半潜式钻井平台
- 格式:doc
- 大小:15.90 KB
- 文档页数:6
18文:早鸟星球 黎明 图:郭建涛 姚乐嘉停机坪船员宿舍直升机Discovery大国重器“蓝鲸1号”让你想起了什么?对了,是蓝鲸,地球上已知体形最大的动物。
“蓝鲸1号”是我国自主研制的全球最大的半潜式深海钻井平台。
它有大约40层楼那么高,甲板的面积比一个足球场还要大,最大作业水深可达3658米,最大钻井深度达到15240米,几乎可以在全球的任何海域开展作业。
“蓝鲸1号”的主要工作是什么?它的主要工作是开采深海中的可燃冰。
可燃冰是天然气与水在低温高压状态下形成的一种类冰状结晶物质。
可燃冰看起来像冰块,能量比同体积的石油高出10倍。
与传统化石燃料(比如煤炭、石油)相比,可燃冰是一种相对清洁的能源。
然而,可燃冰通常埋藏在海底或永久冻土层中,开采难度极大。
于是,“蓝鲸1号”应运而生。
“蓝鲸1号”有什么特殊功能?一般的钻井平台只有一个钻塔。
钻一会儿井,就要停下来,接一段钻杆,然后继续工作。
钻井越深,需要的钻杆就越长,接管的时间也就越长。
“蓝鲸1号”有两个钻塔。
钻井的时候,双钻塔同时工作,一边钻井,一边接管,效率大大提升。
“蓝鲸1号”深海钻井平台立柱焊接在厚实的钢板上。
19顶驱塔吊“蓝鲸1号”的“定海神针”“蓝鲸1号”配备了先进的动力定位系统,通过收集底部8个推进器的转速、方向,以及风浪、海流等环境参数,进行精密计算和分析,实时控制8个推进器的运行。
即便遭遇飓风、海流的侵袭,“蓝鲸1号”也能岿然不动。
设施完善的“移动城堡”船员们出海作业,在海上一待就是几个月。
“蓝鲸1号”上建有完善的生活区,每个宿舍都有两间独立的房间,生活起居互不影响。
在公共区域,卫生间、客厅、电视、沙发一应俱全。
除此之外,“蓝鲸1号”上还设有健身房,供船员们锻炼身体。
“双钻塔”“蓝鲸1号”出海钻井可携带近200根几十米长的套管和1000多根钻杆。
两个钻塔可以同时工作。
底部推进器安全保护这里设有燃烧隔离装置和喷水设施,防止可燃冰产生的气体泄漏,发生燃烧爆炸事故。
半潜式修井平台的工作原理与关键技术解析半潜式修井平台是一种用于海上修井作业的重要工具。
它具备悬挂井口设备进行修井作业所需的稳定性和安全性,同时兼具浮力和动力控制能力。
本文将对半潜式修井平台的工作原理和关键技术进行解析。
一、工作原理半潜式修井平台的工作原理基于其设计和结构。
该平台主要由潜油泵、钻井设备、井下管道系统等组成,平台的上部是一个高度耐震的完整平台结构,下部则是潜油泵与普通钻井平台的组合。
当修井作业开始时,半潜式修井平台会通过设备和系统控制,部分潜入水中,并减少自身出露面的高度。
这种状态下平台形成稳定的平衡,使得钻井作业能够安全进行。
当修井完成后,平台可以重新升起,井口设备随之上升,便于进行后续的作业。
半潜式修井平台的工作原理依赖于多个关键技术,下文将对这些技术进行详细解析。
二、关键技术解析1. 浮式平台设计技术为了确保半潜式修井平台的稳定性和安全性,需要进行精确的设计和计算。
浮式平台设计技术包括结构设计、强度分析、稳定性评估等方面。
通过合理的设计和计算,可以确保修井作业时平台的稳定性,避免倾斜和不安全的情况发生。
2. 动力定位技术半潜式修井平台需要在海上进行修井作业,因此需要具备移动能力。
动力定位技术能够确保平台在水中保持相对稳定的位置,避免受到浪涌和海流的影响。
这可以通过动力定位系统来实现,该系统依靠多个推进器和定位设备,通过智能控制来使平台保持所需位置。
3. 耐深技术半潜式修井平台在海上作业时需要承受较大的水深压力。
因此,耐深技术成为平台设计和建造的一个重要方面。
耐深技术包括耐压材料的选择、结构设计、密封系统等方面。
通过应用耐深技术,半潜式修井平台能够安全和稳定地在较深海域进行修井作业。
4. 井口设备技术半潜式修井平台需要配备井口设备来完成修井作业。
井口设备技术主要包括井口防喷器、井口管线、套管及尾管系统等。
这些设备需要精确控制流体进出井口,确保作业的顺利进行。
井口设备技术的研发和应用能够提高修井效率,并确保操作的安全性。
半潜式钻井平台简介
半潜式钻井平台(Semi~sub):由坐底式钻井平台演变而来,主要由浮体、立柱和工作平台三大部分组成。
浮体提供半潜式钻井平台的大部分浮力,立柱用于连接工作平台和扶梯,支撑工作平台。
工作台即上部结构,用于布置钻井设备、钻井器材、起吊设备、安全救生、人员生活设施以及动力、通讯和导航灯设备。
自20世纪50年代以来主要经历了两次建造高峰期,第一次为1973~1977年,第二次为1982~1984年,到现在算来,现有半潜式钻井平台绝大部分已经有25 年以上的服役年龄,基本上到了更新换代的年龄,市场需求前景看好。
图 2 ACTINIA 2号半潜式海洋钻井平台
2008年全球共有178座半潜式钻井平台,主要分布在英国北海(North Sea)、美国墨西哥湾、巴西、西亚、东南亚等地。
从作业水深方面来看,能用于500米以上深海作业的有108座,占总数的60.7%,500米以内水深的为64座,占比为39.3%。
从钻井深度来看,现役平台绝大部分都超过6,156米,只有3座平台在6,156米以下。
在役的178座半潜式钻井平台中,主要由美国、韩国、日本、挪威等国船厂承制,而设计技术主要归属以下4家公司:美国的F&G,挪威AKERKV AERNER,瑞典GV A Consultants AB 和荷兰MSC。
例如在手持的50座半潜式钻井平台订单,美国的F&G负责设计13座,荷兰MSC负责设计12座,瑞典GV A Consultants AB负责设计6座,挪威AKERKV AERNER 负责设计2座。
这4家设计公司合计设计量(33座)占总量(50座)的66.7%。
半潜式修井平台的概述与发展趋势概述:半潜式修井平台是一种能够在海洋深水区域进行油气勘探和生产的装备。
它是一种结合了悬挂式钻井平台和半潜式生产平台的混合型设施。
半潜式修井平台具备钻井和生产功能,能够在深海环境下钻探井眼、修井并进行生产作业。
半潜式修井平台通常由两个主要部分组成:悬挂式钻井平台和半潜式生产平台。
钻井平台用于进行钻探和修井作业,而生产平台则用于提供生产设施和生活区域。
钻井平台和生产平台可以通过连接系统连接在一起,形成一个完整的半潜式修井平台。
发展趋势:1. 大规模平台的兴起:随着海洋油气资源的需求和勘探开采技术的进步,半潜式修井平台正朝着更大规模的方向发展。
大规模平台能够提供更多的设备和设施,使得作业效率更高,并能够同时处理多个井眼,进一步提高生产能力。
2. 深海水域技术创新:随着深海水域油气资源的重要性不断增加,半潜式修井平台需要适应更为复杂的环境和更深的水深。
因此,未来的发展趋势将集中在技术创新和设备适应性的提高,以满足深海勘探和生产的需求。
3. 环保和可持续性:随着环保意识的加强和可持续能源的重要性不断提高,半潜式修井平台的发展也将注重环保和可持续性。
未来的半潜式修井平台将更多地采用清洁能源和环保技术,减少对环境的影响,同时提高能源利用效率。
4. 自动化和数字化:随着自动化和数字化技术的发展,未来的半潜式修井平台将更加智能化。
自动化技术可以提高操作效率和安全性,减少人力投入,并可以通过数据分析实现更好的作业管理和决策支持。
5. 国际合作与共享:海洋油气勘探和生产通常需要巨大的投资和资源,因此国际合作和共享将成为未来发展的重要方向。
不同国家和公司之间的合作将能够共享资源、分担风险,并带来技术和管理方面的优势,推动半潜式修井平台的发展。
总结:半潜式修井平台是海洋油气勘探和生产的重要装备,其发展趋势主要集中在大规模平台、深海水域技术创新、环保和可持续性、自动化和数字化以及国际合作与共享等方面。
半潜式钻井平台一种海上钻井装置。
上部为工作甲板,下部为两个下船体,用支撑立柱连接。
工作时下船体潜入水中,甲板处于水上安全高度,水线面积小、波浪影响小、稳定性好、自持力强、工作水深大。
半潜式钻井平台,又称立柱稳定式钻井平台,是大部分浮体没于水面下的一种小水线面的移动式钻井平台,是从坐底式钻井平台演变而来的。
半潜式钻井平台,又称“支柱稳定平台”,它是在坐底式钻井平台的基础上发展起来的。
它的结构与坐底式基本相似,下部为一浮筒构架,上部为平台。
它与沉底式不同之处在于:它在工作时不是座在海底,而是像船体一样漂浮在海面上。
当水深较浅时,半潜式平台的沉垫(浮箱)直接坐于海底,这时,将它用作坐底式钻井平台。
当工作水深>;30m 时,平台漂浮于海水中,相当于钻井浮船。
到目前为止,半潜式钻井平台已经经历了第一代到第六代(可钻3000 米)的历程。
它是目前应用最多的浮式钻井装置。
据统计,目前世界上的深水半潜式钻井平台可钻3000多米深,而国内钻井深度一般在300m以内。
半潜式钻井平台主要由上部平台、下浮体(沉垫浮箱)和中部立柱三部分组成。
上部平台任何时候都处在海面以上一定高度。
下部浮体在航行状态下是浮在海面上,浮体的浮力支撑着整个装置的重量。
在钻井作业期间,下部浮体潜入海面以下一定的深度,躲开海面上最强烈的风浪作用,只留部分立柱和上部平台在海面以上。
正是因为在工作期间半潜入海面以下这种特点,被命名为半潜式钻井平台。
这种钻井平台在水深较浅时,也可以坐在海底进行钻井,与坐底式一样。
上部平台半潜式是从坐底式发展而来,所以上部平台部分,与坐底式平台类似,但比坐底式平台要先进得多。
上部平台一般也分成两层,上层为主甲板,下层为机舱。
主甲板上主要放置钻机、井架、钻具、起重设备、消防、救生设备、各种工作间和生活区(一幢楼房),还有直升飞机平台等。
下层甲板即机舱内主要是机泵组,固井设备,泥浆循环系统,以及各种材料库罐等。
平台的尺度都相当大,所以有很高的自持能力。
半潜式钻井平台固定的原理
半潜式钻井平台(Semi-Submersible Drilling Rig)是一种在海上进行钻井作业的浮式平台。
其固定原理是通过使用球ast(吊索系统)和锚链来保持平台在水面上的位置稳定。
半潜式钻井平台的船体结构通常由两个或多个主要浮箱组成,这些浮箱具有足够的浮力来支撑整个平台的重量。
浮箱下方有大型水球ast,这些水球ast通常附有吊索系统,用于调整平台的位置和姿态。
在平台部署时,浮箱会被部分浸入水中,以增加平台的稳定性。
吊索系统将连接到球ast上的锚链上。
锚链会相对于平台下沉,以提供稳定性,同时允许平台在水面上进行垂直运动。
通过调整水球ast的充气或排气量,可以控制平台的浮力,从而调整平台的位置。
如果需要移动平台,可以调整吊索系统的长度,改变锚链的张力,并使用拖船或推进器来改变平台的位置。
在钻井作业期间,半潜式钻井平台会通过电池维持位置的稳定,同时利用定位系统和船舶动力来抵消海流和风力的作用。
总而言之,半潜式钻井平台通过球ast和锚链来固定在水面上的位置,以保持平台的稳定性和安全。
这种设计使得平台能够在恶劣的海洋环境下进行钻井作业。
半潜式钻井平台目录•定义•简介•类型•外型定义具有潜没在水下的浮体(下体或沉箱)并由立柱连接浮体和上部甲板,作业时处于漂浮状态的钻井平台。
简介超深水半潜式钻井平台半潜式钻井平台,又称立柱稳定式钻井平台。
大部分浮体没于水面下的一种小水线面的移动式钻井平台,是从坐底式钻井平台演变而来的。
由平台本体、立柱和下体或浮箱组成。
此外,在下体与下体、立柱与立柱、立柱与平台本体之间还有一些支撑与斜撑连接。
在下体间的连接支撑,一般都设在下体的上方,这样,当平台移位时,可使它位于水线之上,以减小阻力。
平台上设有钻井机械设备、器材和生活舱室等,供钻井工作用。
平台本体高出水面一定高度,以免波浪的冲击。
下体或浮箱提供主要浮力,沉没于水下以减小波浪的扰动力。
平台本体与下体之间连接的立柱,具有小水线面的剖面,主柱与主柱之间相隔适当距离,以保证平台的稳性,所以又有立柱稳定式之称。
半潜式钻井平台的类型有多种,其主要差别在于水下浮体的式样与数目,按下体的式样,大体上可分为沉箱式和下体式两类。
半潜式钻井平台并不像自升式钻井平台那样停留在海床上,反而工作甲板坐落在巨型驳船及中空的支柱上。
钻井平台移动时它们均浮在水面上。
在钻井现场,工人将海水泵入驳船及支柱内以令钻井平台部分浸入水中,亦即其名称半潜式钻井平台所指的意思。
当半潜式钻井平台大部分都浸在水平面下时,它就变成一个用作钻井的稳定平台,只在风吹及水流冲击下稍为移动。
如自升式钻井平台那样,大部分半潜式钻井平台均被拖到钻井现场。
由于它们卓越的稳定性,"半潜式"非常适合在波涛汹涌的海面上进行钻井工作。
半潜式钻井平台可在水深至10000英尺的地方运作。
类型半潜式钻井平台的类型有多种,其主要差别在于水下浮体的式样与数目,按下体的式样,大体上可分为沉箱式和下体式两类。
沉箱式沉箱式是将几根立柱布置在同一个圆周上,每一根立柱下方设一个下体,称为沉箱。
沉箱的剖面有圆形、矩形、靴形。
半潜式平台平台主体部分沉没于海面以下的钻井平台。
它由平台甲板、立柱和下体(或沉箱)组成。
平台甲板为钻井工作场所。
立柱连接于平台甲板和下体之间,起支撑作用。
下体控制平台沉没水下的深度。
钻井作业时沉箱中注入压载水,使平台大部分沉没于水面以下,以减小波浪的扰动力。
作业结束时,抽出沉箱中的压载水,平台上升,浮至水面进入自航或拖航状态。
这种平台在钻井作业时还需要锚泊定位或动力定位,以增加其稳定性。
它适宜在300-600m水深的海域钻井作业。
平台有一些巨大的垂直支柱(column)连接着底部很大的浮体(pontoon)。
这种结构物上支持一个平台甲板、井架、设备、供应品和人员生活场所均布置其上。
供应船和直升机载钻井点和海岸之间运输器材和人员。
平台拖航时一般在pontoon draft,到达目的地后(可能是拖航也可能自己推进),在浮体中注入海水使平台部分下潜,知道他的大部分结构在海面一下(operation draft),但是平台甲板距离海面要有足够的高度,要考虑设计海况的最大波高以及垂荡时的位移。
平台的运动响应六个自由度的运动方面,surge、sway和yaw 对锚链分析很重要,或是对DP的动力分析如thruster选择engine sizing很关键。
而heave,pitch and roll则是平台机器工作的关键,因为平台或是钻井或是生产用的都有drill pipe或是riser与海底相连,而且考虑到平台上人员与机器工作的条件。
大家知道,平台一般受风浪流的作用力。
风力一般根据class rules选择截面形状系数和根据高度选择高度系数,然后加起来就是,流力也差不多,不过要根据当地的metocean data,不同的地方流截面不同的。
大部分都是水表面比较大,水越深流越小。
波浪力比较复杂,一般来讲波浪力分为动压力(主要与距水面距离和结构物面积有关)、加速度-质量加附加质量力(与结构物形状大小有关)和拖曳力(与波浪速度有关,要积分)。
半潜式钻井平台
一种海上钻井装置。
上部为工作甲板,下部为两个下船体,用支撑立柱连接。
工作时下船体潜入水中,甲板处于水上安全高度,水线面积小、波浪影响小、稳定性好、自持力强、工作水深大。
半潜式钻井平台,又称立柱稳定式钻井平台,是大部分浮体没于水面下的一种小水线面的移动式钻井平台,是从坐底式钻井平台演变而来的。
半潜式钻井平台,又称“支柱稳定平台”,它是在坐底式钻井平台的基础上发展起来的。
它的结构与坐底式基本相似,下部为一浮筒构架,上部为平台。
它与沉底式不同之处在于:它在工作时不是座在海底,而是像船体一样漂浮在海面上。
当水深较浅时,半潜式平台的沉垫(浮箱)直接坐于海底,这时,将它用作坐底式钻井平台。
当工作水深>30m 时,平台漂浮于海水中,相当于钻井浮船。
到目前为止,半潜式钻井平台已经经历了第一代到第六代(可钻3000米)的历程。
它是目前应用最多的浮式钻井装置。
据统计,目前世界上的深水半潜式钻井平台可钻3000多米深,而国内钻井深度一般在300m以内。
半潜式钻井平台主要由上部平台、下浮体(沉垫浮箱)和中部
立柱三部分组成。
上部平台任何时候都处在海面以上一定高度。
下部浮体在航行状态下是浮在海面上,浮体的浮力支撑着整个装置的重量。
在钻井作业期间,下部浮体潜入海面以下一定的深度,躲开海面上最强烈的风浪作用,只留部分立柱和上部平台在海面以上。
正是因为在工作期间半潜入海面以下这种特点,被命名为半潜式钻井平台。
这种钻井平台在水深较浅时,也可以坐在海底进行钻井,与坐底式一样。
上部平台
半潜式是从坐底式发展而来,所以上部平台部分,与坐底式平台类似,但比坐底式平台要先进得多。
上部平台一般也分成两层,上层为主甲板,下层为机舱。
主甲板上主要放置钻机、井架、钻具、起重设备、消防、救生设备、各种工作间和生活区(一幢楼房),还有直升飞机平台等。
下层甲板即机舱内主要是机泵组,固井设备,泥浆循环系统,以及各种材料库罐等。
平台的尺度都相当大,所以有很高的自持能力。
上部平台的形状以矩形最为常见,此外还有三角形、五角形、八角形,甚至还有十字形和中字形。
沉垫浮箱
沉垫又称浮箱,制成船形沉没于水,有许多各自独立的舱室,每个舱室内有进水泵和排水泵。
它用充水排气及排水充气来实现平台的升降。
其外形有矩形、鱼雷形、潜艇形
及上下平坦、左右两侧为椭圆等多种形式,内有供升降用的压载舱。
立柱
它用于支撑平台,连接平台与沉垫。
立柱个数有3,4,5,6,8个等。
锚泊系统
它用于给平台定位,通过锚和锚链来控制平台的水平位置,把它限在一定的范围内,以满足钻井工作的要求。
半潜式钻井平台自航或拖航到井位时,先锚泊住,然后向下船体和立柱内灌水,待平台下沉到一定设计深度呈半潜状态后,就可进行钻井作业。
钻井时,由于平台在风浪作用下产生升沉,摇摆、飘移等运动,影响钻井作业,因此半潜式钻井平台在钻井作业前需要先下水下器具,并采用升沉补偿装置、减摇设施和动力定位系统等多种措施来保持平台在海面上的位置,方可进行钻井作业。
半潜式钻井平台主要用于钻勘探井,也可以钻生产井,并且可作生产平台用于油田的早期开发,在钻探出石油之后,即可迅速转入采油,此时可作为浮式生产系统的主体。
半潜式与自升式钻井平台相比:优点是工作水深大,移动灵活;缺点是投资大,维修费用高,需有一套复杂的水下器具,有效使用率低于自升式钻井平台。
半潜式钻井平台的稳定性比钻井浮船好。
当浮箱注满水后,再用锚链固定。
这样虽然处于漂浮状态,但是比钻井浮船稳定。
而且,运移灵活。
由于半潜式钻井平台既能满足水深多变的要求,又能及时地运移,因此它最具有发展潜力。
半潜式钻井平台一般由平台本体、立柱和下体或浮箱组成。
此外,在下体与下体、立柱与立柱、立柱与平台本体之间还有一些支撑与斜撑连接。
在下体间的连接支撑,一般都设在下体的上方,这样,当平台移位时,可使它位于水线之上,以减小阻力。
平台上设有钻井机械设备、器材和生活舱室等,供钻井工作用。
平台本体高出水面一定高度,以免波浪的冲击。
下体或浮箱提供主要浮力,沉没于水下以减小波浪的扰动力。
平台本体与下体之间连接的立柱,具有小水线面的剖面,主柱与主柱之间相隔适当距离,以保证平台的稳性,所以又有立柱稳定式之称。
半潜平台效果图
半潜式钻井平台的类型有多种,其主要差别在于水下浮体的式样与数目,按下体的式样,大体上可分为沉箱式和下体式两类。
沉箱式
沉箱式是将几根立柱布置在同一个圆周上,每一根立柱下方设一个下体,称为沉箱。
沉箱的剖面有圆形、矩形、靴形。
沉箱的数目,亦即立柱的数目,有三个、四个、五个
不等。
下体式
下体式中最常见的是两根鱼雷形的下体分列左右,每根下体上的立柱数可以有两根、三根、四根。
下体的剖面有圆形、矩形、或四角有圆弧的矩形。
为了减小平台在移位时的水阻力,将下体的首尾两端做成流线型体。
最常见的是双下体型和四下体型还有环型下体式,是用四根立柱支承平台本体,立柱下方支承于一个圆形剖面有十二边的环形下体上。
此种型式根据模型试验表明耐波性较好,但阻力较大。
由于半潜式钻井平台在波浪上的运动响应较小,在几种钻井平台中得到很大发展,在海洋工程中,不仅可用于钻井,其他如生产平台、铺管船,供应船、海上起重船等都可采用。
随着海洋开发逐渐由浅水向深水发展,这类平台的应用,将会日渐增多,诸如油与气的贮存,离岸较远的海上工厂,海上电站等都将是半潜式平台的发展领域。
半潜式钻井平台在深水区域作业,需依靠定位设备,一般为锚泊定位系统,常规的锚泊定位系统通常由辐射状布置的八个锚组成,用链条或钢绳与平台连接。
水深超过300~500米时,需要采用动力定位系统或深水锚泊定位系统。
动力定位系统是船舶声纳系统的发展,在这种系统中,信号由平台发给或收自装在海底的传感器。
深水锚泊系统,需
用大量链条,靠供应船运载。
半潜式钻井平台由于下体都浸没在水中,其横摇与纵摇的幅值都很小,有较大影响的是垂荡运动。
2012年5月7日拍摄的“海洋石油981”钻井平台2011年5月23日,中国海洋工程装备制造业标志性工程、国家科技重大专项标志性装备之一——3000米深水半潜式钻井平台“海洋石油981”成果汇报会暨命名仪式在上海隆重举行。
2012年2月14日,“海洋石油981”通过了广东海事局和湛江海事局联合对其进行的船舶安全检查,作为中海油深海开发舰队的旗舰,移往南海深水油田进行勘探钻井、生产钻井、完井和修井等现场作业。
[1] 它的投入使用,对于中国进军深海海洋工程装备开发、提升深水作业能力、实现国家能源战略、维护国家权益等具有重要的战略意义。
2012年5月9日,中国首座自主设计、建造的第六代深水半潜式钻井平台“海洋石油981”即将在中国南海海域正式开钻。
[2]
“海洋石油981”是中国首座自主设计、建造的第六代深水半潜式钻井平台,最大作业水深3000米,钻井深度可达12000米,平台自重超过3万吨;从船底到钻井架顶高度为136米,相当于45层楼高。
“海洋石油981”的建成,填补了中国在深水钻井大型装备上的空白,使我国深水油气资源的勘探开发能力和大型海洋装备建造水平跨入世界先进行。