分子的对称性资料重点
- 格式:pptx
- 大小:818.68 KB
- 文档页数:20
第四章分子对称性一、概念及问答题1、对称操作与点操作能不改变物体内部任何两点间的距离而使物体复原的操作叫对称操作,对于分子等有限物体,在进行操作时,分子中至少有一点是不动的,叫做点操作2、旋转轴和旋转操作旋转操作是将分子绕通过其中心轴旋转一定的角度使分子复原的操作,旋转依据的对称元素为旋转轴,n次旋转轴用C n表示。
3、对称中心和反演操作当分子有对称中心i时,从分子中任一原子至对称中心连一直线,将此线延长,必可在和对称中心等距离的另一侧找到另一相同原子。
和对称中心相应的操作。
叫做反演操作。
4、镜面和反映操作镜面是平分分子的平面,在分子中除位于镜面上的原子外,其他成对地排在镜面两侧,它们通过反映操作可以复原。
反映操作是使分子的每一点都反映到该点到镜面垂线的延长线上,在镜面另一侧等距离处。
5、C n群属于这类点群的分子,它的对称元素只有一个n次旋转轴。
6、C nh群属于这类点群的分子,它的对称元素只有一个n次旋转轴和垂直于此轴的镜σ。
面h7、C nv群属于这类点群的分子,它的对称元素只有一个n次旋转轴和通过此轴的镜面σ。
v8、D nh群在C n群中加入一垂直于C n轴的C2轴,则在垂直于C n轴的平面内必有n个σ,得D nh群。
C2轴得D n群,在此基础上有一个垂直于C n轴的镜面hσ能得到另外的什么群?9、在C3V点群中增加h得到D3h群。
根据组合原理两个夹角为α的对称面的交线必为一其转角为2α的对称轴,C 3V 中有三个v σ面,v σ与h σ之间为90度,所以必有三个C 2轴垂直于C 3轴,构成了D 3h 群。
10、假定-24CuCl 原来属于T d 群,四个氯原子的标记如图所示,当出现下列情况时,它所属点群如何变化? a. 1Cl Cu -键长缩短b. 1Cl Cu -和2Cl Cu -缩短同样长度c. 12Cl Cl -间距离缩短 答:a. C 3V b. C 2V c. C 2V11、一立方体,在8个项角上放8个相同的球,如图所示,那么: a. 去掉1,2号球分子是什么点群? b. 去掉1,3号球分子是什么点群?答:a. C 2V b. C 2V12、写出偶极矩的概念、物理意义及计算公式。
分子的对称性的概念和性质
分子的对称性是指分子内部的元素和化学键的排列方式能够使分子具有某种对
称性质,例如轴对称、面对称或中心对称等。
分子的对称性具有以下性质:
1. 对称性越高,分子越稳定。
高对称性的分子能更好地分散电荷,使电子对于分子的外界环境的影响降低,从而提高其稳定性。
2. 对称性决定了部分分子性质。
例如,分子的光学旋光性、通过红外光谱确定的基团、共振能力和一些电学性质,都与其对称性有关。
3. 不同的分子对称性能够使分子之间的相互作用发生变化。
例如,对称性相同的分子之间的吸引力强于对称性不同的分子,因为它们之间的电场相互作用更强。
4. 分子的对称性还决定了它们在不同状态下的性质。
例如,具有闭壳层分子轨道的分子具有惰性,而具有非闭壳层分子轨道的分子具有较强的反应性和化学活性。
关于分子的对称性高剑南﹙华东师范大学200062﹚1.从《非极性分子和极性分子》一课说起曾经看过有关《非极性分子和极性分子》的教学设计,也听过《非极性分子和极性分子》的公开课。
无论是教学设计,还是公开課,都很精彩。
遗憾的是听到教师这样的讲述:CCl4分子为正四面体结构,是对称分子,所以是非极性分子。
H2O分子的空间构型为折线形,不对称,所以是极性分子。
甚至总结为:“分子的空间构型为直线型、平面正四边型、正四面体等空间对称构型的多原子分子则为非极性分子;分子的空间构型为折线型、三角锥型、四面体等空间不对称构型的多原子分子则为极性分子”。
那么,这样的判断有没有问题?何谓对称?何谓不对称?何谓极性分子?何谓非极性分子?分子的对称性与分子极性有着怎样的内在联系?研究对称性有什么意义?2. 对称性在所有智慧的追求中,很难找到其他例子能够在深刻的普遍性与优美简洁性方面与对称性原理相比。
——李政道2.1 对称是自然界的一个普遍性质对称性是自然界的一个普遍现象。
任何动物,无论是低等动物草履虫,还是高等的哺乳动物包括人;任何植物,无论是叶,还是花,都具有某种对称性。
人类受此启发,任何建筑,无论是古建筑天坛、罗马式大教堂、泰姬陵,还是现代建筑国家大剧院、鸟巢体育馆;无论是高档别墅,还是普通民居,都具有某种对称性。
对称是自然界中普遍存在的一种性质,因而常被认为是最简单、最平凡的现象。
然而,对称又具有最深刻的意义。
科学家、艺术家、哲学家从各种角度研究和赞美对称,“完美的对称”、“神秘的对称”、“可怕的对称”,表明对称性在人类心灵中引起的震撼。
a. 捕蝇草b. 台灣萍蓬草c.对称性雕塑艺术图1 对称是一个普遍现象2.2 对称操作与对称元素对称性用对称元素和对称操作来描述。
经过不改变图形中任何两点间距离的操作能够复原的图形称为对称图形。
能使对称图形复原的操作称为对称操作。
进行对称操作时所依赖的对称要素(点、线、面)称为对称元素。