spss05均值比较与检验
- 格式:ppt
- 大小:390.50 KB
- 文档页数:42
实验五均值比较与T检验⏹均值(Means)过程对准备比较的各组计算描述指标,进行预分析,也可直接比较。
⏹单样本T检验(One-Samples T Test)过程进行样本均值与已知总体均值的比较。
⏹独立样本T检验(Independent-Samples T Test)过程进行两独立样本均值差别的比较,即通常所说的两组资料的t检验。
⏹配对样本(Paired-Samples T Test)过程进行配对资料的显著性检验,即配对t检验。
⏹单因素方差分析(One-Way ANOVA)过程进行两组及多组样本均值的比较,即成组设计的方差分析,还可进行随后的两两比较,详情请参见单因素方差分析。
预备知识:假设检验的步骤:⏹第一步,根据问题要求提出原假设(Null hypothesis)和备选假设(Alternative hypothesis);⏹第二步,确定适当的检验统计量及相应的抽样分布;⏹第三步,计算检验统计量观测值的发生概率;⏹第四步,给定显著性水平并作出统计决策。
第二步和第三步由SPSS自动完成。
假设检验中的P值⏹P值(P-value)是指在原假设为真时,所得到的样本观察结果或更极端结果的概率,即样本统计量落在观察值以外的概率。
⏹根据“小概率原理”,如果P值非常小,就有理由拒绝原假设,且P值越小,拒绝的理由就越充分。
⏹实际应用中,多数统计软件直接给出P值,其检验判断规则如下(双侧检验):⏹若P值<a,则拒绝原假设;⏹若P值≥ a ,则不能拒绝原假设。
均值比较中原假设H0:μ=μ0(即某一特定值)(适用于单样本情形)或 H0:μ1=μ2。
(适用于两独立样本情形)一、Means(均值)过程选择:分析Analyze==>均值比较Compare Means ==>均值means;1、基本功能分组计算、比较指定变量的描述统计量,还可以给出方差分析表和线性检验结果表。
优点各组的描述指标被放在一起便于相互比较,如果需要还可以直接输出比较结果,无须再次调用其他过程。
在统计学中,我们往往从样本的特性推知随机变量总体的特性。
但由于总体中个体之间存在差异,样本的统计量和总体的参数之间往往会有误差。
因此,均值不相等的样本未必来自不同分布的总体,而均值相等的样本未必来自有相同分布的总体。
也就是说,如何从样本均值的差异推知总体的差异,这就是均值比较的内容。
SPSS提供了均值比较过程,在主菜单栏单击“Analyze”菜单下的“Compare Means”项,该项下有5个过程,如图4-1。
平均数比较Means过程用于统计分组变量的的基本统计量。
这些基本统计量包括:均值(Mean)、标准差(Standard Deviation)、观察量数目(Number of Cases)、方差(Variance)。
Means过程还可以列出方差表和线性检验结果。
[例子]调查了棉铃虫百株卵量在暴雨前后的数量变化,统计暴雨前和暴雨后的统计量,其数据如下:暴雨前 110 115 133 133 128 108 110 110 140 104 160 120 120暴雨后 90 116 101 131 110 88 92 104 126 86 114 88 112该数据保存在“DATA4-1.SAV”文件中。
1)准备分析数据在数据编辑窗口输入分析的数据,如图4-2所示。
或者打开需要分析的数据文件“DATA4-1.SAV”。
图4-2 数据窗口2)启动分析过程在SPSS主菜单中依次选择“Analyze→Compare Means→Means”。
出现对话框如图4-3。
图4-3 Means设置窗口3)设置分析变量从左边的变量列表中选中“百株卵量”变量后,点击变量选择右拉按钮,该变量就进入到因子变量列表“Dependent List:”框里,用户可以从左边变量列表里选择一个或多个变量进行统计。
从左边的变量列表中选中“调查时候”变量,点击“Independent List”框左边的右拉按钮,该变量就进入分组变量“IndependentList”框里,用户可以从左边变量列表里选择一个或多个分组变量。
均值⽐较(T检验,⽅差检验,⾮参数检验汇总)⼀、T检验⽤途:⽐较两组数据之间的差异前提:正态性,⽅差齐次性,独⽴性假设:H0: µ0=µ1H1: µ0≠µ1SPSS中对应⽅法:1、单样本T检验(One-sample Test)(1)⽬的:检验单个变量的均值与给定的某个常数是否⼀致。
(2)判断标准:p<0.05;t>1.98即认为是有显著差异的。
2、独⽴样本T检验(Indpendent-Samples T Test)(1)⽬的:检验两个独⽴样本均值是否相等。
(2)判断标准:p<0.05;t>1.98即认为是有显著差异的。
3、配对样本T检验(Paired-Samples T Test)(1)⽬的:检验两个配对样本均值是否相等。
(2)判断标准:p<0.05;t>1.98即认为是有显著差异的。
⼆、⽅差分析⽤途:⽐较多组数据之间的差异前提:正态性,⽅差齐次性,独⽴性假设:H0: µ0=µ1=……H1: µ0,µ1,……不全相等SPSS中对应⽅法:1、单因素⽅差分析(One-way ANOVA)(1)⽬的:检验由单⼀因素影响的多组样本均值差异。
(2)判断标准:p<0.05;t>1.98即认为是有显著差异的。
(3)特别说明:可以进⼀步使⽤LSD,Tukey⽅法检验两两之间的差异。
2、多因素⽅差分析(Univariate)(1)⽬的:检验由多个因素影响的多组样本均值差异。
(2)判断标准:p<0.05;t>1.98即认为是有显著差异的。
(3)特别说明:可以进⼀步使⽤LSD,Tukey⽅法检验两两之间的差异。
三、⾮参数检验⽤途:⽐较多组数据之间的差异,独⽴性等前提:没有严格限制,适⽤于母体不服从正态分布或分布情况不明时,亦可以适⽤于离散和连续数据。
SPSS中对应⽅法:1、卡⽅检验(Chi-Square)(1)⽬的:检验某个连续变量是否与理论的某种分布相⼀致;检验某个分类变量出现的概率是否等于给定的概率;检验两个分类变量是否相互独⽴;检验两种⽅法的结果是否⼀致;检验控制某种或某⼏种分类因素的作⽤后,另两个分类变量是否相互独⽴。
实验报告一、实验目的1、掌握均值比较,用于计算指定变量的综合描述统计量2、掌握独立样本T检验(Independent Samples Test),用于检验两组来自独立总体的样本,企图理综题的均值或中心位置是否一样二、实验步骤第1步数据导入;打开“EG5-2城市和农村学生心理素质测试得分.sav”第2步确定要进行T检验的变量;选择Analyze→ Compare Means →Independent-Samples ,选择“p”变量作为检验变量,移入“Test Variable(s)”框中。
第4步确定分组变量;选择变量“group”作为分组变量,将其移入下图中的“Grouping variable”文本框中,并定义分组的变量值:Group1—1,Group2—2。
三、结果及分析两独立样本T检验的基本描述统计量分析:1、根据结果,方差齐性检验的p值为0.791,大于0.05,故应接受原假设。
2、因为方差相等,两独立样本T检验的结果应该看两独立样本T检验结果报中的Equal variances assumed”一行,第5列为相应的双尾检测概率(Sig.(2-tailed))为0.07,在显著性水平为0.05的情况下,T统计量的概率p值大于0.05,故接受原假设假设,即认为两样本的均值是相等的,在本题中,不能认为两组的成绩有显著性差异。
实验报告一、实验目的1、掌握均值比较,用于计算指定变量的综合描述统计量2、掌握配对样本T检验(Paired Samples Test),用于检验两个相关的样本是否来自具有相同均值的总体。
二、实验步骤第1步数据组织;打开“EG5-1学生培训前后心理测试得分.sav”第2步确定配对分析的变量选择Analyze→ Compare Means →Paired-Samples T Test,将变量“before”和“after”添加到“Paired Variables”框中,作为一对分析的配对变量三、结果及分析分析:表“paired samples test”显示,学生培训前后的平均成绩相差 -0.158,平均成绩差值的标准差为1.5048,差值标准差的标准误为0.4344.在置信水平为95%时平均值差值的置信区间为-1.114~0.798。
第二章均值比较检验与方差分析在经济社会问题的研究过程中,常常需要比较现象之间的某些指标有无显著差异,特别当考察的样本容量n比较大时,由随机变量的中心极限定理知,样本均值近似地服从正态分布。
所以,均值的比较检验主要研究关于正态总体的均值有关的假设是否成立的问题。
◆本章主要内容:1、单个总体均值的 t 检验(One-Sample T Test);2、两个独立总体样本均值的 t 检验(Independent-Sample T Test);3、两个有联系总体均值均值的 t 检验(Paired-Sample T Test);4、单因素方差分析(One-Way ANOVA);5、双因素方差分析(General Linear Model Univariate)。
◆假设条件:研究的数据服从正态分布或近似地服从正态分布。
在Analyze菜单中,均值比较检验可以从菜单Compare Means,和General Linear Model得出。
如图2.1所示。
图2.1 均值的比较菜单选择项§2.1 单个总体的t 检验(One-Sample T Test)分析单个总体的 t 检验分析也称为单一样本的 t 检验分析,也就是检验单个变量的均值是否与假定的均数之间存在差异。
如将单个变量的样本均值与假定的常数相比较,通过检验得出预先的假设是否正确的结论。
例1:根据2002年我国不同行业的工资水平(数据库SY-2),检验国有企业的职工平均年工资收入是否等于10000元,假设数据近似地服从正态分布。
首先建立假设:H0:国有企业工资为10000元;H1:国有企业职工工资不等于10000元打开数据库SY-2,检验过程的操作按照下列步骤:1、单击Analyze →Compare Means →One-Sample T Test,打开One-Sample T Test 主对话框,如图2.2所示。
图2.2 一个样本的t检验的主对话框2、从左边框中选中需要检验的变量(国有单位)进入检验框中。
计量资料的统计分析-均数比较两个均数比较的t 检验(t-test / Student’s t-test)就是以t分布为基础的假设检验方法,实际应用时,应弄清各种检验方法的用途、适用条件和注意事项。
SPSS在其分析菜单下的的均值比较中提供的t 检验方法过程有: 单样本t检验配对样本t检验独立样本t检验例3-5 某医生测量了36名从事铅作业男性工人的血红蛋白含量,算得其均数为130.83g/L,标准差为25.74g/L。
问从事铅作业工人的血红蛋白是否不同于正常成年男性平均值140g/L?附:36名从事铅作业男性工人的血红蛋白含量的原始数据112,137, 129,126,88, 90, 105, 178,130, 128,126,103,172,116,125, 90, 96, 62,157,151,135,113,175,129, 165, 171,128, 128,160,110,140,163,100, 129, 116,127。
SPSS软件操作-例3-051) 建立数据文件数据格式:1列36行,1个反应变量,变量名为“hb”。
2)过程操作界面SPSS软件操作-例3-053)结果N均值标准差均值的标准误血红蛋白含量36130.833325.74102 4.29017单个样本统计量单个样本检验检验值=140T df Sig.(双侧)均值差值差分的95%置信区间下限上限血红蛋白含量-2.13735.040-9.16667-17.8762-.4572例3-6 为比较两种方法对乳酸饮料中脂肪含量测定结果是否不同,随机抽取了10份乳酸饮料制品,分别用脂肪酸水解法和哥特里-罗紫法测定其结果如表3-5第(1)~(3)栏。
问两法测定结果是否不同?表3-5 两种方法对乳酸饮料中脂肪含量的测定结果(%)编号(1)哥特里-8罗紫法(29)脂肪酸水解法(3)差值d(4)=(2)-(3)10.8400.5800.260 20.5910.5090.082 30.6740.5000.174 40.6320.3160.316 50.6870.3370.350 60.9780.5170.461 70.7500.4540.291 80.7300.5120.218 9 1.2000.9970.203 100.8700.5060.364合计-- 2.724SPSS软件操作-例3-061) 建立数据文件数据格式:2列10行,2个反应变量,变量名为“x1”和“x2”。