双折射偏振光的干涉
- 格式:ppt
- 大小:916.50 KB
- 文档页数:18
反射偏振光显微镜的原理及其在材料研究中的应用一、偏振光的基础知识一自然光和偏振光光是一种电磁波属于横波振动方向与传播方向垂直。
一切实际的光源如日光、烛光、日光灯及钨丝灯发出的光都叫自然光。
这些光都是大量原子、分子发光的总和。
虽然某一个原子或分子在某一瞬间发出的电磁波振动方向一致但各个原子和分子发出的振动方向也不同这种变化频率极快因此自然光是各个原子或分子发光的总和可认为其电磁波的振动在各个方向上的几率相等。
自然光在窗过某些物质经过反射、折射、吸收后电磁波的振动哥以被限制在一个方向上其他方向振动的电磁波被大大削弱或消除。
这种在某个确定方向上振动的光称为偏振光。
偏振光的振动方向与光波传播方向所构成的平面称为振动面。
二直线偏振光、圆偏振光及椭圆偏振光1.直线偏振光直线偏振光由于光线的振动方向都在同一个平面内所以这偏振光又叫作平面偏振光。
正对光的传播方向看去这种光的振动方向是一条直线因此又叫直线偏振光或线偏振光。
2.圆偏振光和椭圆偏振光1光的双折射现象和晶体的光轴当一束光线射入各向异性的晶体中时要分裂为两束沿不同方向传播的挑线这种现象叫双折射现象。
发生双折射的两束光线都是偏振光。
这两束光线之一恒遵守光的折射定律在改变入射方向时传播速度不发生变化这条光线称为寻常光线用o表示另一束光线不遵守折射定律当入射光线方向变化时它的传播速度也随之变化光的折射率不同这束光称为非常光线用e来表示。
在各向异性晶体中存在有某些特殊方向在这些方向上不发生双折射寻常光线和非常光线传播方向和传播速度相同这些方向称为晶体的光轴有一个光轴的晶体叫一轴晶有两个光轴的晶体叫二轴晶。
对于二轴晶双折射后的两束光线均为非常为光线。
2波晶片波晶片简称波片可用来改变或检验光的偏振情况。
当自然光沿一轴晶光轴入射时不发生双折射现象。
如果垂直于晶体光轴入射时产生的o光和e光仍沿原入射方向传播但传播速度和折射率不同且传播速度相差最大。
如果在平行于一轴晶光轴方向上切下一薄片这时晶片表面与光轴平持这样制得的晶片叫波晶片。
偏振光干涉实验报告偏振光实验报告实验1. 验证马吕斯定律实验原理:某些双折射晶体对于光振动垂直于光轴的线偏振光有强烈吸收,而对于光振动平行于光轴的线偏振光吸收很少(吸收o光,通过e光),这种对线偏振光的强烈的选择吸收性质,叫做二向色性。
具有二向色性的晶体叫做偏振片。
偏振片可作为起偏器。
自然光通过偏振片后,变为振动面平行于偏振片光轴(透振方向),强度为自然光一半的线偏振光。
如图 P1、图2所示:P1 P2 图1 图2 θA 0 图1中靠近光源的偏振片P1为起偏器,设经过P1后线偏振光振幅为A0(图2所示),光强为I0。
P2与P1夹角为?,因此经P2后的线偏振光振幅为A?A0cos?,2光强为I?A0cos2??I0cos2?,此式为马吕斯定律。
实验数据及图形:从图形中可以看出符合余弦定理,数据正确。
实验2.半波片,1/4波片作用实验原理:偏振光垂直通过波片以后,按其振动方向(或振动面)分解为寻常光(o光)和非常光(e光)。
它们具有相同的振动频率和固定的相位差(同波晶片的厚度成正比),若将它们投影到同一方向,就能满足相干条件,实现偏振光的干涉。
分振动面的干涉装置如图3所示,M和N是两个偏振片,C是波片,单色自然光通过M变成线偏振光,线偏振光在波片C中分解为o光和e光,最后投影在N上,形成干涉。
偏振片波片偏振片图3 分振动面干涉装置考虑特殊情况,当M⊥N时,即两个偏振片的透振方向垂直时,出射光强为:I0(sin22?)(1?cos?);当M∥N时,即两个偏振片的透振方向平行时,出射4I0(1?2sin2?cos2??2sin2?cos2?cos?)。
其中θ为波片光轴与M2I??光强为:I//?透振方向的夹角,δ为o光和e光的总相位差(同波晶片的厚度成正比)。
改变θ、δ中的任何一个都可以改变屏幕上的光强。
当δ=(2k+1)π(1/2波片)时,cosδ=-1,I??强最大,I//?02sin22?,出射光I0(1?sin2?)2,出射光强最小;当δ=[(2k+1)π]/2(1/4波片)时,cosδ=0,I??I0I(sin22?),I//?0(2?sin22?)。
光的双折射实验报告篇一:光弹实验报告光弹性应力测试实验报告指导教师:王美芹学院:班级:学号:姓名:一、实验内容与目的1.了解光弹性试验的基本原理和方法,认识偏光弹性仪;2.观察模型受力时的条形图案,认识等差线和等倾线,了解主应力差和条纹值得测量; 3.利用图像处理软件,对等倾线和等差线条纹进行处理。
二、实验设备与仪器1.由环氧树脂或聚碳酸酯制作的试件模型一套; 2.偏光弹性仪及加载装置。
三、实验原理光弹性实验主要原理是根据光的这一特性:光在各项同性材料中不发生双折射,而在各向异性的材料中发生双折射,且光学主轴与应力主轴重合。
模型材料在受力前为各向同性材料,受力后部分区域变成各向异性,然后再根据光的干涉条件可知,在正交平面偏振场中,当光程差为波长整数倍时(等差线)或者模型应力主轴与偏振轴重合时(等倾线)光的强度为零,相应地显示出来的条纹为暗条纹,而在平行平面偏振场中,根据干涉条件可知,在正交平面偏振场中的暗纹条件恰好为平行平面偏振场亮纹的条件。
然而,等倾线和等差线在一个图像上显示,难免会使图像不清晰,为了改进实验,我们在实验中把平面偏振场改为圆偏振场,这样就可以得到清晰的等倾线,它与平面偏振场的区别是在装置的模型两侧分别加了一个四分之一波片,当然了,也可以通过快速旋转正交偏振轴,快到应力模型上不同度数等倾线的取代过程用肉眼分辨不出来来消除等倾线的影响。
应力模型所使用的仪器为偏光弹性仪,由光源(包括单色光源和白光光源)、一对偏振镜、一对四分之一波片以及透镜和屏幕等组成,其装置简图1。
图1 光弹性仪装置简图S—光源L—透镜 P—起偏镜 M—四分之一波片A—检偏镜 O—试件I—屏幕光弹性实验中最基本的装置是平面偏振光装置,它主要由光源和一对偏振镜组成,靠近光源的一块称为起偏镜,另一块称为检偏镜。
当两偏振镜轴正交时开成暗场,通常调整一偏振镜轴为竖直方向,另一为水平方向。
当两偏振镜轴互相平行时,则呈亮场。
M是四分之一波片,若把四分之一波片的快慢轴调整到与偏振片的偏振轴成45o的位置,就可以得到圆偏振光场。
偏振光干涉实验报告偏振光实验报告实验1. 验证马吕斯定律实验原理:某些双折射晶体对于光振动垂直于光轴的线偏振光有强烈吸收,而对于光振动平行于光轴的线偏振光吸收很少(吸收o光,通过e光),这种对线偏振光的强烈的选择吸收性质,叫做二向色性。
具有二向色性的晶体叫做偏振片。
偏振片可作为起偏器。
自然光通过偏振片后,变为振动面平行于偏振片光轴(透振方向),强度为自然光一半的线偏振光。
如图 P1、图2所示:P1 P2 图1 图2 θA 0 图1中靠近光源的偏振片P1为起偏器,设经过P1后线偏振光振幅为A0(图2所示),光强为I0。
P2与P1夹角为?,因此经P2后的线偏振光振幅为A?A0cos?,2光强为I?A0cos2??I0cos2?,此式为马吕斯定律。
实验数据及图形:从图形中可以看出符合余弦定理,数据正确。
实验2.半波片,1/4波片作用实验原理:偏振光垂直通过波片以后,按其振动方向(或振动面)分解为寻常光(o光)和非常光(e光)。
它们具有相同的振动频率和固定的相位差(同波晶片的厚度成正比),若将它们投影到同一方向,就能满足相干条件,实现偏振光的干涉。
分振动面的干涉装置如图3所示,M和N是两个偏振片,C是波片,单色自然光通过M变成线偏振光,线偏振光在波片C中分解为o光和e光,最后投影在N上,形成干涉。
偏振片波片偏振片图3 分振动面干涉装置考虑特殊情况,当M⊥N时,即两个偏振片的透振方向垂直时,出射光强为:I0(sin22?)(1?cos?);当M∥N时,即两个偏振片的透振方向平行时,出射4I0(1?2sin2?cos2??2sin2?cos2?cos?)。
其中θ为波片光轴与M2I??光强为:I//?透振方向的夹角,δ为o光和e光的总相位差(同波晶片的厚度成正比)。
改变θ、δ中的任何一个都可以改变屏幕上的光强。
当δ=(2k+1)π(1/2波片)时,cosδ=-1,I??强最大,I//?02sin22?,出射光I0(1?sin2?)2,出射光强最小;当δ=[(2k+1)π]/2(1/4波片)时,cosδ=0,I??I0I(sin22?),I//?0(2?sin22?)。