现代微波跟天线测量技术_第1讲
- 格式:pdf
- 大小:645.68 KB
- 文档页数:10
天线测量与微波测量实验讲义(试用)实验一、喇叭天线方向图的测量一、 实验目的:1、 了解喇叭天线的方向图特性;2、 掌握天线方向图的测量方法。
二、 实验原理:H 面和E 面方向图的计算公式为E H θ)E 0b[(λR H )/8]1/2{exp[j(π/4)λR Hθ/λ))2][C(u 1)+C(u 2)-jS(u 1)-jS(u 2)]+exp[j(π/4)λR H ((1/a h )-(2sin θ/λ))2][C(u 3)+C(u 4) -jS(u 3)-jS(u 4)]}E E 2]1/2cos θ}{[C(w 1)+C(w 2)]2+[S(w 1)+S(w 2)]2}1/2±j(π/2)t 2]dt=C(x)±jS(x)u1=(1/2)1/2{[a h/(λR H)1/2]+(λR H)1/2[(1/a h)+(2sinθ/λ)]}u2=(1/2)1/2{[a h/(λR H)1/2]-(λR H)1/2[(1/a h)+(2sinθ/λ)]}u3=(1/2)1/2{[a h/(λR H)1/2]+(λR H)1/2[(1/a h)-(2sinθ/λ)]}u4=(1/2)1/2{[a h/(λR H)1/2]-(λR H)1/2[(1/a h)-(2sinθ/λ)]} w1=[b h/(2λg R E)1/2]+{[(2λg R E)1/2/λ]sinθ}w2=[b h/(2λg R E)1/2]-{[(2λg R E)1/2/λ]sinθ}w1=[b h/(2λg R E)1/2]+{[(2λg R E)1/2/λ]sinθ}w1=[b h/(2λg R E)1/2]+{[(2λg R E)1/2/λ]sinθ}w1=[b h/(2λg R E)1/2]+{[(2λg R E)1/2/λ]sinθ}三、实验装置:测量方向图所需的基本设备可分为发射系统和接收系统两大部分。
现代微波与天线测量技术第一讲:概述彭宏利博士2008.09微波与射频研究中心上海交通大学-电信学院-电子工程系1.意义谈论“现代微波与天线测量技术”的意义,不能不先从“电磁场与微波技术”的意义谈起。
1870年,Maxwell创立的电磁场方程组标志人类对于电场和磁场本质认识的统一。
这一认识后被Richard Feynman称之为19世纪人类科学的最高成就。
在21世纪之初的今天,全世界仍然有无数的电磁科学家和工程师继续在采用计算机,努力地在寻找19世纪Maxwell方程组的解。
针对这种现象,人们不禁会问:“投入大量资源,继续研究电磁场与微波技术对于当今社会意义何在?”下面回答这个问题。
20年前,人们研究“电磁场与微波技术”的动力主要来自于国防军事需要。
近20年来,电磁场与微波技术的研究主要动力迅速从军用转到了高速通信和高速计算等民用需要方面。
1.1.军用领域2战期间,UHF和微波雷达对于拯救England以及盟军的后来胜利,发挥了至关重要的作用。
随后的45年,雷达技术与反雷达技术在空中防御力量的较量,一刻也没有停止过。
雷达技术,始终是围绕着一系列电磁技术而开展工作的。
图1给出了用100MHz雷达波束照射喷气式飞机,在飞机导体上激起表面电流的计算结果。
图1 100MHz雷达波束在飞机导体上激起表面电流的计算结果问题1:这架飞机能承受多强的照射?能隐性吗?如何进行测试验证?1960年后,刺激人们研究电磁技术的因素是原子弹爆炸后会产生强烈的电磁脉冲EMP,该EMP能量巨大,足以烧地面上方圆数百英里之内的所有电子设备。
由此产生了EMP预测和防护技术。
问题2:如何进行EMP测试验证?1980年后,高功率微波HPM尖锐波束技术的出现,吸引人们研究HPM透射机理图1 10GHz雷达HPM波束穿过导弹表面介质层瞬间(计算结果)问题3:如何进行HPM测试验证?1.2.民用领域高速电子器件的EM设计以下是来自于Intel、Motorala、IBM等公司的认识:超高速光集成电路直径5.0um的AlGaAs谐振器与线宽0.3um的AlGaAs光波导耦合间距0.1um微谐振腔激光设计基于Maxwell电磁场方程组的大尺度解,构造人工光子晶体阵列,成果设计出世界上最小的激光源。
微波技术与天线微波技术与天线引言:微波技术是一种在20世纪发展起来的射频技术,它在通信、雷达、无线电频谱分析、医疗影像等领域有着广泛的应用。
而天线作为微波技术中的重要组成部分,起到了传输和接收信号的重要作用。
本文将重点探讨微波技术与天线的关系,以及它们在现代科技领域中的应用。
第一章:微波技术概述微波是一种电磁波,其频率范围在300兆赫兹(GHz)到300吉赫兹(GHz)之间,波长在1mm到1m之间。
由于微波的较高频率和较短波长,它具有许多特殊的性质,如方向性强、传输损耗小等。
这使得微波在通信和雷达系统中具有重要的地位。
微波技术是一种基于微波的射频技术。
它包含了一系列与微波信号相关的技术和设备,如微波电路、微波器件、微波源等。
微波技术的发展得益于材料科学和射频电子学的进步,随着计算机技术的发展,微波技术的应用也愈发广泛。
第二章:天线的基本原理天线是一种能够将电磁波转换为电流或将电流转换为电磁波的设备。
它一般由导电材料制成,通过合适的设计和布局,可以实现对特定频率范围的电磁波的传输和接收。
天线的基本原理是根据电流的加速度产生电磁波,并利用电磁波与传输介质之间的相互作用实现信号的传输或接收。
天线的特性与设计密切相关,包括天线的增益、方向性、极化等。
增益是指天线能够将电磁波能量聚焦在某一方向上的能力,方向性是指天线辐射或接收电磁波的主要方向,极化是指电磁波的电场矢量振动方向。
合理的天线设计能够提高通信系统的性能,如增强信号的强度和可靠性。
第三章:微波技术与天线的应用微波技术与天线在通信、雷达、无线电频谱分析、医疗影像等领域的应用越来越重要。
在通信系统中,微波技术与天线广泛应用于无线通信系统中。
它可以实现长距离、高速率的信号传输。
微波通信系统主要包括微波天线、微波发射器和微波接收器。
微波天线作为传输和接收信号的关键设备,承担着重要的角色。
合理选择和设计微波天线可以提高通信系统的性能,如增加系统的传输距离、提高通信速率等。
现代微波与天线测量技术课程设计1. 课程背景现代微波与天线测量技术是电子信息科学与技术专业的核心课程之一,是培养工程技术人才所必须掌握的基础技能。
该课程主要介绍微波技术的基本概念、原理及其在天线测量中的应用,重点掌握微波测量方法与技术、天线测量技术及仪器等方面的理论和实践知识,并培养学生的工程实践能力及创新能力。
2. 课程设计目的本课程设计旨在对学生进行微波测量及天线测量技术的综合应用,通过实操训练加深对理论知识的理解,掌握不同测量方法的应用,培养创新能力和团队协作精神。
3. 课程设计内容本次课程设计主要围绕以下内容展开:3.1 实验1:微波信号发生器与功率计计算利用微波信号发生器和功率计对信号进行计算,分析信号波形、功率及误差,掌握测量信号的基本方法以及计算误差的技术。
3.2 实验2:天线测试通过天线测试实验,学生将了解天线的工作原理、特性和参数计算。
在实验中通过测量天线的增益、辐射模型、波束宽度等参数,深入理解天线的性能及其使用。
3.3 实验3:波导测量该实验旨在让学生掌握波导常数、波导阻抗以及波导传输线的相关测量技术,并通过实验数据的分析,研究波导传输线的工作原理和效率。
3.4 实验4:微波功率方向计通过测量微波功率方向计器的特性参数,如方向系数和反射系数,进一步了解微波信号的传播原理和能量方向分布规律。
4. 课程设计步骤课程设计分为设计前阶段、设计中阶段和设计后阶段三个步骤:4.1 设计前阶段设计前阶段主要对课程设计内容进行规划,确定课程的教学目标、教学要求和实验项目等。
4.2 设计中阶段设计中阶段主要进行实验的具体操作流程的规划与设计,在此阶段需要确定实验器材、实验过程、实验指导书、实验报告写作等。
4.3 设计后阶段设计后阶段主要是对实验结果进行评估,对实验过程进行总结和分析,包括实验结果的正确性和实验中存在的问题及解决方法等。
5. 课程设计成果本次课程设计将产生如下成果:1.课程设计报告:包括实验的目的、实验方法、实验过程、实验结果及数据分析。
现代微波与天线测量技术
第一讲:概述
彭宏利博士
2008.09
微波与射频研究中心
上海交通大学-电信学院-电子工程系
1.意义
谈论“现代微波与天线测量技术”的意义,不能不先从“电磁场与微波技术”的意义谈起。
1870年,Maxwell创立的电磁场方程组标志人类对于电场和磁场本质认识的统一。
这一认识后被Richard Feynman称之为19世纪人类科学的最高成就。
在21世纪之初的今天,全世界仍然有无数的电磁科学家和工程师继续在采用计算机,努力地在寻找19世纪Maxwell方程组的解。
针对这种现象,人们不禁会问:“投入大量资源,继续研究电磁场与微波技术对于当今社会意义何在?”
下面回答这个问题。
20年前,人们研究“电磁场与微波技术”的动力主要来自于国防军事需要。
近20年来,电磁场与微波技术的研究主要动力迅速从军用转到了高速通信和高速计算等民用需要方面。
1.1.军用领域
2战期间,UHF和微波雷达对于拯救England以及盟军的后来胜利,发挥了至关重要的作用。
随后的45年,雷达技术与反雷达技术在空中防御力量的较量,一刻也没有停止过。
雷达技术,始终是围绕着一系列电磁技术而开展工作的。
图1给出了用100MHz雷达波束照射喷气式飞机,在飞机导体上激起表面电流的计算结果。
图1 100MHz雷达波束在飞机导体上激起表面电流的计算结果
问题1:这架飞机能承受多强的照射?能隐性吗?如何进行测试验证?
1960年后,刺激人们研究电磁技术的因素是原子弹爆炸后会产生强烈的电磁脉冲EMP,该EMP能量巨大,足以烧地面上方圆数百英里之内的所有电子设备。
由此产生了EMP预测和防护技术。
问题2:如何进行EMP测试验证?
1980年后,高功率微波HPM尖锐波束技术的出现,吸引人们研究HPM透射机理
图1 10GHz雷达HPM波束穿过导弹表面介质层瞬间
(计算结果)
问题3:如何进行HPM测试验证?
1.2.民用领域
高速电子器件的EM设计
以下是来自于Intel、Motorala、IBM等公司的认识:
超高速光集成电路
直径5.0um的AlGaAs谐振器与线宽0.3um的AlGaAs光波导耦合
间距0.1um
微谐振腔激光设计
基于Maxwell电磁场方程组的大尺度解,构造人工光子晶体阵列,成果设计出世界上最小的激光源。
图6显示了光是如何被约束在微型谐振腔的。
首先,半波长厚折射率介质板在垂直方向囚禁电磁场;其次,水平方向构造人工光子晶体禁带,局域化电磁场能量。
这样化电磁场能量之内沿着既定路线传播。
图6 微型激光谐振腔
飞秒级光开关
人体组织的微波成像
1.3.电磁场与微波技术又是支撑现代无线电技术的三大基石之一
错误!链接无效。
微波与天线测量技术是电磁场与微波技术学科的重要组成部分;它与电磁场理论(场理论)、微波网路理论(路理论)一起,是研究和解决电磁场与微波技术问题的3种手段之一。
2.主要特点
体现在以下3方面
基本测试量:场分布、功率、频率,不是低频电路的电流和电压;
基本测量域:时域、频域、空域、极化域,不是低频电路的时域和频域;
测量电路是分布参数电路,不是低频电路的集总参数电路。
上述特点,决定了现代微波与天线测量对测量环境、测试仪器和测试方法有更高的要求。
?
3.基本任务和主要内容
3.1.基本任务
通过实验手段,了解和评价试验对象的微波、天线特性参数;例如,新设计的微波部件、天线部件等。
通过实验手段,验证微波与天线新概念、新理论;光子晶体、左手材料、微波纳米材料、纳米天线新理论。
通过实验手段,揭示微波、天线与其它物质新的作用机理或者效应。
比如,电磁波在周期媒质中的传播新机理。
3.2.主要测量内容
特性参数测量
信号特性参数测量;
信号的频率和波长、场强和功率、波形和频谱、振荡器的振荡特性、接收机的噪声特性等。
网络特性参数测量
反射特性参数、传输特性参数
天线特性参数测量
主要为电路特性和辐射特性两个方面,前者与馈电电路特性有关,包括阻抗特性、频率特性、效率和匹配等。
后者与辐射特性有关,包括方向图(相位、幅度)、主瓣宽度、副瓣电平、增益、方向系数、极化、相位特性以及有效面积、有效高度等。
媒质电磁特性参数测量
(复)介电常数、(复)磁导率以及导电率参数测量
散射特性参数测量
散射截面、散射谱等
4.微波与天线测量技术发展新趋势
4.1.开发频谱、扩大微波资源
微波资源的开发和利用,推动着微波与天线测量技术的进步。
目前THz频段是尚未开垦的频段,微波与天线测量技术必然会向上述频段发展。
4.2.宽带、多参数测量
目前网路分析仪可测范围达到了10Hz-300GHz,动态范围可达150dB。
在测量平台上完成多进程、多任务、多参数测量。
4.3.数字化、智能化和自动化
数字化是所有仪器的发展方向,目前8位分辨率的AD采用速率已达GHz量级,微波信号取样的数字化时代已经来临,为智能化和自动化测试创造了有利的条件。
4.4.标准化和模块化
是产业化保障。
4.5.虚拟仪器测量
4.6.微波测量网络化。