离散数学 第12讲 布尔表达式范例
- 格式:ppt
- 大小:434.00 KB
- 文档页数:17
离散数学重要公式定理汇总分解离散数学是计算机科学领域中的一门基础课程,它主要研究离散结构和离散对象之间的关系。
离散数学中有许多重要的公式和定理,这些公式和定理在计算机科学和其他领域中有广泛的应用。
下面是对离散数学中一些重要的公式和定理的汇总。
1.集合:-幂集公式:一个集合的幂集是所有它子集的集合。
一个集合有n个元素,那么它的幂集有2^n个元素。
-集合的并、交、差运算规则:并集运算满足交换律、结合律和分配律;交集运算也满足交换律、结合律和分配律;差集运算不满足交换律和结合律。
2.逻辑:-代数运算规则:多个逻辑表达式的与、或、非运算满足交换律、结合律和分配律。
-归结原理:对于一个给定的只包含“合取”和“析取”的合式公式集合,如果假设集合中的每个合式公式都为真,以及从这些前提出发,不能推导出这个集合中的一个假命题,则称这个假设集合是不一致的。
3.图论:-图的欧拉路径和欧拉回路:对于一个连通的图,如果它存在欧拉路径,那么这个图中最多只有两个度数为奇数的节点;如果一个连通的图存在欧拉回路,那么所有节点的度数都是偶数。
-图的哈密顿路径和哈密顿回路:对于一个图,如果它存在哈密顿路径,那么这个图中任意两个不相邻的节点u和v之间必然存在一条边;如果一个图存在哈密顿回路,那么从任意一个节点开始,可以经过图中的所有节点且最后回到起点。
4.代数结构:-子群定理:如果G是群H的一个子集,并且G是关于群H的运算封闭的,那么G是H的一个子群。
- 同态定理:如果f是从群G到群H的一个满射同态,那么G的核ker(f)是G的一个正规子群,而H是G/ker(f)的同构像。
5.排列组合:-排列公式:从n个元素中取出m个元素进行排列,有P(n,m)=n!/(n-m)!-组合公式:从n个元素中取出m个元素进行组合,有C(n,m)=n!/(m!*(n-m)!)以上只是离散数学中一小部分重要的公式和定理,这些公式和定理在计算机科学、密码学、图形学等领域中有广泛的应用。
离散数学基本公式离散数学是数学的一个重要分支,它主要研究的是非连续的、分离的对象,如集合、图论、数论、逻辑等。
在这些领域中,一些基本的公式和定理是理解和应用离散数学的关键。
以下是一些离散数学的基本公式:1、德摩根定律德摩根定律是布尔代数中的基本公式之一,它表示对于任何逻辑运算,如果我们把所有的否命题和原命题结合在一起,我们就会得到一个恒等式。
用符号表示为:P ∧ Q) ∨(¬P ∧¬Q) ≡ P ∨ QP ∨ Q) ∧(¬P ∨¬Q) ≡ P ∧ Q2.集合论中的互补律在集合论中,互补律表示对于任何集合A和它的补集A',我们有:A ∪ A' = U,其中U是全集A ∩ A' = ∅,其中∅表示空集3.图论中的欧拉公式欧拉公式是图论中的一个基本公式,它表示对于一个连通无向图G,其顶点数v、边数e和欧拉数euler(G)之间有以下关系:euler(G) = v + e - 2其中euler(G)是图G的欧拉数,v是图G的顶点数,e是图G的边数。
这个公式在计算图的欧拉数或者判断一个图是否连通等方面都有重要应用。
4.数论中的费马小定理费马小定理是数论中的一个重要定理,它表示对于任何正整数n,如果它是质数p的幂次方,那么我们可以找到一个整数x,使得x的n 次方等于1(模p)。
用数学语言表示为:x^n ≡ x (mod p)其中n是正整数,p是质数,x是整数。
这个定理在密码学、计算机科学等领域都有广泛的应用。
5.逻辑中的排中律和反证法排中律是指对于任何命题P,P或非P必定有一个是真命题。
反证法则是通过假设相反的命题成立来证明原命题的一种方法。
在证明过程中,如果假设的相反命题成立会导致矛盾,那么原命题就一定是正确的。
这些公式和定理只是离散数学中的一小部分,但它们是理解和应用离散数学的基础。
在学习的过程中,我们还需要掌握更多的公式和定理,以及它们的应用方法。
离散数学公式范文离散数学是一门关于离散结构及其运算规则的数学课程。
它研究的对象包括离散对象(如集合、图、函数等)和离散运算(如关系、代数运算等),以及这些对象和运算之间的关系和性质。
离散数学具有广泛的应用领域,如计算机科学、信息技术、电子通信等。
本文将介绍一些离散数学中常用的公式及其应用。
一、集合公式1.交集运算:对于集合A和B,它们的交集记作A∩B,定义为A和B 中都包含的元素所组成的集合。
A∩B={x,x∈A且x∈B}2.并集运算:对于集合A和B,它们的并集记作A∪B,定义为A和B 中所有元素所组成的集合。
A∪B={x,x∈A或x∈B}3.差集运算:对于集合A和B,它们的差集记作A-B,定义为属于A 但不属于B的元素所组成的集合。
A-B={x,x∈A且x∉B}4.对称差运算:对于集合A和B,它们的对称差记作A△B,定义为属于A或属于B但不同时属于A和B的元素所组成的集合。
A△B={x,(x∈A且x∉B)或(x∉A且x∈B)}二、数学归纳法数学归纳法是一种证明方法,用于证明一类命题对于所有正整数成立。
它的基本思想是通过证明基本情况成立,然后证明如果对于一些正整数n成立,则对于n+1也成立,从而得出结论对于所有正整数成立。
数学归纳法的三个步骤:1.基础步骤:证明当n取最小值时命题成立。
2.归纳假设:假设当n=k时命题成立,即P(k)成立。
3.归纳步骤:证明当n=k+1时命题也成立,即P(k+1)成立。
三、逻辑公式逻辑公式是描述命题之间关系的数学表达式。
常用的逻辑公式有如下几种:1.否定:对于命题p,它的否定记为¬p,表示p是假的。
2.合取:对于命题p和q,它们的合取记为p∧q,表示p和q同时为真时整个表达式才为真。
3.析取:对于命题p和q,它们的析取记为p∨q,表示p和q至少有一个为真时整个表达式才为真。
4.蕴含:对于命题p和q,它们的蕴含记为p→q,表示如果p为真,则q也为真;如果p为假,则整个表达式为真。
《离散数学》符号表∀ 全称量词(任意量词)∃ 存在量词├ 断定符(公式在L 中可证)╞ 满足符(公式在E 上有效,公式在E 上可满足) ┐ 命题的“非”运算∧ 命题的“合取”(“与”)运算∨ 命题的“析取”(“或”,“可兼或”)运算 → 命题的“条件”运算↔ 命题的“双条件”运算的B A ⇔ 命题A 与B 等价关系B A ⇒ 命题A 与B 的蕴涵关系*A 公式A 的对偶公式wff 合式公式iff 当且仅当V 命题的“不可兼或”运算( “异或门” ) ↑ 命题的“与非” 运算( “与非门” ) ↓ 命题的“或非”运算( “或非门” ) □ 模态词“必然”◇ 模态词“可能”φ 空集∈ 属于(∉不属于)A μ(·) 集合A 的特征函数P (A ) 集合A 的幂集A 集合A 的点数n A A A ⨯⨯⨯ (nA ) 集合A 的笛卡儿积R R R =2 )(1R R R n n -= 关系R 的“复合”0ℵ 阿列夫零ℵ 阿列夫⊇ 包含⊃ 真包含∪ 集合的并运算∩集合的交运算 - (~)集合的差运算 ⊕集合的对称差运算 m + m同余加 m ⨯ m同余乘 〡限制 R x ][集合关于关系R 的等价类 A /R集合A 上关于R 的商集 )(A R π集合A 关于关系R 的划分 )(A R π集合A 关于划分π的关系 ][a元素a 产生的循环群 R a ][元素a 形成的R 等价类 r C由相容关系r 产生的最大相容类 I环,理想 )/(n Z模n 的同余类集合 )(mod k b a ≡a 与b 模k 相等 )(R r关系R 的自反闭包 )(R s关系R 的对称闭包 +R ,)(R t关系R 的传递闭包 *R ,)(R rt关系R 的自反、传递闭包.i H 矩阵H 的第i 个行向量j H . 矩阵H 的第j 个列向量CP 命题演绎的定理(CP 规则)EG 存在推广规则(存在量词引入规则)ES 存在量词特指规则(存在量词消去规则) UG 全称推广规则(全称量词引入规则) US 全称特指规则(全称量词消去规则) A I ,0R 恒等关系A 集合A 的补集X X 所有X 到自身的映射X Y 所有从集合X 到集合Y 的函数)(][A A K 集合A 的势(基数)R 关系r 相容关系 R 否关系R 补关系1-R (c R ) 逆关系S R 关系R 与关系S 的复合n nR R R R ,关系R 的n 次幂 r r B B B 222,⨯⨯ 布尔代数2B 的r 次幂r B 2 含有r 2个元素的布尔代数domf 函数f 的定义域(前域)ranf 函数f 的值域Y X f →: (Y X f −→−) f 是X 到Y 的函数),(y x GCD y x ,最大公约数),(y x LCM y x ,的最小公倍数 e 幺元θ 零元1-a 元素a 的逆元)(Ha aH H 关于a 的左(右)陪集 )(f Ker 同态映射f 的核(或称f 的同态核) A ,B ,C 合式公式⎪⎪⎭⎫ ⎝⎛k n 二项式系数⎪⎪⎭⎫ ⎝⎛p n n n n ,,,21 多项式系数[1,n] 1到n 的整数集合)1()1(][+--=k x x x x k)1()1(][-++=k x x x x kk n C 组合数),(v u d 点u 与点v 间的距离 )(v d 点v 的度数)(v d + 点v 的出度)(v d - 点v 的入度),(E V G = 点集为V ,边集为E 的图 G 图G 的补图G G '≅ 图G 与图G '同构*G 平面图G 的对偶图 W(G) 图G 的连通分支数 )(G κ 图G 的点连通度)(G λ 图G 的边连通度)(G δ 图G 的最小点度)(G ∆ 图G 的最大点度 A(G) 图G 的邻接矩阵 P(G) 图G 的可达矩阵 M(G) 图G 的关联矩阵 n K n 阶完全图m n K , 完全二分图C 复数集N 自然数集(包含0在内) +N 正自然数集P 素数集Q 有理数集+Q 正有理数集-Q 负有理数集R 实数集Z 整数集m Z ]}[,,]2[,]1{[m Set 集范畴Top 拓扑空间范畴Ab 交换群范畴Grp 群范畴Mon 单元半群范畴Ring 有单位元的(结合)环范畴 Rng 环范畴CRng 交换环范畴R-mod 环R 的左模范畴 mod-R 环R 的右模范畴 Field 域范畴Poset 偏序集范畴。
第一章命题逻辑一、等价公式(真值表)1)常用联结词:┐否定∨析取∧合取→:条件∆:双条件当且仅当Q 取值为F 时P →Q 为F ,否则为T ★等价公式表(等值公式表)常用的其它真值表┐┐P<=>P 双重否定P ∨P<=>P P ∧P<=>P幂等律(P ∧Q)∧R<=>P ∧(Q ∧R)(P ∨Q)∨R<=>P ∨(Q ∨R)结合律P ∧Q<=>Q ∧P P ∨Q<=>Q ∨P交换律P ∧(Q ∨R)<=>(P ∧Q)∨(P ∧R)P ∨(Q ∧R)<=>(P ∨Q)∧(P ∨R)分配律P ∨(P ∧Q)<=>P P ∧(P ∨Q)<=>P 吸收┐(P ∧Q)<=>┐P ∨┐Q ┐(P ∨Q)<=>┐P ∧┐Q 德摩根P ∨F<=>P P ∧T<=>P 同一律P ∨T<=>T P ∧F<=>F 零律P ∨┐P<=>T P ∧┐P<=>F否定律常用的其它真值表P ┐P T F FTP Q P ∨Q T T T T F T F T T FFFP Q P ∧Q T T T T F F F T F F FFP Q P →Q (┐P ∨Q)T T T T F F F T T FFTP→Q<=>┐P ∨Q P ∆Q<=>(P→Q)∧(Q→P)P ∆Q<=>Q ∆PP ∆Q<=>(P ∧Q)∨(┐P ∧┐Q)┐(P ∆Q)<=>P ∆┐Q R ∨(P ∨┐P)<=>T R ∧(P ∧┐P)<=>F P→Q<=>┐Q→┐P ┐(P→Q)<=>P ∧┐Q (P→Q)∧(P→┐Q)<=>┐P P→(Q→R)<=>(P ∧Q)→R (P ∆Q)∆R<=>P ∆(Q ∆R)命题公式的类型:(1)若A在它的各种赋值下均取值为真,则称A为重言式或永真式。