七年级数学线段的长短比较测试题
- 格式:doc
- 大小:62.00 KB
- 文档页数:5
初一数学线段的长短比较试题1.已知,如图:点P是直线a外的一点,点A、B、C在直线a上,且PB⊥a,垂足是B,PA⊥PC,则下列错误的语句是()A.线段PB的长是点P到直线a的距离B.PA、PB、PC三条线段中,PB最短C.线段AC的长是点A到直线PC的距离D.线段PC的长是点C到直线PA的距离【答案】C【解析】因为PA⊥PC,所以线段PA的长是点A到直线PC的距离,C错误.2.如图,线段AB="BC=CD=DE=1" cm,那么图中所有线段的长度之和等于________cm.【答案】20【解析】因为长为1 cm的线段共4条,长为2 cm的线段共3条,长为3 cm的线段共2条,长为4 cm的线段仅1条,所以图中所有线段长度之和为1×4+2×3+3×2+4×1=20(cm).3.已知线段a,利用尺规,求作一条线段AB,使AB=2a.【答案】【解析】本题考查的是基本作图以A为端点画射线,在射线上顺次截取AB=2a即可.如图:则AB=2a为所求.思路拓展:掌握在射线上作出所求线段为已知线段的整数倍的方法是解决本题的关键.4.在同一平面上有A、B、C三点,已知AB=5cm,BC=2cm,则AC的长是()A.7cmB.3cmC.7cm或3cmD.不能确定【答案】C【解析】本题考查的是线段的计算要求学生分情况讨论A,B,C三点的位置关系,即点C在线段AB内,点C在线段AB外.此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算:第一种情况:在AB外,AC=AB+BC=5+2=7,第二种情况:在AB内,AC=AB-BC=5-2=3,故答案为7 cm或3cm,故选C.思路拓展:在未画图类问题中,正确画图很重要.本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.5.如图有三条线段,它们分别是线段、、,则图中最短的线段是 .【答案】线段【解析】本题考查的是线段的长短比较分别用刻度尺测量出各条线段的长,即可比较大小;也可从点C处折叠比较。
比较线段的长短练习题线段是几何学中的一个基本概念,我们可以通过比较线段的长短来研究和分析它们在空间中的相对位置和性质。
在本篇文章中,我们将给出一些比较线段长短的练习题,以帮助读者提高对线段的理解和应用能力。
练习题一:请比较以下两个线段的长短:线段A:起点坐标(2, 3),终点坐标(8, 5)线段B:起点坐标(1, -2),终点坐标(7, -4)解析:要比较线段的长短,我们可以计算线段的长度。
线段的长度可以通过计算起点和终点之间的距离得到,即利用勾股定理。
线段A的长度计算公式为:√((8-2)^2 + (5-3)^2) = √(6^2 + 2^2) = √(36 + 4) = √40 ≈ 6.32线段B的长度计算公式为:√((7-1)^2 + (-4-(-2))^2) = √(6^2 + (-2)^2) = √(36 + 4) = √40 ≈ 6.32由计算结果可知,线段A和线段B的长度相等,约为6.32个单位长度。
练习题二:请比较以下三个线段的长短:线段C:起点坐标(-1, 0),终点坐标(3, 4)线段D:起点坐标(2, 3),终点坐标(6, 7)线段E:起点坐标(-3, -4),终点坐标(1, 1)解析:同样地,我们可以通过计算线段的长度来比较它们的长短。
线段C的长度计算公式为:√((3-(-1))^2 + (4-0)^2) = √(4^2 + 4^2) = √(16 + 16) = √32 ≈ 5.66线段D的长度计算公式为:√((6-2)^2 + (7-3)^2) = √(4^2 + 4^2) = √(16 + 16) = √32 ≈ 5.66线段E的长度计算公式为:√((1-(-3))^2 + (1-(-4))^2) = √(4^2 + 5^2) = √(16 + 25) = √41 ≈ 6.40由计算结果可知,线段C和线段D的长度相等,均约为5.66个单位长度,而线段E的长度约为6.40个单位长度。
专题4.7 比较线段的长短(直通中考)一、单选题(本大题共10小题,每小题3分,共30分)(13·14·长沙·中考真题)1.如图,C、D是线段AB上的两点,且D是线段AC的中点.若AB=10cm,BC=4cm,则AD的长为()A. 2cmB. 3cmC. 4cmD. 6cm(20·21下·台州·中考真题)2.小光准备从A地去往B地,打开导航、显示两地距离为37.7km,但导航提供的三条可选路线长却分别为45km,50km,51km(如图).能解释这一现象的数学知识是()A. 两点之间,线段最短B. 垂线段最短C. 三角形两边之和大于第三边D. 两点确定一条直线(21·22下·柳州·中考真题)3.如图,从学校A到书店B有①、②、③、④四条路线,其中最短的路线是( )A. ①B. ②C. ③D. ④(16·17·宁德·中考真题)4.如图,点M在线段AB上,则下列条件不能确定M是AB中点的是( )B. AM+BM=ABC. AM=BMD. AB=2AMA. BM=AB(19·20·凉山·中考真题)5.点C是线段AB的中点,点D是线段AC的三等分点.若线段,则线段BD的长为()A. 10cmB. 8cmC. 8cm或10cmD. 2cm或4cm(3·4·温州·中考真题)6.下面给出的四条线段中,最长的是( )A. aB. bC. cD. d(20·21下·内蒙古·中考真题)7.已知线段,在直线AB上作线段BC,使得.若D是线段AC的中点,则线段AD的长为()A. 1B. 3C. 1或3D. 2或3(21·22下·临沂·中考真题)8.如图,,位于数轴上原点两侧,且.若点表示的数是6,则点表示的数是()A. -2B. -3C. -4D. -5(11·12上·中山·期末)9.“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是()A. 两点确定一条直线B. 直线比曲线短C. 两点之间直线最短D. 两点之间线段最短(21·22下·金华·中考真题)10.如图,圆柱的底面直径为,高为,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是()A. B.C. D.二、填空题(本大题共8小题,每小题4分,共32分)(21·22下·桂林·中考真题)11.如图,点C是线段AB的中点,若AC=2cm,则AB= cm.(18·19·山东·中考真题)12.如图,已知AB=8cm,BD=3cm,C为AB的中点,则线段CD的长为 cm.(10·11·娄底·中考真题)13.如图,点C是线段上的点,点D是线段的中点,若,,则 .(16·17·桂林·中考真题)14.如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB= .(13·14下·徐州·中考真题)15.点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于 .(11·12·菏泽·中考真题)16.已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,则线段AC= cm.(19·20·赤峰·中考真题)17.一个电子跳蚤在数轴上做跳跃运动.第一次从原点O起跳,落点为A1,点A1表示的数为1;第二次从点A1起跳,落点为OA1的中点A2;第三次从A2点起跳,落点为0A2的中点A3;如此跳跃下去……最后落点为OA2019的中点A2020.则点A2020表示的数为 .(13·14·达州·中考真题)18.《庄子.天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图.= .三、解答题(本大题共6小题,共58分)(14·15上·泉州·期末)19.如图,已知线段AB=6,延长线段AB到C,使BC=2AB,点D是AC的中点.求:(1)AC的长;(2)BD的长.(19·20上·太原·一模)20.如图,已知线段,延长至点,使得,点为线段的中点,求线段的长.(16·17下·淄博·阶段练习)21.如图,点C在线段上,点M、N分别是的中点.(1)若,求线段的长;(2)若C为线段上任一点,满足,其它条件不变,你能猜想的长度吗?请直接写出你的答案.(3)若C在线段的延长线上,且满足,M、N分别为的中点,你能猜想的长度吗?请画出图形,写出你的结论,并说明理由.(18·19下·上饶·一模)22.如图,根据要求画图(保留画图的痕迹,可以不写结论)(1)画线段AB;(2)画射线BC;(3)在线段AB上找一点P,使点P到A.B.C三点的距离和最小,并简要说明理由.(18·19上·南充·一模)23.如图,点是线段的中点,且,.(1)求的长;(2)若点是线段的三等分点,求的值.(19·20上·巴中·期末)24.如图所示,已知C,D是线段AB上的两个点,点M、N分别为AC、BD的中点(1)若AB=16cm,CD=6cm,求AC+BD的长和M,N的距离;(2)如果AB=m,CD=n,用含m,n的式子表示MN的长答案1.B【详解】∵AB=10cm,BC=4cm,∴AC=AB﹣BC=6cm,∵点D是AC的中点,∴AD AC=3cm.故选:B.【点睛】考点:两点间的距离2.A【分析】根据线段的性质即可求解.【详解】解:两地距离显示的是两点之间的线段,因为两点之间线段最短,所以导航的实际可选路线都比两地距离要长,故选:A.【点睛】本题考查线段的性质,掌握两点之间线段最短是解题的关键.3.B【分析】根据两点之间线段最短进行解答即可.【详解】解:∵两点之间线段最短,∴从学校A到书店B有①、②、③、④四条路线中,最短的路线是②,故B正确.故选:B.【点睛】本题主要考查了两点之间线段最短,解题的关键是熟练掌握两点之间所有连线中,线段最短.直接利用两点之间的距离定义结合线段中点的性质分别分析得出答案.【详解】A、当AB时,则M为AB的中点,故此选项错误,不符合题意;B、AM+BM=AB时,无法确定M为AB的中点,符合题意;C、当AM=BM时,则M为AB的中点,故此选项错误,不符合题意;D、当AB=2AM时,则M为AB的中点,故此选项错误,不符合题意;故选B.5.C【分析】根据题意作图,由线段之间的关系即可求解.【详解】如图,∵点C是线段AB的中点,∴当AC=4cm时,CD=AC-AD=2cm∴BD=BC+CD=6+2=8cm;当时,CD=AC-AD=4cm∴BD=BC+CD=6+4=10cm;故选C.【点睛】此题主要考查线段之间的关系,解题的关键是熟知线段的和差关系.本题考查线段的应用,通过观察比较即可得出答案.【详解】解:通过观察比较:d线段长度最长.故选:D.7.C【分析】先分C在AB上和C在AB的延长线上两种情况,分别画出图形,然后运用中点的定义和线段的和差进行计算即可.【详解】解:如图:当C在AB上时,AC=AB-BC=2,∴AD AC=1如图:当C在AB的延长线上时,AC=AB+BC=6,∴AD AC=3故选C.【点睛】本题主要考查了线段的和差、中点的定义以及分类讨论思想,灵活运用分类讨论思想成为解答本题的关键.8.B【分析】根据,点表示的数是6,先求解再根据A的位置求解A对应的数即可.【详解】解:由题意可得:点表示的数是6,且B在原点的右侧,,在原点的左侧,表示的数为故选B【点睛】本题考查的是线段的和差倍分关系,数轴上的点所对应的数的表示,熟悉数轴的组成与数轴上数的分布是解本题的关键.9.D【详解】线段的性质:两点之间线段最短.两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选D10.C【分析】根据圆柱的侧面展开特征,两点之间线段最短判断即可;【详解】解:∵AB为底面直径,∴将圆柱侧面沿“剪开”后, B点在长方形上面那条边的中间,∵两点之间线段最短,故选: C.【点睛】本题考查了圆柱的侧面展开,掌握两点之间线段最短是解题关键.11.4【分析】根据中点的定义可得AB=2AC=4cm.【详解】解:根据中点的定义可得:AB=2AC=2×2=4(cm),故答案为:4.【点睛】本题主要考查中点的定义,熟知中点的定义是解题关键.12.1【分析】先根据中点定义求BC的长,再利用线段的差求CD的长.【详解】解:∵C为AB的中点,AB=8cm,∴BC AB=4(cm),∵BD=3cm,∴CD=BC﹣BD=4﹣3=1(cm),则CD的长为1cm;故答案为1.【点睛】此题主要考查线段的长度,解题的关键是熟知线段长度的运算关系.13.2【分析】根据,,求出的长,再根据点D是线段的中点,得出即可得出答案.【详解】解:∵,,∴,∵点C是线段上的点,点D是线段的中点,∴,故答案为2.【点睛】本题考查了两点距离求法,根据已知求出是解题的关键.14.4【详解】∵点C是线段AD的中点,若CD=1,∴AD=1×2=2,∵点D是线段AB的中点,∴AB=2×2=4,故答案为4.15.2或6【分析】要求学生分情况讨论A,B,C三点的位置关系,即点C在线段AB内,点C在线段AB外.【详解】解:此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算.点A、B表示的数分别为﹣3、1,AB=4.第一种情况:在AB外,AC=4+2=6;第二种情况:在AB内,AC=4﹣2=2.故填2或6.16.5或11【分析】由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.【详解】由于C点的位置不确定,故要分两种情况讨论:当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于11cm或5cm.17.【分析】先根据数轴的定义、线段中点的定义分别求出点表示的数,再归纳类推出一般规律,由此即可得.【详解】由题意得:点表示的数为点点点归纳类推得:点n为正整数)则点.【点睛】本题考查了数轴的定义、线段中点的定义,根据点表示的数,正确归纳类推出一般规律是解题关键.18.【详解】=1;););……第n.故答案为1.19.(1)AC=18;(2)BD=3【详解】(1)∵AB=6,BC=2AB,∴BC=12,∴AC=AB+BC=6+12=18(2)∵D是AC的中点,∴AD AC,∵AC=18,AD=9,BD=AD-AB=9-6=3【点睛】考点:两点间的距离.20.2cm【分析】根据题意先求得的长度,再加求出,再根据为线段的中点求,最后减去即可.【详解】解:.又∵点为线段的中点,.【点睛】本题考查了线段中点的性质与线段的长度计算,观察图形,找到线段之间的数量关系是解答关键.21.(1)(2)(3)析【分析】(1)根据M、N的中点,可得,即可求解;(2)根据M、N的中点,可得,即可求解;(3)根据M、N的中点,可得,即可求解.(1)小问详解:解∶∵M、N分别是的中点,∴∵,∴;(2)小问详解:解∶∵M、N分别是的中点,∴∵,∴(3)小问详解:解∶如图,∵M、N分别是的中点,∴∵,∴【点睛】本题主要考查了有关线段中点的计算,明确题意,准确得到线段间的数量关系是解题的关键.22.(1)见解析(2)见解析(3)作CP⊥AB于P,此时P到A.B.C三点的距离和最短,图见解析【分析】(1)连接AB即可(2)作射线BC即可;(3)过C作CP⊥AB于P,即可得出答案【详解】(1)(2)如图所示:(3)如图所示:作CP⊥AB于P,此时P到A.B.C三点的距离和最理由是:根据两点之间线段最短,PA+PB此时最小,根据垂线段最短,得出PC最短,即PA+PB+PC的值最小,即点P到A.B.C三点的距离和最小.【点睛】此题考查直线、射线、线段,掌握作图法则是解题关键23.(1)36;(2)20或28.【分析】(1)先求出AC的长度,然后求出AB的长度即可解答;(2)根据点是线段的三等分点,可得算出AE的长度即可解答.【详解】解:(1)∵,,∴,∴,∵点是线段的中点,∴,∴.(2)∵点是线段的三等分点,∴或∵,∴,∴或,∵,∴或.【点睛】本题考查了线段的等分点的计算,准确计算是解题的关键.24.(1)10cm;11cm;(2【分析】(1)根据AC+BD=AB-CD列式进行计算即可求解,根据中点定义求出AM+BN的长度,再根据MN=AB-(AM+BN)代入数据进行计算即可求解;(2)根据(1)的求解,把AB、CD的长度换成m、n即可(1)小问详解:∵AB=16cm,CD=6cm,∴AC+BD=AB-CD=10cm,∴MN=AB-(AM+BN)=AB(AC+BD)=16-5=11(cm);(2)小问详解:∵AB=m,CD=n,∴AC+BD=AB-CD=m-n,∴MN=AB-(AM+BN)=AB(AC+BD)=m m-n).【点睛】本题考查了两点间的距离,中点的定义,结合图形找准线段之间的关系是解题的关键.。
比较线段的长短练习题线段的长短是数学中一个基本的概念,也是我们日常生活中常常遇到的问题。
通过比较线段的长短,我们可以培养自己的观察力和思维能力。
下面,我们来做一些关于线段长短的练习题,通过解题来加深对这个概念的理解。
练习题一:小明有一条长为8厘米的线段,小红有一条长为5厘米的线段,那么小明的线段比小红的线段长多少厘米?解答:小明的线段长为8厘米,小红的线段长为5厘米。
我们可以通过减法来计算小明的线段比小红的线段长多少厘米。
8厘米 - 5厘米 = 3厘米所以,小明的线段比小红的线段长3厘米。
练习题二:小华有一条长为15厘米的线段,小李有一条长为10厘米的线段,那么小华的线段比小李的线段长多少厘米?小华的线段比小红的线段长多少倍?解答:小华的线段长为15厘米,小李的线段长为10厘米。
我们可以通过减法来计算小华的线段比小李的线段长多少厘米。
15厘米 - 10厘米 = 5厘米所以,小华的线段比小李的线段长5厘米。
我们还可以通过除法来计算小华的线段比小李的线段长多少倍。
15厘米÷ 10厘米 = 1.5倍所以,小华的线段比小李的线段长1.5倍。
通过这两道练习题,我们可以看出,比较线段的长短可以通过减法和除法来解决。
在解决问题的过程中,我们需要运用数学知识,进行计算和推理。
这样的练习可以培养我们的思维能力和逻辑思维能力。
练习题三:小明有一条线段长为12厘米,小红有一条线段长为10毫米,那么小明的线段比小红的线段长多少厘米?解答:小明的线段长为12厘米,小红的线段长为10毫米。
我们需要将小红的线段的单位转换为厘米,然后再进行比较。
10毫米 = 1厘米所以,小红的线段长为0.1厘米。
现在我们可以通过减法来计算小明的线段比小红的线段长多少厘米。
12厘米 - 0.1厘米 = 11.9厘米所以,小明的线段比小红的线段长11.9厘米。
通过这道练习题,我们可以看出,比较线段的长短时,需要注意单位的转换。
在解决问题的过程中,我们需要灵活运用数学知识,进行单位转换和计算。
第4章图形的初步认识
4. 5 最基本的图形——点和线
2.线段的长短比较
1.已知A,B,C三点共线,下面能判断C是线段AB中点的是()
A.AB=AC B.AB=1
2AC C.AC=BC D.2AB=AC
2.如果线段AB=13厘米,MA+MB=17厘米,那么下面说法正确的是() A.M点在线段AB上
B.M点在直线AB上
C.M点在直线AB外
D.M点可能在直线AB上,也可能在直线AB外
3.点A,B,C在直线l上的位置如图所示,则下列结论中不正确的是()
(第3题)
A.AB>AC B.AB>BC
C.AC>BC D.AC+BC=AB
4.[泰安东平期末]线段AB=5 cm,点C在直线AB上,BC=3 cm,D为线段AC 的中点,则AD=______________.
5.如图,A,B,C,D四点在同一直线上,AB=CD.
(第5题)
(1)图中共有________条线段;
(2)比较线段的大小:AC________BD(填“>”“=”或“<”);
(3)若BC=2
3AC,且AC=6 cm,则AD的长为________ cm.
参考答案1.C 2.D 3.C
4.1 cm或4 cm
5.(1)6(2)=(3)8。
七年级数学上册比较线段的长短综合练习题一、单选题1.如图,点C是AB的中点,D是AB上的一点,3AB=,则CD的长是( )AB DB=,已知12A.6B.4C.3D.22.已知线段10cmAC=,则线段AB的中点与AC的中点AB=,在直线AB上取一点C,使16cm的距离为( )A. 13cm或26cmB. 6cm或13cmC. 6cm或25cmD. 3cm或13cm3.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB 架设;④把弯曲的公路改直,就能缩短路程.其中可用基本事实“两点之间,线段最短”来解释的现象有( )A.①②B.①③C.②④D.③④4.下列四个生产生活现象,可以用基本事实“两点之间线段最短”来解释的是( )A.用两颗钉子就可以把木条钉在墙上B.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线C.从A地到B地架设电线,总是尽可能沿着线段AB来架设D.打靶的时候,眼睛要与枪上的准星、靶心在同一条直线上5.下列说法中:①一个有理数不是正数就是负数;②射线AB和射线BA是同一条射线;③0的相反数是它本身;④两点之间,线段最短,正确的有( )A.1个B.2个C.3个D.4个6.已知线段6BC=,则线段AC的长( )AB=,在直线AB上取一点C,使2A.2B.4C.8D.8或47.关于直线、射线、线段的描述正确的是( )A.直线最长,线段最短B.直线、射线及线段的长度都不确定C.直线没有端点,射线有一个端点,线段有两个端点D.射线是直线长度的一半a b c两两相交,8.按下所语句画图:点M在直线a上,也在直线b上,但不在直线c上,直线,,下图中正确的是( )A. B.C. D.9.在平面上有任意四个点,那么这四个点可以确定的直线有( )A.1条B.4条C.6条D.1条或4条或6条10.如图,某同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长小,能正确解释这一现象的数学知识是:( )A.两点之间,直段最短B.两点确定一条直线C.两点之间,线段最短D.经过一点有无数条直线11.平面内互不重合的三条直线的交点个数是( )A. 13,B. 0,1,3C. 0,2,3D. 0,1,2,312.线段AB被分为2:3:4三部分,已知第一部分和第三部分两中点间距离是5.4cm,则线段AB长度为( )A. 8.1cmB. 9.1cmC. 10.8cmD. 7.4cm13.下列生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着直线AB架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点确定一条直线”来解释的现象有( ).A.①②B.①③C.②④D.③④14.如图,某同学家在A处,现在该同学要去位于B处的同学家玩,请帮助他选择一条最近的路线( )A.A C D B →→→B.A C F B →→→C.A C E F B →→→→D.A C M B →→→15.如图,点M 在线段AB 上,则下列条件不能确定M 是AB 的中点的是( )A.12BM AB = B.AM BM AB +=C.AM BM =D.2AB AM =二、解答题16.如图,N 为线段AC 中点,点M 、点B 分别为线段AN NC ,上的点,且满足::1:4:3AM MB BC =(1)若6AN =,求AM 的长;(2)若2NB =,求AC 的长.三、填空题17.把弯曲的河道改直,能够缩短航程.这样做根据的道理是___________________.18.木工师傅在锯木料时,一般先在木料上画出两个点,然后过这两个点弹出一条墨线,这是因为_________________.参考答案1.答案:D解析:2.答案:D解析:3.答案:D解析:4.答案:C解析:5.答案:B解析:6.答案:D解析:7.答案:C解析:8.答案:B解析:9.答案:D解析:10.答案:C解析:11.答案:D解析:12.答案:A解析:13.答案:A解析:14.答案:B解析:根据“两点之间,线段最短”可知,C B 两点之间的最短距离是线段CB 的长度,所以最近的一条路线是A C F B →→→.15.答案:B解析:因为点M 在线段AB 上,所以再加下列条件之一,即可确定点M 是AB 的中点:①12BM AB =;②AM BM =;③2AB AM =.而无论点M 在AB 上的什么位置,都有AM BM AB +=,所以选项B 不能确定点M 是AB 的中点. 16.答案:(1)32AM =;(2)16AC = 解析:17.答案:两点之间,线段最短解析:18.答案:两点确定一条直线.解析:。
专题4.2 比较线段的长短【十大题型】【北师大版】【题型1 线段中点的有关计算】 (1)【题型2 线段的和差】 (4)【题型3 线段的数量关系】 (8)【题型4 简单线段的长短比较】 (11)【题型5 两点间的距离】 (15)【题型6 线段n等分点的有关计算】 (18)【题型8 线段中的动点问题】 (26)【题型9 尺规作线段】 (31)【题型10 线段中的对折问题】 (33)【知识点比较线段的长短】(1)两点的所有连线中,线段最短。
简称:两点之间,线段最短。
连接两点间的线段的长度,叫做这两点的距离。
(2)线段的中点:线段上的一个点把线段分成相等的两条线段,这个点叫做线段的中点.【题型1线段中点的有关计算】【例1】(2023春·山东烟台·七年级统考期中)已知线段AB=12cm,点C为直线AB上一点,且AC=4cm,点D为线段BC的中点,则线段AD的长为( )A.4cm B.8cm C.4cm或6cm D.4cm或8cm【答案】D【分析】分两种情况考虑:点C在线段AB上,点C以线段BA的延长线上;利用中点的意义及线段的和差关系即可求得线段AD的长.【详解】①当点C在线段AB上时,如图则BC=AB−AC=12−4=8(cm)∵点D为线段BC的中点BC=4cm∴CD=12∴AD=AC+CD=4+4=8(cm)②点C以线段BA的延长线上时,如图则BC=AB+AC=12+4=16(cm)∵点D为线段BC的中点BC=8cm∴CD=12∴AD=CD−AC=8−4=4(cm)综上所述,AD的长为4cm或8cm故选:D【点睛】本题考查了中点的含义、线段的和差运算,注意分类讨论.【变式1-1】(2023秋·福建三明·七年级统考期中)如图,C是AB的中点,点D,E分别在AC,BC上,且AD+BE=8,AE+BD=12,则CB的长为.【答案】5【分析】由线段和差关系可求DE,AB,由中点的性质可求解.【详解】解:∵AD+BE+DE=AB,AE+BD−DE=AB,∴8+DE=AB,12−DE=AB,∴DE=2,AB=10,∵C是AB的中点,∴CB=1AB=5.2故答案为:5.【点睛】本题考查了线段和差与中点的性质和应用,熟练掌握线段和差倍分的计算是解题的关键.【变式1-2】(2023秋·山东德州·七年级统考期末)如图,已知点C为线段AB上一点,AC=12cm,CB=8 cm,D、E分别是AC、AB的中点.求:(1)求AD 的长度;(2)求DE 的长度;(3)若M 在直线AB 上,且MB =6cm ,求AM 的长度.【答案】(1)6cm (2)4cm (3)26cm 或14cm【分析】(1)直接根据D 是AC 的中点可得答案;(2)先求出AB 的长,然后根据E 是AB 的中点求出AE ,做好应AE−AD 即为DE 的长;(3)分M 在点B 的右侧、M 在点B 的左侧两种情况进行计算即可.【详解】(1)解:由线段中点的性质AD =12AC =12×12=6cm ;(2)由线段的和差,得AB =AC +BC =12+8=20cm ,由线段中点的性质,得AE =12AB =12×20=10cm ,由线段的和差,得DE =AE−AD =10−6=4cm ;(3)当M 在点B 的右侧时,AM =AB +MB =20+6=26cm ,当M 在点B 的左侧时,AM =AB−MB =20−6=14cm ,∴AM 的长度为26cm 或14cm .【点睛】本题考查了关于线段的中点的计算,线段的和与差的计算,读懂题意熟练运用线段的和差倍分是解本题的关键.【变式1-3】(2023秋·江苏徐州·七年级校考期末)如图,点M 在线段AN 的延长线上,且线段MN =10,第一次操作:分别取线段AM 和AN 的中点M 1、N 1;第二次操作:分别取线段AM 1和AN 1的中点M 2,N 2;第三次操作:分别取线段AM 2和AN 2的中点M 3,N 3;…连续这样操作2023次,则每次的两个中点所形成的所有线段之和M 1N 1+M 2N 2+⋅⋅⋅+M 2023N 2023=( )A .10+522022B .10+522023C .10−522022D .10−522023【答案】C【分析】根据MN =10,M 1、N 1分别为AM 、AN 的中点,求出M 1N 1的长度,再由M 1N 1的长度求出M 2N 2的长度,找到M n N n 的规律即可求出M 1N 1+M 2N 2+⋅⋅⋅+M 2023N 2023的值.【详解】解:∵MN =10,M 1、N 1分别为AM 、AN 的中点,∴M 1N 1=AM 1−AN 1=12AM−12AN =12(AM−AN )=12MN =12×10=5,∵M 2、N 2分别为AM 1、A N 1的中点,∴M 2N 2=AM 2−AN 2=12AM 1−12AN 1=12(AM 1−AN 1)=12M 1N 1=12×5=52,∵M 3、N 3分别为AM 2、A N 2的中点,∴M 3N 3=AM 3−AN 3=12AM 2−12AN 2=12(AM 2−AN 2)=12M 2N 2=12×52=522,……由此可得:M n N n =52n−1,∴M 1N 1+M 2N 2+⋯+M 2023N 2023=5+52+522+⋯+522022=10×+122+⋯=10×1−=10−522022,故选C .【点睛】本题考查线段中点的有关计算,有理数的简便运算,相对较难,根据题意找出规律是解题的关键.【题型2 线段的和差】【例2】(2023秋·江西上饶·七年级统考期末)如图,C 、D 是线段AB 上两点,M 、N 分别是线段AD 、BC 的中点,下列结论:①若AD =BM ,则AB =3BD ;②若AC =BD ,则AM =BN ;③AC−BD =2(MC−DN );④2MN =AB−CN .其中正确的结论是( )A .①②③B .③④C .①②④D .①②③④【答案】A【分析】根据线段中点的定义与线段的和差结合图形逐一进行分析即可.【详解】解:如图, ∵M 、N 分别是线段AD 、BC 的中点,∴AM =MD =12AD ,CN =BN =12BC ,∵AD =BM ,∴AD =MD +BD , ∴AD =12AD +BD , ∴AD =2BD ,∴AD +BD =2BD +BD =3BD ,即AB =3BD ,故①符合题意; ∵AC =BD , ∴AD =BC , ∴12AD =12BC ,∴AM =BN ,故②符合题意;∵AC−BD =AD−CD−BD =AD−(CD +BD )=AD−BC ,∴AC−BD =2MD−2CN =2(MD−CN )=2(MC +CD−CD−DN )=2(MC−DN ) ,故③符合题意; ∵2MN =2MC +2CN ,MC =MD−CD ,∴2MN =2(MD−CD )+2CN =2(MD +CN−CD ), ∵MD =12AD ,CN =12BC ,∴2MN =+12BC−CD=AD−CD +BC−CD =AC +BD=AB−CD ,故④不符合题意, 故选:A .【点睛】本题考查了线段的和差运算,能够利用中点的性质及线段的和差关系求解一些线段之间的关系是解本题的关键.【变式2-1】(2023春·山东济南·七年级校考阶段练习)两根木条,一根长10cm ,另一根长8cm ,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为 cm .【答案】1或9【分析】设AC =8cm ,AB =10cm ,根据题意分两种情况:①如图1,两根木条如图放置,有一端重合,根据点E 是AC 的中点,点D 是AB 的中点,可得AE =12AC =12×8=4,AD =12AB =12×10=5,再由ED =AE +AD 即可得出答案;②如图2,两根木条如图放置,有一端重合,根据点E 是AC 的中点,点D 是AB 的中点,可得AE =12AC =12×8=4,AD =12AB =12×10=5,再由ED =AD−AE 即可得出答案.【详解】解:设AC =8cm ,AB =10cm ,根据题意,①如图1,∵点E 是AC 的中点,点D 是AB 的中点,∴AE =12AC =12×8=4,AD =12AB =12×10=5,∴ED =AE +AD =4+5=9(cm);②如图2,∵点E 是AC 的中点,点D 是AB 的中点,∴AE =12AC =12×8=4,AD =12AB =12×10=5,∴ED =AD−AE =5−4=1(cm).综上所述,两根木条的中点之间的距离为1cm 或9cm .故答案为:1或9.【点睛】本题主要考查两点间的距离及线段的和差,中点的定义,本题运用了分类讨论和数形结合的思想方法.熟练掌握两点的距离及线段和差的计算方法是解题的关键.【变式2-2】(2023秋·江苏南京·七年级校考期末)如图,C 为线段AD 上一点,点B 为CD 的中点,且AD =26cm ,BC =6cm .(1)图中共有 条线段?(2)求AC 的长.(3)若点E 在直线AD 上,且EA =8cm ,求BE 的长.【答案】(1)6(2)14cm (3)12cm 或28cm【分析】(1)根据两点确定一条线段进行求解即可;(2)先根据线段中点的定义求出CD=12cm,则AC=AD−CD=14cm;(3)分当点E在线段AD上时,当点E在线段DA的延长线上时,两种情况求出CE的长即可得到答案.【详解】(1)解:由题意得,图中的线段有:AC,BC,BD,AB,CD,AD一共6条,故答案为:6;(2)解:∵BC=6cm,点B为CD的中点,∴CD=2BC=12cm,∵AD=26cm,∴AC=AD−CD=14cm;(3)解:如图1所示,当点E在线段AD上时,∵AC=14cm,AE=8cm,∴CE=AC−AE=6cm,∵BC=6cm,∴BE=BC+CE=12cm;解:如图2所示,当点E在线段DA的延长线上时,∵AC=14cm,AE=8cm,∴CE=AC+AE=22cm,∵BC=6cm,∴BE=BC+CE=28cm;综上所述,BE的长为12cm或28cm.【点睛】本题主要考查了线段的和差计算,与线段中点有关的线段计算,利用分类讨论的思想求解是解题的关键.【变式2-3】(2023秋·安徽合肥·七年级合肥市第四十五中学校考期末)已知B、C在线段AD上.(1)如图,图中共有条线段,AD=+-;(2)如图,若AB:BD=2:5.AC:CD=4:1.且BC=18,求AD的长度.【答案】(1)6;AC,BD,BC (2)AD =35【分析】(1)根据线段的定义可求出线段的数量;根据线段的和差可可解决与AD 有关的数量关系;(2)设AD =x ,表示出AB 、AC ,根据BC =18列方程求解即可.【详解】(1)图中线段有:AB,AC,AD,BC,BD,CD 共6条;AD =AC +BD−BC .故答案为:6;AC,BD,BC .(2)设AD =x因为AB :BD =2:5,AC :CD =4:1所以AB =252BD =27x ,AC =441BD =45x 因为AC−AB =BC ,BC =18所以45x−27x =18解得x =35所以AD =35.【点睛】本题考查了线段的定义,线段的和差,以及一元一次方程的应用,数形结合是解答本题的关键.【题型3 线段的数量关系】【例3】(2023秋·江西九江·七年级统考期末)已知点M 是线段AB 上一点,若AM =14AB ,点N 是直线AB 上的一动点,且AN−BN =MN ,则MNAB = .【答案】1或12【分析】分两种情况:当点N 在线段AB 上,当点N 在线段AB 的延长线上,然后分别进行计算即可解答.【详解】解:分两种情况:当点N 在线段AB 上,如图:∵AN−BN =MN ,AN−AM =MN ,∴BN =AM ,∵AM =14AB ,∴BN=14AB,∴MN=AB−AM−BN=12AB,∴MNAB =12;当点N在线段AB的延长线上,如图:∵AN−BN=MN,AN−BN=AB,∴AB=MN,∴MNAB=1,综上所述:MNAB 的值为1或12,故答案为:1或12.【点睛】本题考查了两点间的距离,分两种情况进行计算是解题的关键.【变式3-1】(2023秋·江苏·七年级期末)如图,C、D是线段AB上两点,且CD=3AD−2BC,则AC与BD 的关系是()A.AC=BD B.2AC=BD C.3AC=2BD D.4AC=3BD【答案】C【分析】先分别表示出AC和BD,即可求出两者的关系.【详解】解:∵AC=AD-CD=AD-3AD+2BC=2BC-2AD=2(BC-AD),BD=BC-CD=BC-3AD+2BC=3BC-3AD=3(BC-AD),∴AC BD =2(BC−AD)3(BC−AD)=23,∴3AC=2BD,故选:C.【点睛】本题考查线段的计算,熟练掌握线段的和差是解题的关键.【变式3-2】(2023春·上海·七年级专题练习)如图,已知点C为线段AB的中点,D为CB上一点,下列关系表示错误的是( )A.CD=AC﹣DB B.BD+AC=2BC﹣CDC.2CD=2AD﹣AB D.AB﹣CD=AC﹣BD【答案】D【分析】根据图形可以明确线段之间的关系,对线段CD、BD、AD进行和、差转化,即可发现错误选项.【详解】解:∵C是线段AB的中点,∴AC=BC,AB=2BC=2AC,AB﹣BD=AC﹣BD;∴CD=BC﹣BD=12∵BD+AC=AB﹣CD=2BC﹣CD;∵CD=AD﹣AC,∴2CD=2AD﹣2AC=2AD﹣AB;∴选项A、B、C均正确.而答案D中,AB﹣CD=AC+BD;∴答案D错误符合题意.故选:D.【点睛】本题考查线段的和差,是基础考点,掌握相关知识是解题关键.【变式3-3】(2023春·浙江·七年级期中)如图1,AB是一条拉直的细绳,C,D两点在AB上,且AC:BC=2:3,AD:BD=3:7.则(1)CD:AD=;(2)若将点C固定,将AC折向BC,使得AC落在BC上(如图2),再从点D处剪断,使细绳分成三段,分成的三段细绳的长度由小到大之比为.【答案】1∶3 2∶3∶5【分析】(1)根据题意AC:BC =2:3,可得AC:AB =2:5,AC =25AB ;根据AD:BD =3:7,可得AD:AB =3:10,AD =310AB ;CD =AC−AD =110AB ,CD:AD 就是110AB:310AB ,计算求出答案即可.(2)设对折后点D 关于C 点对称处为D ′,被剪断两处分别是点D 和D ′,剪开的三段细绳依次是AD 、DD ′、D ′B ,根据对折性质DD ′=2DC ,D ′B =CB−CD ′,把AD 、DD ′、D ′B 的长度写成关于AB 的值,比较大小后代入计算即可.【详解】解:(1)∵AC:BC =2:3,AC +CB =AB ,∴AC:AB =2:(2+3)=2:5,∴AC =25AB ;∵AD:BD =3:7,AD +DB =AB ,∴AD:AB =3:(3+7)=3:10,∴AD =310AB ;∵CD =AC−AD =25AB−310AB =110AB ,∴CD:AD =110AB:310AB =1:3.(2)设对折后点D 关于C 点对称处为D ′,被剪断两处分别是点D 和D ′,剪开的三段细绳依次是AD 、DD ′、D ′B ,∵根据上题,AD =310AB ;DD ′=2DC =2×110AB =15AB ;D ′B =CB−CD ′=CB−CD =35AB−110AB =12AB ;∴DD ′<AD <D ′B .∴DD ′:AD:D ′B =15AB:310AB:12AB =2:3:5.故答案为:(1)1∶3(2)2∶3∶5.【点睛】本题考查了线段的和与差,根据比值,将每一段的长度表示成总长度的几分之几,用代数的方法代入计算是解题关键.【题型4 简单线段的长短比较】【例4】(2023春·福建龙岩·七年级校考阶段练习)如图,小明从家到学校分别有①、②、③三条路可走:①为折线段ABCDEFG ,②为折线段AIG ,③为折线段AJHG .三条路的长依次为a 、b 、c ,则( )A.a>b>c B.a=b>c C.a>c>b D.a=b<c【答案】B【详解】观察图形,可知:①②相等,③最短,a、b、c的大小关系是:a=b>c.故选B.【点睛】本题考查线段长短的度量、比较, 根据平移的性质,两点间线段距离最短,认真观察图形,可知①②都是相当于走直角线,故①②相等,③走的是两点间的线段,最短.【变式4-1】(2023秋·七年级课时练习)如图,已知三角形ABC,下列比较线段AC和AB长短的方法中,可行的有()①用直尺度量出AB和AC的长度;②用圆规将线段AB叠放到线段AC上,观察点B的位置;③沿点A折叠,使AB和AC重合,观察点B的位置.A.0个B.1个C.2个D.3个【答案】D【分析】①用直尺度量出AB和AC的长度,比较长度;②用圆规将线段AB叠放到线段AC上,若点B在线段AC 上,AB<AC;若点B与点C重合,AB=AC;若点B在AC的延长线上,AB>AC;③沿点A折叠,使AB和AC 重合,若点B在线段AC上,AB<AC;若点B与点C重合,AB=AC;若点B在AC的延长线上,AB>AC.【详解】比较线段AC和AB长短的方法有:①用直尺度量出AB和AC的长度,比较长度;②用圆规将线段AB叠放到线段AC上,观察点B的位置,若点B在线段AC上,AB<AC;若点B与点C重合,AB=AC;若点B在AC的延长线上,AB>AC;③沿点A折叠,使AB和AC重合,观察点B的位置,若点B在线段AC上,AB<AC;若点B与点C重合,AB=AC;若点B在AC的延长线上,AB>AC.共3个方法.故选:D .【点睛】本题主要考查了比较三角形两边长短的方法,熟练掌握度量法,叠合法,是解决问题的关键,其中叠合法包括叠放法,折叠法.【变式4-2】(2023秋·云南楚雄·七年级统考期末)如图,B ,C 在线段AD 上,M 是AB 的中点,N 是CD 的中点,(1)图中以C 为端点的线段共有______条.(2)若AB =CD ,①比较线段的长短:AC ______BD ;AN ______DM (填:“>”、“=”或“<”)②若AD =21,AB:BC =2:3,求MN 的长度.【答案】(1)5(2)①=;=;②15【分析】(1)除C 点外还有5个端点,即以C 为端点的线段有5条;(2)①根据题意有AM =MB =12AB ,CN =ND =12CD ,即有AB +BC =CD +BC ,AM =MB =CN =ND ,即有AC =BD ,AD−ND =AD−AM ,问题随之得解;②设AB =2x ,BC =3x ,则CD =2x ,依题意,得2x +3x +2x =21,即可得AB =6,BC =9,CD =6,根据①:AM =MB =12AB ,CN =ND =12CD ,即可求解.【详解】(1)∵除C 点外还有5个端点,∴以C 为端点的线段有5条,故答案为:5;(2)①∵M 是AB 的中点,N 是CD 的中点,∴AM =MB =12AB ,CN =ND =12CD ,∵AB =CD ,∴AB +BC =CD +BC ,AM =MB =CN =ND ,∴AC =BD ,AD−ND =AD−AM ,∴AN =DM ,故答案为:=,=;②设AB =2x ,BC =3x ,则CD =2x ,依题意,得2x +3x +2x =21,解得x =3,故AB =6,BC =9,CD =6,∵根据①:AM =MB =12AB ,CN =ND =12CD ,∴MN =BM +BC +CN =3+9+3=15.【点睛】本题考查了有关线段中点的计算,一元一次方程的应用等知识,理清各线段的关系,是解答本题的关键.【变式4-3】(2023秋·浙江杭州·七年级统考期末)如图,已知直线AB ,射线AC ,线段BC .(1)用无刻度的直尺和圆规作图:延长BC 到点D ,使CD =AC ,连接AD .(2)比较AB +AD 与BC +AC 的大小,并说明理由.【答案】(1)见解析(2)AB +AD >BC +AC ,见解析【分析】(1)根据题意,作出图形即可;(2)利用两点之间线段最短以及线段的和差,求解即可.【详解】(1)解:如图;(2)解:根据两点之间线段最短可判断AB +AD >BD .即AB +AD >BC +CD∵CD =AC∴AB+AD>BC+AC【点睛】此题考查了尺规作图-线段,以及两点之间线段最短,解题的关键是熟练掌握相关基础知识.【题型5 两点间的距离】【例5】(2023秋·河北张家口·七年级统考期末)如图,在线段MN上有P、Q两点,PQ长度为2cm,MN长为整数,则以M、P、Q、N为端点的所有线段长度和可能为()A.19cm B.20cm C.21cm D.22cm【答案】B【分析】根据题意可知,所有线段的长度之和是MP+MQ+MN+PQ+PN+QN,然后根据PQ=2cm,线段MN的长度是一个正整数,可以解答本题.【详解】解:由题意可得,图中以M、P、Q、N这四点中任意两点为端点的所有线段长度之和是:MP+MQ+MN+PQ+PN+QN (MP+PQ+QN)+(MQ+PN)+MN=MN+MN+PQ+MN=3MN+PQ∴以M、P、Q、N为端点的所有线段长度和为长度为3的倍数多2,∴以M、P、Q、N为端点的所有线段长度和可能为20.故选B.【点睛】本题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件.【变式5-1】(2023秋·江西吉安·七年级校考期末)在同一直线上有A,B,C,D不重合的四个点,AB=8,BC=3,CD=5,则AD的长为.【答案】6或10或16【分析】由于没有图形,故A,B,C,D四点相对位置不确定,分:点C在B的左侧、右侧,点D在C的左侧、右侧等,不同情况画图分别求解即可.【详解】解:I.当点C在B的右侧,点D在C的左侧时,如图:∵AB=8,BC=3,CD=5,∴AD =AB +BC−CD =8+3−5=6,II .当点C 在B 的右侧,点D 在C 的右侧时,如图:∴AD =AB +BC−CD =8+3+5=16,III .当点C 在B 的左侧,点D 在C 的左侧时,如图:∴AD =AB−BC−CD =8−3−5=0,点A 、D 重合,不合题意,IV .当点C 在B 的左侧,点D 在C 的右侧时,如图:∴AD =AB−BC +CD =8−3+5=10,点A 、D 重合,不合题意,综上所述:AD 的长为6或10或16故答案为:6或10或16.【点睛】本题主要考查两点间的距离,解题的关键是根据点的不同位置进行分类讨论、利用线段之间的和差关系得到AD 的长度.【变式5-2】(2023秋·福建福州·七年级统考期末)互不重合的A 、B 、C 三点在同一直线上,已知AB =2a,AC =a +6,BC =3a +1,则这三点的位置关系是( )A .点A 在B 、C 两点之间B .点B 在A 、C 两点之间C .点C 在A 、B 两点之间D .无法确定【答案】B【分析】根据题意得a ≥0,若点A 在B 、C 两点之间,则AB +AC =BC ,此时无解,若点B 在A 、C 两点之间,则BC +AB =AC ,解得a =54,若点C 在A 、B 两点之间,则BC +AC =AB ,解得a =−72,综上,即可得.【详解】解:∵AB =2a,AC =a +6,BC =3a +1,∴a ≥0,A 、若点A 在B 、C 两点之间,则AB+AC=BC,2a+a+6=3a+1,此时无解,故选项A情况不存在;B、若点B在A、C两点之间,则BC+AB=AC,3a+1+2a=a+6,a=54,故选项B情况存在;C、若点C在A、B两点之间,则BC+AC=AB,3a+1+a+6=2a,a=−72,故C情况不存在;故选:B.【点睛】本题考查了两点间的距离,整式的加减,解题的关键是理解题意,掌握这些知识点,分类讨论.【变式5-3】(2023秋·辽宁大连·七年级统考期末)如图,A、B、C、D、E是直线l上的点,线段AB=12 cm,点D、E分别是线段AC、BC的中点.(1)求线段DE的长;(2)若BC=4cm,点O在直线AB上,AO=5cm,求线段OE的长;(3)若BC=m cm,点O在直线AB上,AO=n cm,请直接写出线段OE的长 cm.(用含m、n的式子表示)【答案】(1)6cm(2)5cm或15cm(3)(n+12−m2)或(12−n−m2)或(n−12+m2)cm【分析】(1)根据线段中点的定义和线段的和差即可得到结论;(2)根据线段的和差关系即可得到结论;(3)根据线段的和差关系即可得到结论.【详解】(1)∵点D 、E 分别是线段AC 、BC 的中点,∴DC =AD =12AC ,BE =CE =12BC ,∴DE =DC +CE =12AC +12BC =12AB =12×12=6cm ;(2)∵E 为BC 的中点,∴BE =CE =12BC =2cm ,当点O 在点A 的左边时,OE =OA +AE =OA +AB−BE =5+12−2=15cm ;当点O 在点A 的右侧时,OE =AE−OA =AB−BE−OA =12−2−5=5cm ;(3)∵BC =m cm ,∴BE =CE =12BC =m 2,当点O 在点A 的左边时,OE =OA +AE =OA +AB−BE =(n +12−m 2)cm ;当点O 在点A 的右侧在E 的左侧时,OE =AE−OA =AB−BE−OA =(12−n−m 2)cm ,当点O 在E 的右侧时,OE =BE−AB +OA =(n−12+m 2)cm ,综上所述,线段OE 的长为(n +12−m 2)或(12−n−m 2)或(n−12+m 2)cm ;故答案为: (n +12−m 2)或(12−n−m 2)或(n−12+m 2)cm .【点睛】本题考查了两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.【题型6 线段n 等分点的有关计算】【例6】(2023·全国·七年级假期作业)如图,将一根绳子对折以后用线段AB 表示,点P 是AB 的四等分点,现从P 处将绳子剪断,剪断后的各段绳子中的一段长为30cm ,则这条绳子的原长为 cm .【答案】40或80或120或240.【分析】分AP =13PB ,PB =13AP 这两种情况,结合图形就所得三段绳子其中一段长度为30cm ,再分类讨论求解可得.【详解】解:①如图1,当AP =13PB 时,此时剪开的三段分别为AP 、PP′、A′P′,若AP=A′P′=30cm ,则PB=P′B=3PA=90cm ,此时AA′=AP+PP′+A′P′=30+180+30=240(cm );若PP′=30cm ,则PB=P′B=15cm ,AP=A′P′=13PB=5cm ,此时AA′=5+30+5=40(cm );②如图2,当PB =13AP 时,此时剪开的三段分别为AP 、PP′、A′P′,若AP=A′P′=30cm ,则PB=P′B=13AP=10cm ,此时AA′=AP+PP′+A′P′=30+20+30=80(cm );若PP′=30cm ,则PB=P′B=15cm ,AP=A′P′=3PB=45cm ,此时AA′=AP+PP′+A′P′=45+30+45=120(cm );综上,这条绳子的原长为40或80或120或240cm ,故答案为:40或80或120或240.【点睛】本题考查线段的和差.熟练掌握线段等分点的性质和线段的和差计算及分类讨论思想的运用是解题的关键.【变式6-1】(2023秋·福建龙岩·七年级统考期末)如图B 、C 两点把线段AD 分成2:3:4的三部分,M 是AD 的中点,CD =8,求MC 的长.【答案】MC =1【分析】设AB =2x ,得CD =4x ,BC =3x ,AD =9x ,再根据CD =8,求出x 的值,故可得出线段AD 的长度,再根据M 是AD 的中点可求出MD 的长,由MC =MD−CD 即可得出结论.【详解】解:设AB =2x ,∵AB ∶BC ∶CD =2∶3∶4,∴CD =4x ,BC =3x ,AD =(2+3+4)x =9x ,∵CD =8,∴x=2,∴AD=9x=18,∵M是AD的中点,∴MD=12AD,∴MC=MD−CD=12AD−CD=12×18−8=1.【点睛】本题考查的是线段的和差运算,中点的含义,在解答此类问题时要注意各线段之间的和、差及倍数关系.【变式6-2】(2023春·黑龙江哈尔滨·七年级统考期末)如图,线段AB和线段CD的公共部分是线段BD,点E、F分别是AB、CD的中点,若BF:DE=5:2,BC−EF=3,AE=6,则AC的长为.【答案】26【分析】由图,可求CF−BE=3,由BE=AE=6,得DF=CF=3+BE=9,于是9−DB6−DB =52,得DB=4,进而求得AC=AB+CD−DB=26.【详解】解:∵BC−EF=3,BC,EF有一段公共边BF,∴CF−BE=3,∵E、F分别是AB、CD的中点,∴BE=AE=6,∴DF=CF=3+BE=3+6=9,∵BF=9−DB,DE=6−DB,BF:DE=5:2,∴9−DB6−DB =52,∴DB=4,∴AC=AB+CD−DB=6×2+9×2−4=26.故答案为:26.【点睛】本题考查根据直线上线段间的数量关系计算线段长度,由直线上点之间的位置关系确定线段间的数量关系是解题的关键.【变式6-3】(2023秋·河南新乡·七年级统考期末)小明在学习了比较线段的长短时对下面一道题产生了探究的兴趣:如图1,点C 在线段AB 上,M ,N 分别是AC ,BC 的中点.若AB =6,AC =2,求MN 的长.(1)根据题意,小明求得MN =______.(2)小明在求解(1)的过程中,发现MN 的长度具有一个特殊性质,于是他先将题中的条件一般化,并开始深入探究.设AB =a ,C 是线段AB 上任意一点(不与点A ,B 重合),小明提出了如下三个问题,请你帮助小明解答.①如图1,M ,N 分别是AC ,BC 的中点,则MN =______.②如图2,M ,N 分别是AC ,BC 的三等分点,即AM =13AC ,BN =13BC ,求MN 的长.③若M ,N 分别是AC ,BC 的n (n ≥2)等分点,即AM =1n AC ,BN =1n BC ,则MN =______.【答案】(1)3(2)①12a ;②23a ;③n−1n a【分析】(1)由AB =6,AC =2,得BC =AB−AC =4,根据M ,N 分别是AC ,BC 的中点,即得CM = 12 AC =1,CN = 12 BC =2,故MN =CM +CN =3;(2)①由M ,N 分别是AC ,BC 的中点,知CM = 12 AC ,CN = 12 BC ,即得MN = 12 AC + 12 BC = 12 AB ,故MN = 12 a ;②由AM = 13 AC ,BN = 13 BC ,知CM = 23 AC ,CN = 23 BC ,即得MN =CM +CN = 23 AC + 23 BC = 23 AB ,故MN = 23 a ;③由AM = 1n AC ,BN = 1n BC ,知CM =n−1n AC ,CN = n−1n BC ,即得MN =CM +CN = n−1n AC + n−1n BC = n−1n AB ,故MN = n−1n a .【详解】(1)解:∵AB=6,AC=2,∴BC=AB−AC=4,∵M,N分别是AC,BC的中点,∴CM=12AC=1,CN=12BC=2,∴MN=CM+CN=3;故答案为:3;(2)解:①∵M,N分别是AC,BC的中点,∴CM=12AC,CN=12BC,∴MN=12AC+12BC=12AB,∵AB=a,∴MN=12a;故答案为:12a;②∵AM=13AC,BN=13BC,∴CM=23AC,CN=23BC,∴MN=CM+CN=23AC+23BC=23AB,∵AB=a,∴MN=23a;③∵AM=1n AC,BN=1nBC,∴CM=n−1n AC,CN=n−1nBC,∴MN=CM+CN=n−1n AC+n−1nBC=n−1nAB,∵AB=a,∴MN=n−1na,故答案为:n−1na.【点睛】本题考查了线段的中点、线段的和差,解题的关键是掌握线段中点的定义及线段和差运算.【题型7与线段的长短比较有关的应用】【例7】(2023春·北京海淀·七年级首都师范大学附属中学校考开学考试)如图,在公路MN两侧分别有A1,A2,⋯,A7七个工厂,各工厂与公路MN(图中粗线)之间有小公路连接.现在需要在公路MN上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”,由以上几个描述①车站的位置设在C点好于B点;②车站的位置在B点与C点之间任何一点效果一样;③车站位置的设置与各段小公路的长短无关.其中,正确的是.【答案】①③【分析】根据最优化问题,即可判断出正确答案.【详解】解;如图,因为A、D、E点各有一个工厂相连,B,C,各有两个工厂相连,把工厂看作“人”.可简化为“A,B,C,D,E处分别站着1,2,2,1,1个人(如图),求一点,使所有人走到这一点的距离和最小”把人尽量靠拢,显然把人聚到B、C最合适,靠拢完的结果变成了B=4,C=3,最好是移动3个人而不要移动4个人.所以车站设在C点,且与各段小公路的长度无关.故答案为:①③.【点睛】此题属于最优化问题,做这类题要做到规划合理,也就是要考虑到省时省力.【变式7-1】(2023春·江西宜春·七年级江西省丰城中学校考开学考试)如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在( )A.点A B.点B C.A,B之间D.B,C之间【答案】A【分析】此题为数学知识的应用,由题意设一个停靠点,为使所有的人步行到停靠点的路程之和最小,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.【详解】解:①以点A为停靠点,则所有人的路程的和=15×100+10×300=4500(米),②以点B为停靠点,则所有人的路程的和=30×100+10×200=5000(米),③以点C为停靠点,则所有人的路程的和=30×300+15×200=12000(米),④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<100),则所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=4500+5m>4500,⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<200),则总路程为30(100+n)+15n+10(200﹣n)=5000+35n>4500.∴该停靠点的位置应设在点A;故选A.【点睛】此题为数学知识的应用,考查知识点为两点之间线段最短.【变式7-2】(2023春·浙江宁波·七年级校考开学考试)一条直街上有5栋楼,按从左至右顺序编号为1、2、3、4、5,第k号楼恰好有k(k=1、2、3、4、5)个A厂的职工,相邻两楼之间的距离为50米.A厂打算在直街上建一车站,为使这5栋楼所有A厂职工去车站所走的路程之和最小,车站应建在距1号楼米处.【答案】150【详解】假设车站距离1号楼x米,然后运用绝对值表示出总共的距离,继而分段讨论x的取值去掉绝对值,根据数的大小即可得出答案.解:假设车站距离1号楼x米,则总距离S=|x|+2|x-50|+3|x-100|+4|x-150|+5|x-200|,①当0≤x≤50时,S=2000-13x,最小值为1350;②当50≤x≤100时,S=1800-9x,最小值为900;②当100≤x≤150时,S=1200-3x ,最小值为750(此时x=150);当150≤x≤200时,S=5x ,最小值为750(此时x=150).∴综上,当车站距离1号楼150米时,总距离最小,为750米.故答案为150.【变式7-3】(2023秋·江苏常州·七年级常州市清潭中学校考期中)在一条直线上有依次排列的n (n >1)台机床在工作,我们需要设置零件供应站P ,使这n 台机床到供应站P 的距离总和最小.要解决这个问题,先要分析比较简单的情形:如果直线上只有2台机床A 1,A 2时,很明显供应站P 设在A 1和A 2之间的任何地方都行,距离之和等于A 1到A 2的距离;如果直线上有3台机床A 1、A 2、A 3,供应站P 应设在中间一台机床A 2处最合适,距离之和恰好为A 1到A 3的距离;如果在直线上4台机床,供应站P 应设在第2台与第3台之间的任何地方;如果直线上有5台机床,供应站P 应设在第3台的地方;(1)阅读递推:如果在直线上有7台机床,供应站P 应设在( )处.A .第3台B .第3台和第4台之间C .第4台D .第4台和第5台之间(2)问题解决:在同一条直线上,如果有n 台机床,供应站P 应设在什么位置?(3)问题转化:在数轴上找一点P ,其表示的有理数为x .当x =_______时,代数式|x−1|+|x−2|+|x−3|+⋯+|x−99|取到最小值,此时最小值为___________.【答案】(1)C(2)当n 为奇数时,供应站P 应设在第n 12台的位置;当n 为偶数时,供应站P 应设在第n 2台第1台之间的任何位置(3)50,2450【分析】(1)从所给材料中找出规律即可求解;(2)分n 为奇数和n 为偶数两种情况,找出规律即可求解;(3)根据绝对值的几何意义和连续整数的和的计算公式即可求解.【详解】(1)解:根据题意可知:直线上有3台机床,供应站P应设在中间一台机床A2处最合适,直线上有5台机床,供应站P应设在中间一台机床A3处最合适,以此类推,如果在直线上有7台机床,供应站P应设在中间一台机床A4处最合适,故选C;(2)解:由题意知:台的位置;当n为奇数时,供应站P应设在第n12台和第1台之间的任何位置;当n为偶数时,供应站P应设在第n2(3)解:1到99最中间的数为:(1+99)÷2=50,应用(2)中结论可知,当x=50时,代数式|x−1|+|x−2|+|x−3|+⋯+|x−99|取到最小值,|50−1|+|50−2|+|50−3|+⋯+|50−99|=49+48+47+⋯+2+1+0+1+2+⋯+48+49=(1+49)×49=2450,即当x=50时,代数式|x−1|+|x−2|+|x−3|+⋯+|x−99|取到最小值,最小值为2450.【点睛】本题考查绝对值的几何意义、数轴上两点间的距离、有理数的混合运算等,解题的关键是掌握从特殊到一般和分类讨论的方法.【题型8线段中的动点问题】【例8】.(2023秋·新疆乌鲁木齐·七年级校考期末)如图,已知点A、点B是直线上的两点,AB=14厘米,点C在线段AB上,且BC=3厘米.点P、点Q是直线AB上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.点P、Q分别从点C、点B同时出发在直线上运动,则经过秒时线段PQ的长为6厘米.【答案】3或9或1【分析】分四种情况:(1)点P、Q都向右运动;(2)点P、Q都向左运动;(3)点P向左运动,点Q 向右运动;(4)点P向右运动,点Q向左运动;求出经过多少秒时线段PQ的长为6厘米即可.【详解】解:(1)点P、Q都向右运动时,(6−3)÷(2−1)=3÷1。
七年级数学比较线段长短专项练习题一、解答题1.如图,点C 是AB 的中点,,D E 分别是线段,AC CB 上的点,且23,35AD AC DE AB ==,若24cm AB =,求线段CE 的长.2.如图,P 是线段AB 上一点, 12cm AB =,,C D 两点分别从,P B 出发以1/2/cm s ,cm s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上),运动的时间为t .(1)当1t =时,2PD AC =,请求出AP 的长; (2)当2t =时,2PD AC =,请求出AP 的长;(3)若,C D 运动到任一时刻时,总有2PD AC =,请求出AP 的长;(4)在(3)的条件下,Q 是直线AB 上一点,且AQ BQ PQ -=,求PQ 的长.3.如图,已知,C D 为线段AB 上顺次两点,点,M N 分别为AC 与BD 的中点,若20,8AB CD ==,求线段MN 的长.4.已知点C 是线段AB 上一点,6cm,4cm AC BC ==,若.M N 分别是线段,AC BC 的中点,求线段MN 的长.5.如图,点C 在线段AB 上,3:2AC BC =:,点M 是AB 的中点,点N 是BC 的中点,若3cm MN =,求线段AB 的长.6.已知线段6AB =,在直线AB 上取一点P ,恰好使2AP PB =,点Q 为PB 的中点,求线段AQ 的长.7.如图,N 为线段AC 中点,点M 、点B 分别为线段AN NC ,上的点,且满足::1:4:3AM MB BC =(1)若6AN =,求AM 的长; (2)若2NB =,求AC 的长. 8.读题计算并作答线段3cm AB =,在线段AB 上取一点K ,使AK BK =,在线段AB 的延长线上取一点C ,使3AC BC =,在线段BA 的延长线取一点D ,使12AD AB =. (1)求线段,BC DC 的长? (2)点K 是哪些线段的中点?9..如图,已知,C D 为线段AB 上顺次两点,点M N ,分别为AC 与BD 的中点,若10AB =,4CD =,求线段MN 的长.10.如图,已知点,,A B C 在同一直线上,,M N 分别是,AC BC 的中点.(1)若20,8AB BC ==,求MN 的长; (2)若,8AB a BC ==,求MN 的长; (3)若,AB a BC b ==,求MN 的长;(4)从(1)(2)(3)的结果中能得到什么结论?11.已知点C 在线段AB 上,线段7cm,5cm AC BC ==,点,M N 分别是,AC BC 的中点,求MN 的长度.12.已知线段10cm AB =,直线AB 上有一点,6cm,C BC M =为线段AB 的中点,N 为线段BC 的中点,求线段MN 的长.13.如图,,B C 两点把线段AD 分成2:5:3三部分,M 为AD 的中点,6cm BM =,求CM 和AD 的长.14.如图,点C 是线段AB 上一点,点,,M N P 分别是线段,,AC BC AB 的中点.(1)若12cm AB =,求线段MN 的长度; (2)若3cm,1cm AC CP ==,求线段PN 的长度.15.如图,已知线段AB 上有两点,C D ,且AC BD =,,M N 分别是线段,AC AD 的中点,若cm,cm AB a AC BD b ===,且,a b 满足2(10)|4|02ba -+-=.(1)求,AB AC 的长度. (2)求线段MN 的长度.16.如图,已知E 是AB 的中点,F 是CD 的中点,且11,10cm 34BD AB CD EF ===,求AC 的长.17.如图,已知线段65AB =cm ,点M 为AB 的中点,点P 在MB 上,且N 为PB 的中点,若6.5BN =cm ,试求线段MP 的长.18.如图,,M N 两点把线段AB 分成2:3:4三部分,C 是线段AB 的中点,4NB = cm. (1)求CN 的长. (2)求:AM MC .19.如图,点,,,,A B E C D 在同一条直线上,且AC BD =,点E 是BC 的中点,那么点E 是AD 的中点吗?为什么?20.如图,已知111,,,333CB AB AC AD AB AE ===,且2CB =,求CD 的长.21.如图①,已知点M 是线段AB 上一点,点C 在线段AM 上,点D 在线段BM 上,C D 、两点分别从M B 、出发以1cm/s 3cm/s 、的速度沿直线BA 向左运动,运动方向如箭头所示. (1)若10cm AB =,当点C D 、运动了2s ,求AC MD +的值. (2)若点C D 、运动时,总有3MD AC =,则:AM = AB . (3)如图②,若14AM AB =,点N 是直线AB 上一点,且AN BN MN -=,求MNAB的值.22.如图,D 是AB 的中点,E 是BC 的中点,12cm 5BE AC ==,求线段DE 的长.23.画线段3cm MN =,在线段MN 上取一点Q ,使MQ NQ =;延长线段MN 到点A ,使12AN MN =;延长线段NM 到点B ,使3BN BM =. (1)求线段AN 的长; (2)求线段BM 的长;(3)试说明点Q 是哪些线段的中点.24.如图,点C 在线段AB 上,8cm,6cm AC CB ==,点,M N 分别是,AC BC 的中点.(1)求线段MN 的长.(2)若点C 为线段AB 上任意一点,满足cm AC CB a +=,其他条件不变,你能猜想MN 的长度吗?并说明理由.(3)若C 在线段AB 的延长线上,且满足cm AC BC b -=,,M N 分别为,AC BC 的中点,你能猜想MN 的长度吗?并说明理由.参考答案1.答案:10.4cm CE =. 解析:2.答案:(1)4cm ;(2)4cm ;(3)4cm ;(4)4cm 或12cm 解析:3.答案:14MN = 解析:4.答案:线段MN 长5cm . 解析:5.答案:10cm 解析:6.答案:AQ 的长度为5或9. 解析:7.答案:(1)32AM =;(2)16AC = 解析:8.答案:(1) 1.5cm 6cm BC DC ==,; (2)点K 是线段AB 和DC 的中点. 解析: 9.答案:7 解析:10.答案:(1)因为20,8AB BC ==,所以28AC AB BC =+=, 因为点,,A B C 在同一直线上,,M N 分别是,AC BC 的中点, 所以1114,422MC AC NC BC ====, 所以14410MN MC NC =-=-=.(2)根据(1)得111()222MN AC BC AB a =-==.(3)根据(1)得111()222MN AC BC AB a =-==.(4)从(1)(2)(3)的结果中能得到线段MN 的长度始终等于线段AB 的一半,与C 点的位置无关. 解析:11.答案:【解】因为7cm,5cm AC BC ==,点,M N 分别是,AC BC 的中点, 所以113.5cm, 2.5cm 22MC AC CN BC ====. 则 3.5 2.56(cm)MN MC CN =+=+=. 解析:12.答案:【解】第一种情况:若为图(1)情形,因为M 为AB 的中点,所以5cm MB MA ==. 因为N 为BC 的中点,所以3cm NB NC ==. 所以2cm MN MB NB =-=. 第二种情况:若为图(2)情形,因为M 为AB 的中点,所以5cm MB MA ==. 因为N 为BC 的中点,所以3cm NB NC ==.解析:13.答案:【解】设2cm,5cm,3cm AB x BC x CD x ===. 所以10cm AD AB BC CD =++=. 因为M 是AD 的中点, 所以15cm 2AM MD AD x ===. 所以523cm BM AM AB x x x =-=-=. 因为6cm BM =,所以36,2x x ==.故532224(cm)CM MD CD x x x =-=-==⨯=. 1010220(cm)AD x ==⨯-.解析:14.答案:(1)因为,M N 分别是,AC BC 的中点, 所以11,22MC AC CN BC ==. 所以1111()6cm 2222MN MC CN AC BC AC BC AB =+=+=+==. (2)因为3cm,1cm AC CP ==,所以4cm AP AC CP =+=. 因为P 是线段AB 的中点,所以28cm AB AP ==. 所以5cm CB AB AC =-=.因为N 是线段CB 的中点,12.5cm 2CN CB ==.所以 1.5cm PN CN CP =-=.解析:(1)根据,M N 分别是线段,AC BC 的中点及AB 的长度,可求出MN .(2)先求出AP ,再利用P 是AB 的中点,求出AB .进而利用BC AB AC =-求出BC .根据N 为BC 的中点又可求出12CN BC =.最后利用PN CN CP =-求出结果. 15.答案:解:(1)由题意可知2(10)0,|4|02ba -=-=, 所以10,8ab ==,所以10cm,8cm AB AC ==. (2)因为8cm BD AC ==, 所以2cm AD AB BD =-=.又因为,M N 分别是,AC AD 的中点,所以3cm MN AM AN =-=.解析:若几个非负数之和为0,则这几个非负数均为0. 16.答案:解:设BD x =, 因为1134AB CD BD ==,所以33,44AB BD x CD BD x ====, 因为E 为AB 的中点, 所以1322BE AB x ==. 因为F 为CD 的中点, 所以122DF CD x ==,所以2BF DF BD x x x =-=-=, 所以3522EF BE BF x x x =+=+=. 因为10EF =, 所以5102x =,解得4x =.所以312,416,4AB x CD x DB x ======, 所以16412BC CD BD =-=-=, 所以121224(cm)C AB BC =+=+=.解析:线段,AB CD 与BD 都有倍分关系,故把BD 设为x ,表示出,AB CD 的长. 17.答案:解:因为M 为AB 的中点,且65AB =cm 所以652AM MB ==cm. 又N 为PB 的中点,且 6.5BN =cm, 所以 6.5PN NB ==cm ,所以13PB =cm. 所以65391322MP MB PB =-=-= (cm). 解析:18.答案:解:(1)由题意得::2:3:4AM MN NB =,设 2AM x =,则3,4MN x NB x ==.又4NB =cm ,故2AM =cm,3MN =cm, 因此9AB =cm.又C 为AB 的中点,所以1922CB AB ==cm, 故91422CN CB BN =-=-= (cm) (2)由(1)知15322MC MN CN =-=-=(cm), 故5:2:4:52AM MC ==. 解析:19.答案:解:点E 是AD 的中点.理由如下:因为,,,,A B E C D 在同一条直线上,AC BD = (已知), 所以AC BC BD BC -=- (等式的性质),, 即AB CD = (线段和、差的意义). 因为点E 是BC 的中点(已知), 所以BE CE =(线段中点的定义), 所以AB BE CD CE +=+ (等式的性质), 即AE ED = (线段和、差的意义), 所以点E 是AD 的中点(线段中点的定义). 解析:20.答案:解:因为1,24CB AB CB ==,所以36AB CB ==. 所以4AC AB BC =-=.因为13AC AD =,所以312AD AC ==.所以1248CD AD AC =-=-=. 解析:21.答案:解:(1)当点C D 、运动了2s 时,2cm,6cm CM BD ==10cm,2cm,6cm AB CM BD ===10262cm AC MD AB CM BD ∴+=--=--= (2),C D 两点的速度分别为1cm/s,3cm/s , 3BD CM ∴=. 又3MD AC =,33BD MD CM AC ∴+=+,即3BM AM =,14AM AB ∴=;(3)当点N 在线段AB 上时,如图AN BN MN -=,又AN AM MN -=1142BN AM AB MN AB ∴==∴=,,即12MN AB =. 当点N 在线段AB 的延长线上时,如图AN BN MN -=,又AN BN AB -=MN AB ∴=,即1MNAB=. 综上所述12MN AB =或1. 解析:22.因为E 是BC 的中点,所以24cm BC BE ==. 因为D 是AB 的中点,解析:23.答案:(1)解:如图所示:因为1,3cm 2AN MN MN ==,所以 1.5cm AN => (2)因为3cm,MN MQ NQ ==,所以 1.5cm MQ NQ ==又因为13BM BN =,所以23MN BN =.所以34.5cm 2BN MN == 所以 1.5cm BM BN MN =-=.(3)因为 1.5 1.53(cm)BQ BM MQ =+=+=3cm AQ AN NQ =+=所以BQ AQ = 又MQ NQ =,所以Q 是MN 的中点,也是AB 的中点.解析:24.答案:(1)解:因为点,M N 分别是,AC BC 的中点,8cm,6cm AC CB == 所以114cm,3cm 22CM AC CN BC ====. 所以437(cm)MN CM CN =+=+= 所以线段MN 的长是7cm .(2)1cm 2MN a =.理由如下:因为点,M N 分别是,AC BC 的中点,cm AC CB a +=, 所以11,22CM AC CN BC ==, 所以1111()cm 2222MN CM CN AC BC AC BC a =+=+=+= 所以线段MN 的长是1cm 2a .(3)如图.1cm 2MN b =.理由如下:因为点,M N 分别是,AC BC 的中点,cm AC CB b -= 所以11,22CM AC CN BC == 所以1111()cm 2222MN CM CN AC BC AC BC b =-=-=-=, 即线段MN 的长是1cm 2b .解析:。
七年级数学上册《第四章比较线段的长短》练习题-带答案(北师大版)一、选择题1.点A,B,C在同一条数轴上,其中点A,B表示的数分别为-3,1,若BC=2,则AC等于( )A.3B.2C.3或5D.2或62.已知线段AB和线段CD,使A与C重合,若点D在AB的延长线上,则( )A.AB>CDB.AB=CDC.AB<CDD.无法比较AB与CD的长短3.如图:A、B、C、D四点在一条直线上,若AB=CD,下列各式表示线段AC错误的是( )A.AC=AD﹣CDB.AC=AB+BCC.AC=BD﹣ABD.AC=AD﹣AB4.已知数轴上三点A、B、C分别表示有理数x、1、﹣1,那么|x﹣1|表示( )A.A、B两点的距离B.A、C两点的距离C.A、B两点到原点的距离之和D.A、C两点到原点的距离之和5.下列说法中,不正确的是( )A.若点C在线段BA的延长线上,则BA=AC-BCB.若点C在线段AB上,则AB=AC+BCC.若AC+BC>AB,则点C一定在线段BA外D.若A、B、C三点不在一直线上,则AB<AC+BC6.如图,长度为18cm的线段AB的中点为M,点C是线段MB的一个三等分点,则线段AC的长为( )A.3cmB.6cmC.9cmD.12cm7.如图线段AB=9,C、D、E分别为线段AB(端点A.B除外)上顺次三个不同的点,图中所有的线段和等于46,则下列结论一定成立的是( )A.CD=3B.DE=2C.CE=5 EB=58.如图,已知线段AB长度为a,CD长度为b,则图中所有线段的长度和为( )A.3a+bB.3a﹣bC.a+3bD.2a+2b二、填空题9.已知线段AB=5cm,点C在直线AB上,且BC=3cm,则线段AC=_______.10.如图,若CB=4 cm,DB=7 cm,且D是AC的中点,则AC= .11.已知A,B是数轴上的两点,AB=2,点B表示-1,则点A表示________12.如图,比较图中AB,AC,BC的长度,可以得出AB_____AC,AC____BC,AB+BC___AC.13.如图,已知线段AB=16 cm,点M在AB上,AM:BM=1:3,P、Q分别为AM、AB 的中点,则PQ的长为.14.如图,AB=9,点C、D分别为线段AB(端点A、B除外)上的两个不同的动点,点D 始终在点C右侧,图中所有线段的和等于30cm,且AD=3CD,则CD= cm.三、解答题15.如图,点M是线段AC的中点,点B在线段AC上,且AB=4 cm,BC=2AB,求线段MC和线段BM的长.16.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若AB=18 cm,求DE的长;(2)若CE=5 cm,求DB的长.17.如图,已知线段AB,请按要求完成下列问题.(1)用直尺和圆规作图,延长线段AB到点C,使BC=AB;反向延长线段AB到点D,使AD=AC;(2)如果AB=2cm;①求CD的长度;②设点P是线段BD的中点,求线段CP的长度.18.已知线段AB,延长线段AB到点C,使2BC=3AB,且BC比AB大1,D是线段AB 的中点,如图所示.(1)求线段CD的长.(2)线段AC的长是线段DB的几倍?(3)线段AD的长是线段BC的几分之几?19.如图,B是线段AD上一点,C是线段BD的中点.(1)若AD=8,BC=3.求线段CD,AB的长;(2)试说明:AD+AB=2AC.20.如图,已知线段AB上有两点C,D,且AC∶CD∶DB=2∶3∶4,E,F分别为AC,DB的中点,EF=2.4 cm,求线段AB的长.参考答案1.D2.C3.C4.A5.A6.D7.C8.A.9.答案为:2cm或8cm.10.答案为:6cm.11.答案为:1或-312.答案为:<>=.13.答案为:6cm.14.答案为:3.15.解:因为AB=4 cm,BC=2AB所以BC=8 cm所以AC=AB+BC=12 cm因为M是线段AC中点所以MC=AM=12AC=6 cm所以BM=AM-AB=2 cm 16.解:(1)∵C是AB的中点∴AC=BC=12AB=9 cm.∵D是AC的中点∴AD=DC=12AC=92cm.∵E是BC的中点∴CE=BE=12BC=92cm.又∵DE=DC+CE∴DE=92cm+92cm=9 cm.(2)由(1)知AD=DC=CE=BE∴CE=13 BD.∵CE=5 cm∴BD=15 cm.17.解:(1)如图所示,点C和点D即为所求;(2)①∵AB=2cm,B是AC的中点∴AC=2AB=4cm又∵A是CD的中点∴CD=2AC=8cm;②∵BD=AD+AB=4+2=6cm,P是线段BD的中点∴BP=3cm∴CP=CB+BP=2+3=5cm.18.解:(1)因为BC=32 AB所以BC∶AB=3∶2.设BC=3x,则AB=2x.因为BC比AB大1,所以3x-2x=1,即x=1所以BC=3x=3,AB=2x=2.又因为D是线段AB的中点,所以AD=DB=1所以CD=BC+BD=3+1=4.(2)因为AC=AB+BC=2+3=5所以AC=5DB,即线段AC的长是线段DB的5倍.(3)因为AD=1,BC=3,即3AD=BC所以AD=13BC,即线段AD的长是线段BC的三分之一.19.解:(1)∵C是线段BD的中点,BC=3∴CD=BC=3.又∵AB+BC+CD=AD,AD=8∴AB=8-3-3=2.(2)∵AD+AB=AC+CD+AB,BC=CD∴AD+AB=AC+BC+AB=AC+AC=2AC. 20.解:因为AC∶CD∶DB=2∶3∶4所以设AC=2x cm,CD=3x cm,DB=4x cm. 所以EF=EC+CD+DF=x+3x+2x=6x cm. 所以6x=2.4,即x=0.4.所以AB=2x+3x+4x=9x=3.6 cm.。
4.5最基本的图形——点和线(2)线段的长短比较
◆随堂检测
1、如图:C ,B 在线段AD 上,且AB=CD ,则AC 与BD 大小关系是( )
A 、AC>BD
B 、AC=BD
C 、AC<B
D D 、不能确定
2、线段AB 上有点C ,C 使AC :CB=2:3,点M 和点N 分别是线段AC 和CB 的中点, 若MN=4,则AB 的长是( )
A 、6
B 、8
C 、10
D 、12
3、以下给出的四个语句中,结论不正确...
的有( ) A 、延长线段AB 到C
B 、如果线段AB=B
C ,则B 是线段AC 的中点
C 、线段和射线都可以看作直线上的一部分
D 、如果线段AB+BC=AC ,那么A ,B ,C 在同一直线上
4、下列说法正确的是( )
A 、两点之间的连线中,直线最短
B 、若P 是线段AB 的中点,则AP=BP
C 、若AP=BP ,则P 是线段AB 的中点
D 、两点之间的线段叫做者两点之间的距离
5、如图:(1)延长AC 至点D ,使CD =AC ,延长BC 到点E ,使CE =BC ;(2)连结DE ;
(3)比较图中线段DE 与AB 的长度,你有什么发现?
◆典例分析
例:如图,点C 在线段AB 上,AC =8 cm ,CB =6 cm ,点M 、N 分别是AC 、BC 的中点。
(1)求线段MN 的长;
(2)若C 为线段AB 上任一点,满足AC +CB = a cm ,其它条件不变,你能猜想MN 的长度A B
C
吗?并说明理由。
你能用一句简洁的话描述你发现的结论吗?
(3)若C 在线段AB 的延长线上,且满足AC -BC =b cm ,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由。
解:(1)MN 的长为7cm ;
(2)若C 为线段AB 上任一点,满足AC + CB = a cm ,其它条件不变,则12MN acm =
(3)如图MN=2
1b cm 。
评析:本例主要是利用线段中点的定义及线段和差的意义来解。
由特殊从而推断出一般性的规律。
◆课下作业
●拓展提高
1、如图,线段AB=6cm ,BC =
31AB ,D 是BC 的中点.则AD= cm 。
2、已知两根木条,一根长60cm ,一根长100cm ,将它们的一端重合,放在同一条直线上,此时两根木条的中点之间的距离是 。
3、同一平面上的两点M ,N 距离是17cm ,若在该平面上有一点P 和M ,N•两点的距离的和等于25cm ,那么下列结论正确的是( )
A 、P 点在线段MN 上
B 、P 点在直线MN 外
C 、P 点在直线MN 上
D 、P 点可能在直线MN 上,也可能在直线MN 外
4、已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,则线段AC=( )
A 、11cm
B 、5cm
C 、11cm 或5cm
D 、8cm 或11ccm
5、如图所示,某厂有A 、B 、C 三个住宅区,A 、B 、C 各区分别住有职工30人,15人,10人,且这三点在一条大道上(A 、B 、C 三点共线),已知AB=100米,BC=200米.该厂为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之
和最小,那么该停靠点的位置应设在()
A、点A
B、点B
C、AB之间
D、BC之间
6、如图所示,B、C两点把线段AD分成2∶3∶4三部分,M是AD的中点,CD=8,求MC的长。
7、已知如图,点C在线段AB上,线段AC=10,BC=6,点M、N分别是AC、BC的中点,(1)求MN的长度。
(2)根据⑴的计算过程与结果,设AC+BC=a,其它条件不变,你能猜想出MN的长度吗?请用一句简洁的语言表达你发现的规律。
(3)若把⑴中的“点C在线段AB上”改为“点C在直线AB上”,结论又如何?请说明理由。
●体验中考
1、(2008年江苏扬州中考题改编)点A、B、C是数轴上的三个点,且BC=2AB。
已知点A表示的数是-1,点B表示的数是3,点C表示的数是__________。
2、(2009年山东济南中考题改编)如图,从甲地到乙地有四条道路,其中最短的路线是,最长的路线是。
B C D
3、(2008年山东聊城中考题改编)已知线段AB ,延长AB 到C ,使BC=21AB ,反向延长AC 到D ,使DA=21AC ,若AB=8㎝,则DC 的长是 。
4、(2009年广东佛山中考题改编)若点B 在直线AC 上,AB=12,BC=7,则A ,C 两点间的距离是( )
A、5 B、19 C、5或19 D、不能确定
参考答案:
◆随堂检测
1、B
2、B
3、B
4、B
5、如图,DE =AB
◆课下作业
●拓展提高
1、5
2、80
3、D
4、C
5、D
6、设AB=2x ,由AB :BC :CD=2:3:4,得BC=3x ,CD=4x ,AD=(2+3+4) x=9 x.
∵CD=8,∴4x=8,∴x=2。
∴CD=4x=8, AD=9 x=18。
∵M 是AD 中点,
∴MC=MD —CD=21AD —CD=2
1×18—8=1。
7、(1)∵点M 、N 分别是AC 、BC 的中点,∴MC=21AC ,CN=21BC 。
∴MN=MC+CN=5+3=8。
(2)MN=2
1a 。
线段上任一点分线段两段的中点之间的距离等于线段长的一半; (3)若把(1)中的“点C 在线段AB 上”改为“点C 在直线AB 上”,结论不成立。
因为射线CA 、CB 没有中点。
● 体验中考
1、—5或11
2、A ,D
3、18
4、C。