运筹学理论—目标规划和动态规划要求含例题讲解
- 格式:ppt
- 大小:1.65 MB
- 文档页数:11
动态规划运筹学例题动态规划是运筹学中常用的一种优化技术,它利用规划、三角函数和其他数学技术来解决日常生活中的各种问题,比如最优路线问题、最优资源分配问题、最优出行路线问题等。
本文将通过一个例题,来介绍动态规划的基本思想,以及如何利用动态规划来解决问题。
例题一:已知一条路线,由A点到B点,有N个途经的节点,每个节点之间的距离已知。
求从A到B的最短路线。
按照动态规划的思想,首先将该问题分解为若干个子问题,并根据子问题的解来解决原问题,这种分解和解决问题的方式称为动态规划。
对于上面的问题,可以将其分解为N个子问题,分别是从A到第1个节点、从第1个节点到第2个节点、从第2个节点到第3个节点,以此类推,最后一个子问题是从第N-1个节点到B点的最短路程。
将上面的N个子问题中,从第i个节点到B点的最短路程记为d[i],由于从第i个节点到B点可能经过i+1、i+2、……、N-1节点,因此要找到d[i],只需要找到经过i+1、i+2、……、N-1节点的最短路程即可,即求d[i]=Min{d[i+1]+length[i][i+1],d[i+2]+length[i][i+2],…,d[N-1]+length[i][N-1]},其中length[i][j]是第i个节点到第j个节点的距离。
以上就是动态规划的解题步骤,它能将原问题分解成若干个子问题,并找到最优解。
对于本例来说,通过上述步骤,就可以得到从A 到B的最短路程。
这种分解和求解问题的方法是动态规划,可以用来解决许多类似的问题,如:1)最优路线问题;2)旅行推销员问题;3)硬币找零问题。
动态规划的一大特点是,他能很好地将问题分解为多个子问题,并能从子问题的解中求解出最优解。
总之,动态规划是一种很有用的优化技术,它可以有效解决各种运筹学问题。
它不仅可以帮助我们解决许多具体问题,而且还能使我们更好地理解问题及其解法。
第五章 目标规划§5.1重点、难点提要一、目标规划的基本概念与模型特征 (1)目标规划的基本概念。
当人们在实践中遇到一些矛盾的目标,由于资源稀缺和其它原因,这些目标可能无法同时达到,可以把任何起作用的约束都称为“目标”。
无论它们是否达到,总的目的是要给出一个最优的结果,使之尽可能接近制定的目标。
目标规划是处理多目标的一种重要方法,人们把目标按重要性分成不同的优先等级,并对同一个优先等级中的不同目标赋权,使其在许多领域都有广泛应用。
在目标规划中至少有两个不同的目标;有两类变量:决策变量和偏差变量;两类约束:资源约束(也称硬约束)和目标约束(也称软约束)。
(2)模型特征。
目标规划的一般模型:⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥=≥==-+=≤⎪⎭⎫ ⎝⎛+=+-=+-===++--∑∑∑∑.,,2,1;0,;,,2,10,,2,1,,2,1..)(min 1111K k d d n j x K k g d d x c m i b x a t s d d P Z k k j n j k k k j kj i nj j ij Lr K k k rk k rk r ωω 其中r P 为目标优先因子,+-rk rk ωω,为目标权系数,+-k k d d ,为偏差变量。
1)正、负偏差变量,i i d d +-。
正偏差变量i d +表示决策值超过目标值的部分;负偏差变量i d -表示决策值未达到目标值的部分。
因为决策值不可能既超过目标值同时又未达到目标值,所以有0i i d d +-⨯=。
2)硬约束和软约束。
硬约束是指必须严格满足的等式约束和不等式约束;软约束是目标规划特有的。
我们可以把约束右端项看成是要努力追求的目标值,但允许发生正、负偏差,通过在约束中加入正、负偏差变量来表示努力的结果与目标的差距,于是称它们为目标约束。
3)优先因子与权系数。
一个规划问题通常有若干个目标,但决策者在要求达到这些目标时,是有主次或缓急之分的。
《运筹学》教案-目标规划数学模型第一章:目标规划概述1.1 目标规划的定义与意义1.2 目标规划与其他规划方法的区别1.3 目标规划的应用领域1.4 目标规划的发展历程第二章:目标规划的基本原理2.1 目标规划的基本假设2.2 目标规划的数学模型2.3 目标规划的求解方法2.4 目标规划的评估与决策第三章:目标规划的数学模型3.1 单一目标规划模型3.2 多目标规划模型3.3 带约束的目标规划模型3.4 动态目标规划模型第四章:目标规划的求解方法4.1 线性规划求解方法4.2 非线性规划求解方法4.3 整数规划求解方法4.4 遗传算法求解方法第五章:目标规划的应用案例5.1 生产计划目标规划案例5.2 人力资源规划目标规划案例5.3 投资组合目标规划案例5.4 物流配送目标规划案例第六章:目标规划的高级应用6.1 目标规划在供应链管理中的应用6.2 目标规划在项目管理中的应用6.3 目标规划在金融管理中的应用6.4 目标规划在能源管理中的应用第七章:目标规划的软件工具7.1 目标规划软件工具的介绍7.2 常用目标规划软件工具的操作与应用7.3 目标规划软件工具的选择与评估7.4 目标规划软件工具的发展趋势第八章:目标规划在实际问题中的应用8.1 目标规划在制造业中的应用案例8.2 目标规划在服务业中的应用案例8.3 目标规划在政府决策中的应用案例8.4 目标规划在其他领域的应用案例第九章:目标规划的局限性与挑战9.1 目标规划的局限性分析9.2 目标规划在实际应用中遇到的问题9.3 目标规划的发展趋势与展望9.4 目标规划的未来研究方向10.1 目标规划的意义与价值10.2 目标规划在国内外的发展现状10.3 目标规划在未来的发展方向10.4 对运筹学领域的发展展望重点和难点解析重点环节一:目标规划的数学模型补充和说明:在讲解目标规划的数学模型时,重点关注单一目标规划模型和多目标规划模型的构建。
《运筹学》教案-目标规划数学模型教案章节:一、引言教学目标:1. 理解目标规划数学模型的基本概念。
2. 掌握目标规划数学模型的建立方法。
教学内容:1. 目标规划数学模型的定义。
2. 目标规划数学模型的建立步骤。
教学方法:1. 讲授法:讲解目标规划数学模型的基本概念和建立方法。
2. 案例分析法:分析实际案例,让学生更好地理解目标规划数学模型。
教学准备:1. 教案、PPT、教学案例。
2. 投影仪、白板、教学用具。
教学过程:1. 引入新课:通过讲解目标规划数学模型的定义和应用领域,引发学生对该课题的兴趣。
2. 讲解基本概念:讲解目标规划数学模型的基本概念,包括目标、约束条件、优化方法等。
3. 讲解建立方法:讲解目标规划数学模型的建立步骤,包括明确目标、确定约束条件、选择优化方法等。
4. 案例分析:分析实际案例,让学生更好地理解目标规划数学模型。
5. 课堂练习:让学生运用所学的知识,解决实际问题,巩固所学内容。
6. 总结与展望:总结本节课的重点内容,布置课后作业,预告下一节课的内容。
教学评价:1. 课堂讲解的清晰度和准确性。
2. 学生参与案例分析和课堂练习的积极性和主动性。
3. 学生对目标规划数学模型的理解和应用能力。
教案章节:二、线性规划数学模型教学目标:1. 理解线性规划数学模型的基本概念。
2. 掌握线性规划数学模型的建立方法。
教学内容:1. 线性规划数学模型的定义。
2. 线性规划数学模型的建立步骤。
教学方法:1. 讲授法:讲解线性规划数学模型的基本概念和建立方法。
2. 案例分析法:分析实际案例,让学生更好地理解线性规划数学模型。
教学准备:1. 教案、PPT、教学案例。
2. 投影仪、白板、教学用具。
教学过程:1. 引入新课:通过讲解线性规划数学模型的定义和应用领域,引发学生对该课题的兴趣。
2. 讲解基本概念:讲解线性规划数学模型的基本概念,包括决策变量、目标函数、约束条件等。
3. 讲解建立方法:讲解线性规划数学模型的建立步骤,包括明确目标、确定决策变量、列出约束条件等。
运筹学总复习 2014.1.3复习内容与要求:1 建模方面:目标规划、动态规划、整数规划2 计算方面:线性规划、对偶规划、运输问题、指派问题、割平面算法、最大流、网络计划、对策论、决策论。
【例题1】用单纯形法求解线性规划问题的解。
⎪⎪⎩⎪⎪⎨⎧≥≤+≤≤+=0,1823122452max 21212121x x x x x x x x z解:添加三个松弛变量,把上述规划化成标准型12132412512345max 25463218,,x ,,0z x x x x x x x x x x x x x =++=⎧⎪+=⎪⎨++=⎪⎪≥⎩最优解是(2,6)最优值是34。
【例题2】某公司制造三种产品A 、B 、C ,需要两种资源(劳动力和原材料),现要确定总利润最大的生产计划,列出下述线性规划 ⎪⎩⎪⎨⎧≥≤≤=0305434553653max 321321321321x x x x x x x x x x x x z ,,(原材料)++(劳动力)++++求:(1)线性规划问题的最优解;(2)求对偶问题的数学模型及其最优解;(3) 最优解不变的情况下,求产品A 的利润允许变化范围;(4)假定能以10元的价格购进15单位的材料,这样做是否有利,为什么?(5)当可利用的资源增加到60单位时,求最优解。
(6)当产品B 的原材料消耗减少为2个单位时,是否影响当前的最优解,为什么?(7)增加约束条件2x 1+x 2+3x 3≤20,对原最优解有何影响,对对偶解有何影响?解答:(1)线性规划问题的最优解首先将问题标准化:⎪⎩⎪⎨⎧≥=+=+=0,,305434553653max 5432153214321321x x x x x x x x x x x x x x x x z ,,++++++最优解为X*=(x 1,x 2,x 3,x 4,x 5)T =(0,0,6,15,0)T ,最优目标值z*=30(2)求对偶问题的数学模型及其最优解;⎪⎪⎩⎪⎪⎨⎧≥≥≥+≥+≥++=0,05551433363045min 2121212121y y y y y y y y y y wy 1*=0,y 2*=1(3) 最优解不变的情况下,求产品A 的利润允许变化范围;最优解不变的情况下,3,011≤≤∆c c(4)假定能以10元的价格购进15单位的材料,这样做是否有利,为什么?有利单位材料的影子价格是1元,10元钱购进15单位的材料的单位价格为2/3元,低于影子价格。
运筹学教案动态规划教案章节一:引言1.1 课程目标:让学生了解动态规划的基本概念和应用领域。
让学生掌握动态规划的基本思想和解决问题的步骤。
1.2 教学内容:动态规划的定义和特点动态规划的应用领域动态规划的基本思想和步骤1.3 教学方法:讲授法:介绍动态规划的基本概念和特点。
案例分析法:分析动态规划在实际问题中的应用。
教案章节二:动态规划的基本思想2.1 课程目标:让学生理解动态规划的基本思想。
让学生学会将问题转化为动态规划问题。
2.2 教学内容:动态规划的基本思想状态和决策的概念状态转移方程和边界条件2.3 教学方法:讲授法:介绍动态规划的基本思想。
练习法:通过练习题让学生学会将问题转化为动态规划问题。
教案章节三:动态规划的求解方法3.1 课程目标:让学生掌握动态规划的求解方法。
让学生学会使用动态规划算法解决问题。
3.2 教学内容:动态规划的求解方法:自顶向下和自底向上的方法动态规划算法的实现:表格化和递归化的方法3.3 教学方法:讲授法:介绍动态规划的求解方法。
练习法:通过练习题让学生学会使用动态规划算法解决问题。
教案章节四:动态规划的应用实例4.1 课程目标:让学生了解动态规划在实际问题中的应用。
让学生学会使用动态规划解决实际问题。
4.2 教学内容:动态规划在优化问题中的应用:如最短路径问题、背包问题等动态规划在控制问题中的应用:如控制库存、制定计划等4.3 教学方法:讲授法:介绍动态规划在实际问题中的应用。
案例分析法:分析实际问题,让学生学会使用动态规划解决实际问题。
教案章节五:总结与展望5.1 课程目标:让学生总结动态规划的基本概念、思想和应用。
让学生展望动态规划在未来的发展。
5.2 教学内容:动态规划的基本概念、思想和应用的总结。
动态规划在未来的发展趋势和挑战。
5.3 教学方法:讲授法:总结动态规划的基本概念、思想和应用。
讨论法:让学生讨论动态规划在未来的发展趋势和挑战。
教案章节六:动态规划的优化6.1 课程目标:让学生了解动态规划的优化方法。
运筹学例题解析(共6页) -本页仅作为预览文档封面,使用时请删除本页-(一)线性规划建模与求解B.样题:活力公司准备在5小时内生产甲、乙两种产品。
甲、乙两种产品每生产1单位分别消耗2小时、1小时。
又根据市场需求信息,乙产品的产量应该至少是甲产品产量的3倍。
已知甲、乙两种产品每销售1单位的利润分别为3百元和1百元。
请问:在5小时内,甲、乙两种产品各生产多少单位,才能够使得总销售利润最大要求:1、建立该问题的线性规划模型。
2、用图解法求出最优解和最大销售利润值,并写出解的判断依据。
如果不存在最优解,也请说明理由。
解:1、(1)设定决策变量: 设甲、乙两种产品分别生产x 1、x2单位 。
(2)目标函数: max z=2 x 1+x 2(3)约束条件如下:12211225..3,0+≤⎧⎪≥⎨⎪≥⎩x x s t x x x x2、该问题中约束条件、目标函数、可行域和顶点见图1所示,其中可行域用阴影部分标记,不等式约束条件及变量约束要标出成立的方向,目标函数只结论:本题解的情形是: 无穷多最优解 ,理由: 目标函数等值线z=2 x 1+x 2与约束条件2 x 1+x 2≤5的边界平行 。
甲、乙两种产品的最优产量分别为 (5,0)或(1,3)单位;最大销售利润值等于 5 百元。
(二)图论问题的建模与求解样题A.正考样题(最短路问题的建模与求解,清华运筹学教材编写组第三版267-268页例13)某企业使用一台设备,每年年初,企业都要做出决定,如果继续使用旧的,要付维修费;若购买一台新设备,要付购买费。
但是变卖旧设备可以获得残值收入,连续使用1年、2年、3年、4年以上卖掉的设备残值分别为8万元、6万元、3万元和0万元。
试制定一个5年的更新计划,使总支出最少。
已知设备在各年的购买费与维修费如表2所示。
要求:(1)建立某种图论模型;(2)求出最少总支出金额。
解:(1)建立图论——最短路问题模型。
①设点Vi 表示第i年年初,虚设一个点V6,表示第五年年底;②弧(Vi , Vj)表示第i年初购进一台设备一直使用到第j年初(即第i-1年年底)再卖掉并获得残值收入;③弧(Vi , Vj)上的权数表示第i年初购进一台设备,一直使用到第j年初所需支付的购买、维修及抵扣残值收入以后的全部费用(单位:万元)。