化2U;②当负载是电阻或电感时,其问题吗?试说明:①晶闸管承受的最大反向电压为22输出电压和电流的波形与单相全控桥时相同。
答:具有变压器中心抽头的单相全波可控整流电路,该变压器没有直流磁化的问题。
因为单相全波可控整流电路变压器二次测绕组中,正负半周内上下绕组内电流的方向相反,波形对称,其一个周期内的平均电流为零,故不会有直流磁化的问题。
以下分析晶闸管承受最大反向电压及输出电压和电流波形的情况。
电力电子技术第章--相控整流电路-课件 (一)
电力电子技术是当今最重要的技术之一,它的应用范围非常广泛,可
以用于发电、输电、配电、用电以及各种电子设备的控制等领域。
在
电力电子技术的课程中,相控整流电路是其中的一个重要章节。
相控整流电路是一种可以将交流电转化为直流电的电路,它可以应用
于各种场合,比如直流电动机控制、电池充电以及电子变压器控制等。
相控整流电路的工作原理是利用正弦波的相位差来控制桥式整流电路
中的各种开关,从而实现了对电路的控制。
相控整流电路可以分为两种类型:单相控整流电路和三相控整流电路。
其中,单相控整流电路是利用单相电网的交流电源来驱动电机或者电
子变压器的电路;而三相控整流电路则是利用三相电网的交流电源来
驱动电机或者变压器的电路。
无论是单相控整流电路还是三相控整流
电路,它们的工作原理都是一样的,只不过是利用不同的电源来驱动
电路而已。
相控整流电路具有许多优点,比如它可以控制交流电源的输出电压,
可以抑制电网的谐波污染,可以实现功率因数的校正,可以提高电路
的效率等等。
在实际应用中,相控整流电路已经被广泛地应用于各种
领域,比如电机控制、电池充电、UPS电源、铁路牵引、风力发电等等。
总之,相控整流电路是电力电子技术中的一个重要章节,它具有广泛
的应用价值和良好的技术前景。
对于学习电力电子技术的学生来说,
掌握相控整流电路的基本原理和应用技巧是非常重要的,只有在深入
理解了它的工作原理和掌握了相关的实验技能之后,才能够在实际工
作中充分发挥出它的优势和特点,为电力电子技术的发展做出更大的
贡献。
电力电子技术课程设计---三相半波整流电路————————————————————————————————作者:————————————————————————————————日期:1 三相半波整流电路的负载分析1。
1 引言单相整流电路线路简单,价格便宜,制造、调整、维修都比较容易,但其输出的直流电压脉动大,脉动频率低。
又因为它接在三相电网的一相上,当容量较大时易造成三相电网不平衡,因而只用在容量较小的地方.一般负载功率超过4kw要求直流电压脉动较小时,可以采用三相可控整流电路。
半波整流电路是一种实用的整流电路。
它由电源变压器B 、整流二极管D 和负载电阻Rfz ,组成。
变压器把市电电压(多为220伏)变换为所需要的交变电压e2,D 再把交流电变换为脉动直流电.图1 半波整流电路变压器砍级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的波形如图所示。
在0~K时间内,e2为正半周即变压器上端为正下端为负.此时二极管承受正向电压面导通,e2通过它加在负载电阻Rfz上,在π~2π时间内,e2为负半周,变压器次级下端为正,上端为负。
这时D承受反向电压,不导通,Rfz,上无电压。
在π~2π时间内,重复0~π时间的过程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削”掉了,只有正半周通过Rfz,在Rfz上获得了一个单一右向(上正下负)的电压,如图所示,达到了整流的目的,但是,负载电压Usc。
以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。
这种除去半周、图下半周的整流方法,叫半波整流.不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压Usc =0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。
图2 正弦波图形1。