第八讲卷积码
- 格式:ppt
- 大小:2.70 MB
- 文档页数:48
卷积码1、什么是卷积码?卷积码作为一种编码方法,是将k个信息比特编成n个比特,但k和n通常很小,因此时延小,特别适合以串行形式进行传输。
通常它更适合于前向纠错,因而对于许多实际情况它的性能优于分组码,而且运算较简单。
2、卷积码的编译原理?(1)编码原理下图示出卷积码编码器一般原理方框图。
编码器由三种主要元件构成,包括Nk级移存器、n个模2加法器和一个旋转开关。
每个模2加法器的输入端数目可以不同,它连接到一些移存器的输出端。
模2加法器的输出端接到旋转开关上。
将时间分成等间隔的时隙,在每个时隙中有k比特从左端进入移存器,并且移存器各级暂存的信息向右移k位。
旋转开关每时隙旋转一周,输出n比特(n)k)。
(2)译码原理卷积码的解码方法可以分为两类:代数解码和概率解码。
代数解码是利用编码本身的代数结构进行解码,不考虑信道的统计特性。
概率解码则是基于信道的统计特性和卷积码的特点进行计算,其中一种概率解码方法是维特比算法。
当码的约束长度较短时,它比序贯解码算法的效率更高、速度更快,目前得到广泛的使用。
维特比算法的基本原理是将接收到的信号序列和所有可能的发送信号序列比较,选择其中汉明距离最小的序列认为是当前发送信号序列。
若发送一个k位序列,则有2k种可能的发送序列。
计算机应存储这些序列,以便用作比较。
当k较大时,存储量太大,使实用受到限制。
维特比算法对此作了简化,使之能够实用。
3、与分组码相比,卷积码的优势是什么?与分组码不同的是,卷积码编码后n个码元不但与本码组的k个信息码元有关,而且与前面的N-1段信息有关,编码的过程中相互关联的码元有N*n个。
卷积码的纠错能力同样是随N的增大而增大,其差错率随N的增大而指数的下降。
在编码器相同的情况下,卷积码的性能优于分组码。
另一点不同是,分组码有严格的代数结构,但是卷积码至今没有严格的数学手段把纠错能力和码结构有机地联系起来,目前大都是采用计算机搜索来搜索好用的码组。
4、卷积码编译电路的组成结构?(1)信号发生器(2)卷积码编码器(3)信道(4)卷积码译码器参考文献:[1]通信原理(第6版)樊昌信、曹丽娜,国防工业出版社·北京,2012[2]SystemView通信仿真开发手册,孙屹,国防工业出版社,2004[3]SystemView动态系统分析及通信系统仿真设计,罗卫兵、孙桦、张捷,西安电子科技大学出版社,2001。
引言卷积码是深度空间通信系统和无线通信系统中常用的一种差错控制编码。
在编码过程中,卷积码充分利用了各码字间的相关性。
在与分组码同样的码率和设备复杂性的条件下,无论从理论上还是从实践上都证明,卷积码的性能都比分组码具有优势。
而且卷积码在实现最佳译码方面也较分组码容易。
因此卷积码广泛应用于卫星通信,CDMA数字移动通信等通信系统,是很有前途的一种编码方式。
对其进行研究有很大的现实意义。
1 、(2.1.2)卷积码的基本概念1.1(2.1.2)卷积码的结构图(2.1.2)卷积码的编码器由两级移位寄存器组成,它的存数(Q0,Q1)有四种可能:00,10,01和11,相应于编码器的四个状态S0, S1, S2和S3。
(2.1.2)卷积码编码器如图1:由图可知,该卷积码的生成多项式为于是,得到的码多项式是1.2(2.1.2)卷积码的网格图表示为了表示卷积码编码器在不同输入的信息序列下,编码器各状态之间的转移关系,以及状态转移与时间的关系,须画出编码器的网格图。
网格图是一种能清楚显示状态转移的时间依赖性状态图,因而用网格图来表示编码器的操作是很有用的。
图2表示了(2.1.2)卷积码的网格图。
图中四行小圆圈表示移位寄存器的四种状态,虚线表示输入是0时的状态转移,实线表示输入是1时的状态转移,支路上标注的码元为输出比特。
2 、(2.1.2)卷积码编码器的编程实现与仿真波形由以上分析可以发现,(2.1.2)编码器由两个模二加法器组成,分别生成、。
而此时输出的是并行数据,须经过并串转换才能输出,在用VHDL编程时,用LOAD和CLK来控制信息的输入与卷积码的产生,当LOAD为底电平时,在每个CLK的上升沿输入一位信息,并进行异或运算;当LOAD为高电平时,在CLK 的上升沿时刻,把生成的卷积码经过并串转换之后输出。
经过编译调试之后,仿真波形如图3:图中,D-IN为输入的信息位,D-OUT为输出的串行卷积码,Q为移位寄存器的内容。
(n ,k ,N )=(2,1,6)n 个输出比特。
当前的k 个输入信息,还与前(N-1)k 个信息有关。
002356101236y x x x x x y x x x x x =⊕⊕⊕⊕=⊕⊕⊕⊕2.2.1 Viterbi 译码卷积码概率译码的基本思路是:以接收码流为基础,逐个计算它与其他所有可能出现的、连续的网格图路径的距离,选出其中可能性最大的一条作为译码估值输出。
概率最大在大多数场合可解释为距离最小,这种最小距离译码体现的正是最大似然的准则。
卷积码的最大似然译码与分组码的最大似然译码在原理上是一样的,但实现方法上略有不同。
主要区别在于:分组码是孤立地求解单个码组的相似度,而卷积码是求码字序列之间的相似度。
基于网格图搜索的译码是实现最大似然判决的重要方法和途径。
用格图描述时,由于路径的汇聚消除了树状图中的多余度,译码过程中只需考虑整个路径集合中那些使似然函数最大的路径。
如果在某一点上发现某条路径已不可能获得最大对数似然函数,就放弃这条路径,然后在剩下的“幸存”路径中重新选择路径。
这样一直进行到最后第L级(L为发送序列的长度)。
由于这种方法较早地丢弃了那些不可能的路径,从而减轻了译码的工作量,Viterbi译码正是基于这种想法。
对于(n, k, K )卷积码,其网格图中共2kL种状态。
由网格图的前K-1条连续支路构成的路径互不相交,即最初2k_1条路径各不相同,当接收到第K条支路时,每条路径都有2条支路延伸到第K级上,而第K级上的每两条支路又都汇聚在一个节点上。
在Viterbi译码算法中,把汇聚在每个节点上的两条路径的对数似然函数累加值进行比较,然后把具有较大对数似然函数累加值的路径保存下来,而丢弃另一条路径,经挑选后第K级只留下2K条幸存路径。
选出的路径同它们的对数似然函数的累加值将一起被存储起来。
由于每个节点引出两条支路,因此以后各级中路径的延伸都增大一倍,但比较它们的似然函数累加值后,丢弃一半,结果留存下来的路径总数保持常数。
卷积码卷积码将k个信息比特编成n个比特,但k和n通常很小,特别适合以串行形式进行传输,时延小。
定义若以(n,k,m)来描述卷积码,其中k为每次输入到卷积编码器的bit数,n为每个k元组码字对应的卷积码输出n元组码字,m为编码存储度,也就是卷积编码器的k元组的级数,称m+1= K为编码约束度m称为约束长度。
卷积码将k元组输入码元编成n元组输出码元,但k和n通常很小,特别适合以串行形式进卷积码的编码器行传输,时延小。
与分组码不同,卷积码编码生成的n元组元不仅与当前输入的k元组有关,还与前面m-1个输入的k元组有关,编码过程中互相关联的码元个数为n*m。
卷积码的纠错性能随m的增加而增大,而差错率随N的增加而指数下降。
在编码器复杂性相同的情况下,卷积码的性能优于分组码。
介绍一种卷积码编码器卷积码是1955年由Elias等人提出的,是一种非常有前途的编码方法。
我们在一种卷积码编码器一些资料上可以找到关于分组码的一些介绍,分组码的实现是将编码信息分组单独进行编码,因此无论是在编码还是译码的过程中不同码组之间的码元无关。
根本区别卷积码和分组码的根本区别在于,它不是把信息序列分组后再进行单独编码,而是由连续输入的信息序列得到连续输出的已编码序列。
即进行分组编码时,其本组中的n-k个校验元仅与本组的k个信息元有关,而与其它各组信息无关;但在卷积码中,其编码器将k个信息码元编为n个码元时,这n个码元不仅与当前段的k个信息有关,而且与前面的(m-1)段信息有关(m为编码的约束长度)。
有关信息同样,在卷积码译码过程中,不仅从此时刻收到的码组中提取译码信息,而且还要卷积码编码器利用以前或以后各时刻收到的码组中提取有关信息。
而且卷积码的纠错能力随约束长度的增加而增强,差错率则随着约束长度增加而呈指数下降。
约束关系卷积码(n,k,m) 主要用来纠随机错误,它的码元与前后码元有一定的约束关系,编码复杂度可用编码约束长度m*n来表示。
2.7.卷积码分组码是把k个信息比特的序列编成n个比特的码组,每个码组的n-k个校验位仅与本码组的k个信息位有关,而与其他码组无关。
为了达到一定的纠错能力和编码效率,分组码的码组长度一般都比较大。
编译码时必须把整个信息码组存储起来,由此产生的译码时延随n的增加而增加。
卷积码是另外一种编码方法,它也是将k个信息比特编成n个比特,但k和n通常很小,特别适合以串行形式进行传输,时延小。
与分组码不同,卷积码编码后的n个码元不仅与当前段的k个信息有关,还与前面的N-1段信息有关,编码过程中互相关联的码元个数为nN。
卷积码的纠错性能随N的增加而增大,而差错率随N的增加而指数下降。
在编码器复杂性相同的情况下,卷积码的性能优于分组码。
但卷积码没有分组码那样严密的数学分析手段,目前大多是通过计算机进行好码的搜索。
2.7.1.卷积码的结构和描述一、卷积码的一般结构卷积码编码器的形式如图所示,它包括:一个由N段组成的输入移位寄存器,每段有k个,共Nk个寄存器;一组n个模2和相加器,一个由n级组成的输出移位寄存器。
对应于每段k个比特的输入序列,输出n个比特。
由上图可以看到,n个输出比特不仅与当前的k个输入信息有关,还与前(N-1)k个信息有关。
通常将N称为约束长度,(有的书的约束长度为Nn)。
常把卷积码记为:(n,k,N),当k=1时,N-1就是寄存器的个数。
二、卷积码的描述描述卷积码的方法有两类:图解法和解析表示。
图解法包括:树图、状态图、网格图解析法包括:矩阵形式、生成多项式形式。
以如下的结构说明各种描述方法。
1、树图根据上图,我们可以得到下表:我们可以画出如下的树状图:2、 状态图3、 网格图例1, 输入为1 1 0 1 1 1 0,输出为: 11 01 01 00 01 10 014、 生成多项式表示 定义],,[1211101g g g g=,],,[2221202g g g g=则上述结构为71=g,52=g,这里用8进制表示21,g gabcd⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2101211101],,[m m m g g g c ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2102221202],,[m m m g g g c定义2212111011)(DD Dg D g g D g ++=++=2222212021)(DDg D g g D g +=++=则输入信息,...,,210b b b 的多项式为....)(332210++++=b D b D b b D M那么我们可以得到输出)()()(11D g D M D C = )()()(22D g D M D C =最终输出是)(),(21D C D C的相同次数项的排列。
卷积码的原理1. 引言卷积码是一种用于数字通信中的误码纠正编码技术。
它利用卷积操作对输入数据进行编码,以增强数据传输的可靠性。
本文将详细介绍卷积码的基本原理,包括卷积操作、生成多项式、状态机和Viterbi解码算法。
2. 卷积操作卷积操作是卷积码编码的核心步骤。
它通过将输入序列与一个或多个权重系数序列进行点乘,生成输出序列。
具体而言,假设输入序列为x={x0,x1,...,x N−1},权重系数序列为ℎ={ℎ0,ℎ1,...,ℎK−1},则输出序列y={y0,y1,...,y M−1}可以通过以下公式计算得到:K−1y i=∑ℎj⋅x i−jj=0其中,M为输出序列的长度,K为权重系数序列的长度。
3. 生成多项式在卷积码中,生成多项式决定了编码器的结构和性能。
它由两个多项式组成:一个是分子多项式(记作G1),用于计算输出序列的第一个比特;另一个是分母多项式(记作G2),用于计算输出序列的其余比特。
生成多项式可以写成以下形式:G(D)=G1(D)/G2(D)其中,D表示延迟操作符。
生成多项式的选择对卷积码的性能和复杂性有重要影响。
常见的生成多项式有三种:(1, 3)、(1, 5)和(1, 7)。
它们分别对应于分子多项式为(1+D3)、(1+D2+D5)和(1+D2+D3+D4+D6),分母多项式均为(1+D+D2)。
4. 状态机卷积码编码器可以看作是一个有限状态机。
状态机由一组状态和状态转移函数组成,用于描述编码器的内部状态变化。
在卷积码中,每个状态对应于编码器内部的寄存器值。
以(1, 3)卷积码为例,它有8个不同的状态,编号为0到7。
初始状态通常设置为0。
每个输入比特导致状态转移,并且在每个时钟周期结束时产生一个输出比特。
具体而言,根据输入比特和当前状态,可以确定下一个状态和输出比特。
这种状态转移可以用一个状态转移图来表示。
5. Viterbi解码算法Viterbi算法是一种用于卷积码解码的最优算法。
卷积码的基本原理卷积码的基本原理1. 引言•卷积码是一种常用于通信系统中的纠错编码技术。
•它通过引入冗余信息,可以在信道传输过程中检测出并纠正部分错误。
2. 卷积码的定义•卷积码是一种线性的、时间变化的编码方式。
•它可以将输入比特序列转换为输出比特序列,并满足一定的性质。
3. 编码过程•卷积码的编码过程可以用一个状态图表示。
•输入比特依次通过编码器的不同路径,生成输出比特序列。
4. 编码器结构•卷积码的编码器由若干个寄存器和逻辑门组成。
•每个寄存器存储一个状态,逻辑门用于生成输出比特。
5. 纠错能力•卷积码的纠错能力通过其约束长度和码距来衡量。
•约束长度表示编码器中寄存器的数量。
•码距表示卷积码能够检测和纠正的最大错误比特数量。
6. Viterbi解码算法•Viterbi解码算法是一种常用于卷积码解码的算法。
•它通过动态规划的方式寻找最可能的输入比特序列。
7. 进一步研究•卷积码是一个广泛研究的领域,有很多相关的扩展和改进算法。
•感兴趣的读者可以深入研究卷积码的不同应用和改进算法。
以上是针对“卷积码的基本原理”的简要介绍和解释。
卷积码作为一种常用的纠错编码技术,可以在信道传输过程中提高系统的可靠性。
同时,关于卷积码的编码结构、纠错能力和解码算法等方面也有很多相关的研究和应用。
对卷积码感兴趣的读者可以继续深入学习和了解。
8. 卷积码的应用•卷积码在通信领域中有着广泛的应用。
•它可以用于数字电视的信号传输,提高传输质量和可靠性。
•在无线通信系统中,卷积码可以提高信号的抗干扰能力。
•在存储系统中,卷积码也可以用于数据的纠错和恢复。
9. 卷积码的性质•卷积码具有良好的线性性质。
•通过矩阵表示可以更形象地描述卷积码的性质和特点。
•矩阵形式的表示方便进行编码和解码运算。
10. 卷积码的误码性能•误码性能是衡量卷积码性能的重要指标之一。
•通过误码率曲线可以评估卷积码在不同信噪比条件下的性能。
•在设计卷积码时,可以根据需要选择适当的编码率和约束长度,以达到所需的误码性能。
卷积码的基本原理引言卷积码是一种线性纠错码,广泛应用于数字通信和存储系统中。
它通过对数据进行编码,增加冗余信息,以提高数据传输的可靠性。
在接收端,卷积码通过解码算法可以检测和纠正传输过程中引入的错误。
1. 编码过程卷积码的编码过程可以看作是一个滑动窗口对输入数据进行运算的过程。
设输入序列为x[n],输出序列为y[n],编码器有K个输入(信息)比特和N个输出(编码)比特。
首先,将输入序列x[n]按照一个固定的时间窗口长度分组,并将分组后的每一组与一个固定的生成多项式进行卷积运算。
生成多项式由编码器的结构决定。
例如,对于一个3输入2输出(记作(3,2))的卷积编码器,生成多项式可以表示为:G(D)=1+D2+D3。
接下来,将每一组运算结果连接起来得到输出序列y[n]。
2. 状态机在理解卷积编码原理时,需要引入状态机的概念。
状态机描述了编码器内部状态之间的转移关系。
对于一个(K,N)的卷积编码器,其状态机包含2K个状态,每个状态对应一个输出比特的编码过程。
以(3,2)卷积编码器为例,其状态机如下图所示:stateDiagram-v2[*] --> 00/0000/00 --> 01/01: 000/00 --> 10/10: 101/01 --> 11/11: 001/01 --> 00/10: 110/10 --> 00/11: 010/10 --> 11/01: 111/11 --> 10/00: 011/11 --> 01/00: 1上图中,每个状态用两个比特表示,例如00表示当前状态为0。
箭头上的数字表示输入比特,例如从00到01的箭头上标注的数字为0。
状态转移矩阵和输出矩阵根据生成多项式和状态机的关系,可以得到一个状态转移矩阵和一个输出矩阵。
这两个矩阵是描述卷积编码器行为的重要工具。
对于一个(K,N)卷积编码器,其状态转移矩阵是一个2K×K的二进制矩阵,用来描述状态之间的转移关系。