开关电源设计实例和开关电源调试基础
- 格式:pdf
- 大小:1.51 MB
- 文档页数:42
开关电源电路设计实例分析开关电源电路是一种常用的电源供电方式,其优点包括高效能、体积小、重量轻等特点,因此在电子设备中得到广泛应用。
本文将介绍开关电源电路设计的一般流程,并以设计一个12VDC输出的开关电源电路为例进行分析。
1.确定需求和规格在设计开关电源电路之前,首先要确定需求和规格。
例如,我们要设计一个12VDC输出电源,输出电流为1A,并且需要输入电压范围为220VAC。
此外,我们还需要确定开关电源的效率、功率因数等要求。
2.选取开关电源拓扑结构根据需求和规格,选择适合的开关电源拓扑结构。
常见的开关电源拓扑包括反激式、半桥或全桥式等。
根据需求,我们选择反激式开关电源。
3.选择主要元件根据选取的拓扑结构,选择适当的主要元件,包括主变压器、开关管、输出电容和滤波电感等。
选取主变压器时需要考虑输入输出电压比例、功率等因素;选择开关管时需要考虑导通电阻、开通速度等因素。
4.电路图设计根据所选的开关电源拓扑结构和主要元件,设计电路图。
包括输入滤波电路、整流电路、开关电路和输出滤波电路。
同时,需要设计开关电源的保护电路,如过流保护、过压保护等。
5.计算关键参数根据设计的电路图,计算关键参数。
例如,计算输入电流、输出电流、开关频率等。
这些参数可以通过电路图中的公式和关系计算得出。
6.仿真和优化通过电路仿真软件,对设计的电路进行仿真和优化。
可以通过调整元件参数和拓扑结构来优化电路性能,如提高效率或降低成本。
7.PCB布局设计在完成电路图设计和仿真优化后,需要进行PCB布局设计。
将电路图转化为实际的PCB布局,并考虑元件之间的布置、走线、散热等因素。
8.元件选型和采购根据PCB布局设计,选择合适的元件,并进行采购。
需要考虑元件的性能、价格、可靠性等因素。
9.确定元件焊接方式根据元件选型和PCB布局,确定元件的焊接方式。
根据焊接方式,可以选择手工焊接或波峰焊接等。
10.制作和调试样机根据设计和选型的元件,制作和调试样机。
开关电源设计与调试开关电源是一种利用开关元件(通常为晶体管、MOS管等)和能量存储电感、电容等元件工作的电源,其输出适用于各种电子设备。
开关电源设计与调试是一项非常重要的任务,涉及到电源的稳定性、高效性和可靠性等方面。
首先,开关电源设计的第一步是决定电源拓扑结构。
常见的拓扑结构有反激式(fly-back)、正激式(forward)、升压型、降压型等。
选择适当的拓扑结构需要考虑输入输出电压、功率需求、工作频率等因素。
同时,还要注意选择合适的开关元件、电感、电容和保护电路等元件。
其次,进行电源输出电压和电流的计算和选择。
根据设备的需求,确定电源的输出电压和输出电流。
根据理论计算和经验选择适当的开关元件、电感和电容,并进行电路电阻、功率元件的计算和选择。
同时,还需要注意电源的稳定性和负载调整范围,以确保电源工作稳定可靠。
然后,进行开关电源的模拟电路设计。
根据电源的拓扑结构和电压电流要求,设计相应的开关电源模拟电路。
这包括开关管的控制电路、保护电路、反馈电路等。
控制电路通常使用PWM技术,保护电路包括过压保护、过流保护等。
反馈电路用于稳定输出电压和调整负载。
接下来,进行开关电源的数字电路设计。
数字电路部分主要包括控制芯片和显示/输出板的设计。
控制芯片负责控制整个开关电源的工作,包括开关元件的工作状态和频率调整等。
显示/输出板负责将电源的工作状态以数字形式显示出来,以及提供输出端口和接口。
最后,对开关电源进行调试。
调试过程中需要使用示波器、信号发生器等仪器,对输出电压、电流和波形进行测量和调整。
调试过程中需要注意相应的控制电压和反馈电压的调整,以及输出电压的稳定性和负载调整范围等指标的满足。
总之,开关电源设计与调试是一项复杂而精细的工作,需要深入理解电源拓扑结构、控制原理和保护电路。
只有通过合理的设计和精确的调试,才能保证开关电源的稳定性、高效性和可靠性。
开关电源设计方案1. 导言开关电源是一种将交流电转换为直流电的电源设备。
它具有高转换效率、小体积、轻重量等特点,被广泛应用于电子设备中。
本文将介绍开关电源的基本工作原理、设计流程以及几个常见的开关电源设计方案。
2. 开关电源的工作原理开关电源的工作原理包括输入滤波、整流、能量存储、调节和输出等步骤。
以下是一个典型的开关电源的工作原理图:开关电源工作原理图开关电源工作原理图1.输入滤波:交流电通过电源的输入端,首先经过输入滤波电路。
该电路使用电容和电感元件,去除交流电中的高频噪声和干扰,使得电源输入的电流更加稳定。
2.整流:经过滤波的交流电信号,经过整流桥或整流管,被转换为一个较高的直流电压。
整流桥通常由4个二极管组成,它们交替导通,使得输入交流电的正半周和负半周都能够被转换为正向的直流电。
3.能量存储:整流后的直流电压通过电容器进行存储。
电容器的作用是储存电荷以平滑输出电压,防止输出电压的波动。
4.调节:开关电源通常具有可调节输出电压的功能。
这是通过调整开关管的导通和截止时间来实现的。
调节电路通常由一片PWM控制芯片和电路反馈元件(如电感、变压器等)组成,以控制开关频率和占空比。
5.输出:经过调节后的直流电压,通过输出滤波电路去除残余的高频噪声,然后供给电子设备的负载。
3. 开关电源设计流程设计一个功能稳定、安全可靠的开关电源需要经过以下几个步骤:3.1 确定设计规格在开始设计之前,需要明确电源的输入和输出要求。
输入要求包括交流电的电压范围、频率、输入的稳定性等;输出要求包括直流电的电压、电流、纹波与噪声等。
3.2 选择拓扑结构常见的开关电源拓扑结构有多种,如Boost、Buck、Buck-Boost、Flyback等。
根据实际需求选择最适合的拓扑结构。
3.3 确定主要元件参数根据设计规格和拓扑结构,确定主要元件的参数,如开关管、变压器、电感、电容等。
3.4 确定控制策略根据实际需求,选择合适的控制策略,如PWM控制、电流模式控制等。
线性稳压电路具有结构简单,调整方便,输出电压脉动小的优点,但缺点是效率低,一般只有20%~40%,并且比较笨重。
开关型稳压电路能克服线性稳压电源的缺点,具有效率高,一般能达到65%~90%,并且体积小,重量轻,对电网电压要求不高,因而在实际生活中得到广泛应用。
也正因为其应用的广泛性,相应专业的学生就更应该深刻和熟练地掌握它,在此以设计脉冲宽度调制型开关电路(PWM)为基础,详细解说该系统的调试过程。
1 系统设计原理PWM 型的开关电源整体框图如图1所示。
变压、整流、滤波模块处理起来比较简单,只要采用相应的变压器、单相全波整流、电容式滤波即可实现,这里不用更多的篇幅介绍。
此系统的核心模块是方框图中的闭合(负反馈)模块。
如果直接采用Boost型DC-DC升压器,实现起来简单,但输出/输入电压比太大,占空比也大,而将使输出电压范围变小,难以达到较高的指标,且为开环控制。
对此采用专用开关芯片TL494芯片,它采用开关脉宽调制(PWM),效率高,外围电路也较简单,可以方便实现闭环控制。
1.1 TL494工作原理TL494 内部结构如图2所示,它是一种固定频率可自行设置,并应用脉空调制的控制电路,其中,振荡频率fosc=1.1/(RTCT)。
具体来讲,由于误差放大器输入口1,2(或3,4)的值不等,产生偏差,偏差送入PWM比较器与锯齿波(锯齿波的频率由振荡频率确定,幅值是定值)比较,在偏差大于锯齿波范围内时,9口(或10口)输出低电平,在偏差小于锯齿波范围内时,9口(或10口)输出高电平。
若偏差值越大,TL494输出高电平的区间越小。
由此可见,通过调整误差放大器输入口的偏差可改变占空比。
1.2 升压变换器的工作原理如图3所示,通过控制开关管Q1的导通比,可控制升压变换器的输出电压。
它的工作原理是:设开关管Q1由信号VG控制,当VG为高电平时,Q1导通,反之,Q1关断。
当Q1导通时,电感两端电压VL=Vi,电感储能增加,同时负载由电容供电。
如何一步一步设计开关电源?开关电源设计调试步骤全过程针对开关电源很多人觉得很难,其实不然。
设计一款开关电源并不难,难就难在做精,等你真正入门了,积累一定的经验,再采用分立的结构进行设计就简单多了。
万事开头难,笔者在这就抛砖引玉,慢慢讲解如何一步一步设计开关电源。
开关电源设计的第一步就是看规格,具体的很多人都有接触过,也可以提出来供大家参考,我帮忙分析。
在这里只带大家设计一款宽范围输入的,12V2A的常规隔离开关电源。
1、首先确定功率根据具体要求来选择相应的拓扑结构;这样的一个开关电源多选择反激式(flyback)基本上可以满足要求。
在这里我会更多的选择是经验公式来计算,有需要分析的,可以拿出来再讨论。
2、选择相应的PWMIC和MOS来进行初步的电路原理图设计当我们确定用flyback拓扑进行设计以后,我们需要选择相应的PWMIC和MOS来进行初步的电路原理图设计(sch)。
无论是选择采用分立式的还是集成的都可以自己考虑。
对里面的计算我还会进行分解。
分立式:PWMIC与MOS是分开的,这种优点是功率可以自由搭配,缺点是设计和调试的周期会变长(仅从设计角度来说);集成式:就是将PWMIC与MOS集成在一个封装里,省去设计者很多的计算和调试分步,适合于刚入门或快速开发的环境。
3、做原理图确定所选择的芯片以后,开始做原理图(sch),在这里我选用STVIPer53DIP(集成了MOS)进行设计。
设计前最好都先看一下相应的datasheet,确认一下简单的参数。
无论是选用PI的集成,或384x或OBLD等分立的都需要参考一下datasheet。
一般datasheet里都会附有简单的电路原理图,这些原理图是我们的设计依据。
4、确定相应的参数当我们将原理图完成以后,需要确定相应的参数才能进入下一步PCBLayout。
当然不同的公司不同的流程,我们需要遵守相应的流程,养成一个良好的设计习惯,这一步可能会有初步评估,原理图确认,等等,签核完毕后就可以进行计算了。
新型开关电源优化设计与实例详解以新型开关电源优化设计与实例详解为标题,本文将从新型开关电源的基本原理、设计优化的方法以及实例分析等方面进行详细阐述。
一、新型开关电源的基本原理开关电源是一种将交流电转换为直流电的电源装置,其基本原理是通过开关管的开关动作来实现电源的开关控制。
传统的开关电源在工作过程中存在一些问题,如功率损耗大、效率低、噪声大等。
为了克服这些问题,新型开关电源采用了一些优化设计方法。
二、新型开关电源的设计优化方法1. 降低功率损耗:通过采用功率开关管的低导通电阻材料和优化电路设计,降低功率开关管的导通电阻,从而减少功率损耗。
2. 提高效率:采用高效的开关控制器和高效的变压器设计,减少能量的损耗,提高开关电源的转换效率。
3. 降低噪声:通过优化电路布局和选择低噪声元件,减少开关电源的噪声产生,提高工作环境的舒适性。
4. 提高稳定性:采用先进的控制算法和稳压电路设计,提高开关电源的稳定性,减少输出波动。
5. 减小体积:通过优化元件布局和采用高集成度的芯片设计,减小开关电源的体积,提高电源的集成度和便携性。
三、新型开关电源的实例分析以一款新型开关电源为例进行分析,该开关电源采用了先进的控制算法和高效的变压器设计,具有以下特点:1. 高效率:通过优化的开关控制器和变压器设计,该开关电源的转换效率达到了90%以上,相比传统开关电源提高了20%以上。
2. 低噪声:采用低噪声元件和优化的电路布局,该开关电源的噪声水平明显低于传统开关电源,提高了工作环境的舒适性。
3. 稳定性强:通过先进的控制算法和稳压电路设计,该开关电源的输出稳定性非常好,输出波动小于1%。
4. 小巧便携:采用高集成度的芯片设计和优化的元件布局,该开关电源的体积明显减小,非常适合便携式设备的使用。
以上是对新型开关电源优化设计与实例的详细阐述。
通过采用优化设计方法,新型开关电源在功率损耗、效率、噪声、稳定性和体积等方面都得到了显著提升,满足了现代电子设备对电源的高要求。
开关电源典型设计实例精选
开关电源是一种常见的电源设计,它能够将输入电压转换为稳定的输出电压,常用于各种电子设备中。
以下是一些典型的开关电源设计实例:
1. Buck转换器,Buck转换器是一种常见的开关电源设计,它能够将高电压降低为稳定的较低电压。
这种设计常用于需要较低输出电压的应用,例如移动设备充电器和电源适配器。
2. Boost转换器,Boost转换器则是将输入电压升高为稳定的输出电压,常用于需要较高输出电压的场合,比如LED驱动器和太阳能电池充电器。
3. Buck-Boost转换器,Buck-Boost转换器能够实现输入电压的升压和降压,因此在需要输出电压高低变化范围较大的场合下应用广泛,比如电动汽车充电器和太阳能储能系统。
4. Flyback转换器,Flyback转换器是一种常见的离线开关电源设计,适用于输出功率较低的应用,例如家用电子设备和通信设备。
5. LLC谐振转换器,LLC谐振转换器结构简单,具有高效率和低电磁干扰等优点,适用于中高功率的电源设计,例如工业设备和服务器电源。
以上是一些典型的开关电源设计实例,每种设计都有其适用的场合和特点,工程师在实际设计中需要根据具体要求选择合适的设计方案。
希望以上信息能够对你有所帮助。
开关电源环路设计及实例详解一、开关电源的基本原理开关电源是一种将交流电转换为直流电的电源,其基本原理是通过开关管控制变压器的工作状态,从而实现对输入交流电进行变换、整流和稳压的过程。
开关电源具有输出功率大、效率高、体积小等优点,因此被广泛应用于各种电子设备中。
二、开关电源环路的组成1. 输入滤波器:用于滤除输入交流电中的高频噪声和杂波信号,保证后续环节能够正常工作。
2. 整流桥:将输入交流电转换为直流电信号。
3. 直流滤波器:用于滤除直流信号中的纹波和杂波信号,保证输出稳定。
4. 开关变换器:通过控制开关管的导通和截止状态来控制变压器的工作状态,从而实现对输入信号的变换。
5. 输出稳压器:用于对输出直流信号进行稳压处理,保证输出恒定。
三、开关电源环路设计步骤1. 确定输出功率和输出电压范围。
2. 选择合适的变压器。
3. 设计整流桥和直流滤波器。
4. 设计开关变换器,包括选择合适的开关管和控制电路。
5. 设计输出稳压器,包括选择合适的稳压芯片和反馈电路。
6. 进行整个电路的仿真和优化。
7. 进行实际电路的搭建和调试。
四、开关电源环路设计实例以12V/5A开关电源为例,进行具体设计。
1. 确定输出功率和输出电压范围:输出功率为60W,输出电压范围为11-13V。
2. 选择合适的变压器:根据需求选择带有多个二次侧绕组的变压器,其中一个二次侧用于提供控制信号,另一个二次侧用于提供输出信号。
通过计算得到变压比为1:2。
3. 设计整流桥和直流滤波器:采用全波整流桥结构,并选用大容量滤波电容进行直流滤波处理。
4. 设计开关变换器:选用MOS管作为开关管,并采用反激式结构进行设计。
控制信号通过脉冲宽度调制(PWM)技术进行控制。
同时,在输入端加入输入滤波器进行滤波处理。
5. 设计输出稳压器:选用LM2576芯片进行稳压处理,通过反馈电路控制输出电压。
同时,加入输出滤波电容进行滤波处理。
6. 进行整个电路的仿真和优化:通过仿真软件进行各个环节的仿真和优化,保证整个电路的性能符合要求。
开关电源设计毕业论文一、内容综述随着科技的飞速发展,开关电源设计已成为现代电子设备不可或缺的一环。
本文将带你走进开关电源设计的世界,一探其奥妙和实用之处。
在这里我们不仅仅是研究技术,更是在寻找实用性和性能之间的平衡。
我们所关心的不仅是理论数据,更是其在现实应用中的表现。
首先我们要了解开关电源设计的基本概念和原理,了解电源在电子设备中的角色和功能后,我们就会知道电源不仅仅是设备运行的能源供应者,更是整个设备稳定性的关键。
开关电源设计就是在这个基础上,通过技术和创新来提升电源的性能和效率。
1. 开关电源的背景和意义开关电源在我们的日常生活中可以说是无处不在,从家庭电器的使用到工业设备的运行,再到数据中心的高效运作,开关电源都是不可或缺的重要角色。
为什么我们会对开关电源的研究这么重视呢?这里面可是有深意的,听我慢慢道来。
2. 开关电源设计的研究现状和发展趋势开关电源设计在现代电子领域可是风头正劲的话题,大家都知道,开关电源是我们生活中电子产品的心脏,它不断地为我们身边的电子设备输送“能量”。
那么现在开关电源设计的研究现状是怎样的呢?随着科技的飞速发展,开关电源设计技术也在不断进步。
虽然传统的开关电源设计已经能满足一些基本需求,但随着人们对电子设备性能要求的提高,新的技术和方法也在不断涌现。
例如智能化、小型化、高效化已成为当下开关电源设计的重要方向。
3. 论文研究的目的、内容和方法首先写这篇论文的目的,就是想通过研究和设计开关电源,解决现实中遇到的一些问题,比如电源效率不高、稳定性不好等等。
毕竟开关电源在我们的日常生活中应用广泛,涉及到很多领域,比如计算机、通信、家电等等。
所以研究开关电源设计,不仅具有理论价值,还有很大的实际意义。
那么我们研究的内容是什么呢?简单来说就是分析开关电源的工作原理,研究其设计过程,然后设计出一个既实用又高效的开关电源。
在这个过程中,我们还要研究不同材料的选用、电路设计、散热方案等等。
开关电源PCB设计要点及实例分析开关电源PCB设计要点及实例分析开关电源PCB设计要点及实例分析为了适应电子产品飞快的更新换代节奏,产品设计工程师更倾向于选择在市场上很容易采购到的AC/DC适配器,并把多组直流电源直接安装在系统的线路板上。
由于开关电源产生的电磁干扰会影响到其电子产品的正常工作,正确的电源PCB设计就变得非常重要。
开关电源PCB设计与数字电路PCB设计完全不一样。
在数字电路排版中,许多数字芯片可以通过PCB软件来自动排列,且芯片之间的连接线可以通过PCB软件来自动连接。
用自动排版方式排出的开关电源肯定无法正常工作。
所以,设计人员需要对开关电源PCB设计基本规则和开关电源工作原理有一定的了解。
1 开关电源PCB设计基本要点1.1 电容高频滤波特性图1是电容器基本结构和高频等效模型。
图1 电容器结构和寄生等效串联电阻和电感电容的基本公式是C=Εrε0 (1)式(1)显示,减小电容器极板之间的距离(D)和增加极板的截面积(A)将增加电容器的电容量。
电容通常存在等效串联电阻(ESR)和等效串联电感(ESL)二个寄生参数。
图2是电容器在不同工作频率下的阻抗(ZC)。
图2 电容阻抗(ZC)曲线一个电容器的谐振频率(F0)可以从它自身电容量(C)和等效串联电感量(LESL)得到,即F0= (2)当一个电容器工作频率在F0以下时,其阻抗随频率的上升而减小,即ZC= (3)当电容器工作频率在F0以上时,其阻抗会随频率的上升而增加,即ZC=J2πfLESL(4)当电容器工作频率接近F0时,电容阻抗就等于它的等效串联电阻(RESR)。
电解电容器一般都有很大的电容量和很大的等效串联电感。
由于它的谐振频率很低,所以只能使用在低频滤波上。
钽电容器一般都有较大电容量和较小等效串联电感,因而它的谐振频率会高于电解电容器,并能使用在中高频滤波上。
瓷片电容器电容量和等效串联电感一般都很小,因而它的谐振频率远高于电解电容器和钽电容器,所以能使用在高频滤波和旁路电路上。
开关电源电路设计要点与调试开关电源是一种用于电子设备的电源供应,其具有高效率、稳定性和可调性等优点。
设计和调试开关电源时,需要注意一些重要要点。
一、开关电源设计要点:1.选择适当的拓扑结构:开关电源的拓扑结构有多种,如降压型、升压型、升降压型等。
要根据设备的功率需求和使用环境来选择合适的拓扑结构。
2.选择合适的功率器件:开关电源的功率器件主要包括开关管、二极管和变压器等。
需要选择具备合适功率和工作频率范围的器件,并且要考虑其可靠性和成本。
3.控制和保护电路设计:开关电源需要有稳定的控制和保护功能,如输出电压、电流的监测和调节,过载、过压、短路等故障的保护。
需要设计相应的反馈和控制电路,保证开关电源的可靠工作。
4.选择合适的滤波电路:开关电源在工作过程中会产生较大的开关干扰,需要采取合适的滤波措施,减小开关干扰对其他电子设备的影响。
5.选择合适的输出电容:开关电源的输出端需要连接电容进行滤波,以减小输出纹波。
应选择适当容量和质量的电容,保证输出电压稳定。
6.保证开关电源的安全性:开关电源设计时需要考虑一些安全因素,如避免触电危险、瞬态过电压保护等,保证电源的安全可靠性。
7.合理布局和散热设计:开关电源的布局设计要合理,器件的热量要及时散热,避免温度过高对电源稳定性的影响。
二、开关电源调试要点:1.确认电源输入输出参数:在开关电源调试之前,首先要明确电源的输入和输出参数,如输入电压范围、输出电压和电流等,以便调试和验证工作的正确性。
2.建立逐步调试的过程:开关电源调试时可以采用逐步调试的方法,即先调试一部分功能,然后逐渐增加其他功能的调试。
这样可以避免在调试过程中出现一些难以排查的问题。
3.注意开关电源的保护功能:在调试的过程中,要注意开关电源的保护功能是否正常,如过载、过压、短路等故障保护功能是否有效。
可以通过人工模拟故障情况进行测试。
4.确保开关电源的稳定性:开关电源在调试过程中需要保证输出电压和电流的稳定性。
开关电源制作与调试pdf开关电源在现代电子设备中起着至关重要的作用,因为它们提供了一个可靠且高效的方法来转换和调节电能。
开关电源的优点包括高效率、小体积和轻重量,使其成为许多应用的理想选择。
本文将介绍如何制作和调试一个简单的开关电源。
一、开关电源的工作原理开关电源通过控制开关管的导通和截止时间来调节输出电压或电流。
当开关管导通时,电能被存储在变压器中;当开关管截止时,存储的电能被释放到输出端。
通过改变开关管的导通和截止时间,可以调节输出电压或电流。
二、制作开关电源1. 确定规格:首先,确定所需的输出电压和电流规格。
这些规格将决定开关电源的规格和组件选择。
2. 选择组件:根据规格,选择适当的开关管、变压器、二极管、电容等组件。
确保所有组件都符合规格要求,并具有适当的耐压和电流容量。
3. 设计电路:根据工作原理,设计开关电源的电路。
确定输入和输出电压、电流,以及控制电路所需的反馈信号。
4. 搭建电路:将所有组件按照电路图组装在一起。
确保所有连接正确,并使用适当的绝缘材料将高压部分与其他部分隔离。
5. 测试:在接通电源之前,使用万用表测试电路的电阻、电压和电流等参数,确保所有组件正常工作且连接良好。
三、调试开关电源1. 初步测试:在接通电源之前,检查电路板上的所有连接,确保没有短路或断路。
使用万用表测量输入和输出电压、电流,确保它们在规定范围内。
2. 调整反馈:根据需要调整反馈信号,以稳定输出电压或电流。
这通常涉及调整运放器的反馈电阻,以改变其增益和带宽。
3. 测试效率:测量开关电源的效率。
在额定负载下,测量输入功率和输出功率,然后计算效率。
根据需要调整变压器和开关管的参数以提高效率。
4. 测试保护功能:确保开关电源具有适当的保护功能,例如过流保护和过压保护。
测试这些功能以确保它们正常工作。
5. 负载调整率:测试负载调整率以确保在变化的负载条件下,输出电压或电流保持稳定。
这涉及到在不同负载条件下测量输出电压或电流,并观察其变化。
2.测量一次侧电流波形方法1:用示波器测试TP1与TP3两点之间的电压波形,这个波形能够反映出漏 电流及导通与截止时间等信息。
(可以判断电源工作在连续或不连续模式) 尖峰电压、输入直流高压、二次反射电压、开关管导通压降及导通与截止时间 耐压至少30V;MOS管导通压降足够低。
③通电1-3分钟后,切断电源,手摸器件(开关芯片、高频变压器、TVS、功率电阻等)有 烫现象。
二、波形测试与分析1.测量一次侧电压波形信息。
为使开关电源稳定可靠的工作须满足两个条件:漏极尖峰电压小于MOS 1.检查线路连接及器件根据原理图认真检查电路接线是否正确,元器件引脚之间有无短路,二极管、 管和电解电容极性有无错误。
2.检查仪器设置有异常,立即切断电源并进行检查,否则进入下一步;②调节自耦调压器触头,使输入电压逐渐升高,同时观察输入、输出电流有无过大,输出 有无异常有无冒烟、是否有异常气味,无以上异常时,进入下一步;①接通电源,首先观察输入电压、输入电流表及输出电压、输出电流表指示有无异常现象 检查仪器仪表挡位是否正确,通电前确保自耦高压器触头处于足够低的输出电开关电源调试详细步骤一、搭建调试电路方法2:用示波器测试TP2与TP3两点之间的电压波形,这个波形能够反映出漏 置,是否需要接入最小负载以及负载连接是否正确。
3.通电初试稳定性方法:在直流高压的进线端串联一只0.5Ω/1W的取样电阻Rs,通过测试其压降 求出一次侧峰值电流。
工作模式转变:因由于在逆程时高频变压器储存的能量没有完全释放掉而造成的。
尽量释放能量的斜率基 持不变,但因放电时间明显缩短(占空比变大),使一次侧电流未通过零点,致使部分能 不及释放。
3.测量一次侧钳位电路中尖峰电流波形①当交流输入电压不变而负载电流出现大范围变化时,可引起工作模式的改变; 2.一次侧峰值电流就小于开关电源I LIMIT 注意:1.在TP2端连接探头的接地夹,在TP1端连接示波器探头的信号线(反极 测量)②当负载不变而交流输入电压发生较大范围变化时,也可引起工作模式的改变; ③开关电源的占空比增大或减小时,也可引起工作模式的改变。
开关电源电路设计要点与调试开关电源是一种将电能转换为特定电压、电流和频率的电力转换装置,具有高效率、体积小、重量轻等优点,广泛应用于各种电子设备中。
开关电源的设计和调试是开发电子产品的重要环节,下面将重点介绍开关电源电路设计要点以及调试方法。
一、开关电源电路设计要点1.选用适当的拓扑结构:开关电源的拓扑结构包括开关正激式(buck)、开关反激式(flyback)、开关共激式(forward)等。
在选择拓扑结构时需要考虑输入电压范围、输出电压需求、功率密度要求、成本等因素。
不同拓扑结构有不同的工作原理和电路参数设计要求,设计时需要综合考虑各种因素才能确定最合适的拓扑结构。
2.合理选择功率元件和元器件:功率元件是开关电源中最关键的部件,直接影响开关电源的效率和可靠性。
常见的功率元件包括MOSFET、IGBT、二极管等。
在选择功率元件时需要考虑电压和电流的要求,以及功率元件的损耗和热散。
此外,还需要合理选择其他元器件,如电感、电容、变压器等,以满足开关电源的稳定性和工作要求。
3.设计稳压控制回路:开关电源的稳压控制回路起到控制输出电压稳定的作用。
常见的稳压控制回路有电压模式控制和电流模式控制。
在设计稳压控制回路时需要考虑输出电压波动范围、响应速度、幅值准确性、稳定性等因素,并根据具体需求选择合适的控制模式和电路结构。
4.进行开关频率和PWM信号设计:开关频率和PWM信号的设计直接影响开关电源的转换效率和输出波形质量。
一般来说,较高的开关频率可以减小电感器件和滤波器的体积,但会增加功率元件开关损耗;较低的开关频率可以降低功率元件开关损耗,但会增加电感器件和滤波器的体积。
同时,PWM信号的设计要考虑到占空比的合理选择、工作频率的稳定性等因素。
5.安全保护和电磁兼容设计:开关电源需要考虑到安全保护和电磁兼容的设计要求。
常见的安全保护设计有过载保护、过温保护、短路保护等,以保证开关电源的正常工作和安全可靠。
电磁兼容设计包括滤波器设计、接地设计等,以减小开关电源对周围电子设备的干扰和抗干扰能力。