广东省佛山市2018届高三教学质量检测(一)-理科数学试题及答案-Word版
- 格式:doc
- 大小:1.72 MB
- 文档页数:12
试卷类型:A2018年广东省佛山市普通高中高三教学质量检测(一)物理试题本试卷分选择题和非选择题两部分,共8页,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考号填写在答题卡上.用2B 铅笔将答题卡试卷类型(A )填涂在答题卡上,并在答题卡右上角的“试室号”和“座位号”栏填写试室号、座位号,将相应的试室号、座位号信息点涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答卷上各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将答卷和答题卡一并交回.第一部分 选择题 (共 48 分)一、本题共 12 小题,每小题 4 分,共 48分。
在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确,全部选对的得 4 分,选不全的得 2 分,有错选或不答的得 0 分。
1.下列说法中正确的是A .奥斯特最早发现电流周围存在磁场B .伽利略根据实验证实了力是使物体运动的原因C .开普勒发现了万有引力定律D .牛顿第一次通过实验测出了万有引力常量2.从某一高度以相同速度相隔1s 先后水平抛出甲、乙两个小球,不计空气阻力,在乙球抛出后两球在空中运动的过程中,下述说法正确的是 A .两球水平方向的距离越来越大 B .两球竖直高度差越来越大 C .两球水平方向的速度差越来越大D .两球每秒内的速度变化量相同,与其质量无关3.2018年奥运会在北京举行,由此推动了全民健身运动的蓬勃发展。
体重为50m kg 的小芳在本届校运会上,最后一次以背越式成功地跳过了1.80米的高度,成为高三组跳高冠军。
2018佛山市高三数学教学质量检测理试卷1(附答案)
5 c 广东省佛市2018届高三教学质量检测(一)
数学(理)试题
一.选择题本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知复数满足,则()
A. B. c. D.
2.已知 R,函数的定义域为,,则下列结论正确的是()A. B. c. D.
3.已知、都是实数,那么“ ”是“ ”的()
A.充分不必要条 B.必要不充分条
c.充分必要条 D.既不充分又不必要条
4.若变量,满足,则的最大值为()
A. B. c. D.
5.已知是函数的一个极大值点,则的一个单调递减区间是()A. B. c. D.
6.已知、分别是双曲线(,)的左、右两个焦点,若在双曲线上存在点,使得,且满足,那么双曲线的离心率为()A. B. c. D.
7.某学校位同学组成的志愿者组织分别由李老师和张老师负责,每次献爱心活动均需该组织位同学参加.假设李老师和张老师分别将各自活动通知的信息独立、随机地发给位同学,且所发信息都能收到.则甲同学收到李老师或张老师所发活动通知的信息的概率为()
A. B. c. D.
8.已知,则 =()。
2017-2018年佛山市普通高中高三教学质量检测(一)数学(理科) 1一.选择题:本大题共8小题,每小题5分,满分40分. 1.复数31i i++等于( ).A.12i +B.12i -C.2i -D.2i + 2.已知集合{}{}|02,|1M x R x N x R x =∈<<=∈>,则()R M N =I ð( ).A.[)1,2B.()1,2C.(]0,1D.[)0,13.已知两个单位向量12,e e u r u r 的夹角为45o,且满足()121e e e λ⊥-u r u r u r ,则实数λ的值为( ).D.2 4.已知,a b R ∈,则“1a b >>”是“log 1a b <”的( ). A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 5.已知,x y 满足约束条件10100x y x y x +-≤⎧⎪--≤⎨⎪≥⎩,则2z x y =+的最大值为( ).A.2-B.1-C.1D.2 6.下列函数中,可以是奇函数的为( ).A.()(),f x x a x a R =-∈B.()21,f x x ax a R =++∈C.()()2log 1,f x ax a R =-∈D.()cos ,f x ax x a R =+∈ 7.已知异面直线,a b 均与平面α相交,下列命题: (1)存在直线m α⊂,使得m a ⊥或m b ⊥. (2)存在直线m α⊂,使得m a ⊥且m b ⊥.(3)存在直线m α⊂,使得m 与a 和b 所成的角相等. 其中不正确的命题个数为( ). A.0 B.1 C.2 D.38.有10个乒乓球,将它们任意分成两堆,求出这两堆乒乓球个数的乘积,再将每堆乒乓球任意分成两堆并求出这两堆乒乓球个数的乘积,如此下去,直到不能再分为止,则所有乘积的和为( ).A.45B.55C.10!D.1010 二.填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题) 9.如果()11sin 1x f x xx ⎧≤⎪=⎨>⎪⎩,那么()2f f =⎡⎤⎣⎦____________. 10.不等式13x x a -+-≥恒成立,则a的取值范围为____________.11.已知点()()2,0,0,4A B -到直线:10l x my +-=的距离相等,则m 的值为____________.12.某市有40%的家庭订阅了《南方都市报》,从该城市中任取4个家庭,则这4个家庭中恰好有3个家庭订阅了《南方都市报》的概率为______________.13.如图1,为了测量河对岸,A B 两点之间的距离,观察者找到一个点C ,从C 点可以观察到点,A B ,找到一个点D ,从D 点可以观察到点,A C ,找到一个点E ,从E 点可以观察到点,B C ,并测量得到一些数据:2,45,105,48.19,75,CD CE D ACD ACB BCE ==∠=∠=∠=∠=o o o o E ∠=60o ,则,A B 两点之间的距离为____________.(其中cos 48.19o 取近似值23).(二)必做题(14~15题,考生只能从中选做一题)14.(几何证明选讲)如图2,P 是圆O 外一点,,PA PB 是圆O 的两条切线,切点分别为,,A B PA 中点为M ,过M 作圆O 的一条割线交圆O 于,C D 两点,若1PB MC ==,则CD =_________.15.(坐标系与参数方程)在极坐标系中,曲线)1:sin 1C ρθθ+=与曲线()2:0C a a ρ=>的一个交点在极轴上,则a =__________.三.解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知函数()()sin 0,4f x x x R πωω⎛⎫=->∈ ⎪⎝⎭的最小正周期为π.(1)求6f π⎛⎫ ⎪⎝⎭.(2)在图3给定的平面直角坐标系中,画出函数()y f x =在区间,22ππ⎡⎤-⎢⎥⎣⎦上的图象,并根据图象写出其在,22ππ⎛⎫-⎪⎝⎭上的单调递减区间.17.(本小题满分12分)某地区“腾笼换鸟”的政策促进了区内环境改善和产业转型,空气质量也有所改观,现从当地天气网站上收集该地区近两年11月份(30天)的空气质量指数(AQI)(单位:3)资料如下:/g m(1)请填好2017-2018年11月份AQI数据的平率分布表并完成频率分布直方图.(2)该地区环保部门2017-2018年12月1日发布的11月份环评报告中声称该地区“比去年同期空气质量的优良率提高了20多个百分点”(当100AQI <时,空气质量为优良).试问此人收集到的资料信息是否支持该观点?18.(本小题满分14分)如图6,四棱锥P ABCD -,侧面PAD 是边长为2的正三角形,且与底面垂直,底面ABCD 是60ABC ∠=o 的菱形,M 为棱PC 上的动点,且[]()0,1PMPCλλ=∈.(1)求证:PBC V 为直角三角形.(2)试确定λ的值,使得二面角P AD M --的平面角余弦值为19.(本小题满分14分)数列{}n a 的前n 项和为n S ,已知()()211,12n n a S n a n n n N *==--∈. (1)求23,a a .(2)求数列{}n a 的通项. (3)设11n n n b S S +=,数列{}n b 的前n 项和为n T ,证明:52n T <()n N *∈.20.(本小题满分14分)已知曲线22:11x y E m m +=-. (1)若曲线E 为双曲线,求实数m 的取值范围.(2)已知()4,1,0m A =-和曲线()22:116C x y -+=.若P 是曲线C 上任意一点,线段PA 的垂直平分线为l ,试判断l 与曲线E 的位置关系,并证明你的结论.21.(本小题满分14分)已知函数()()ln x a f x x-=.(1)若1a =-,证明:函数()f x 是()0,+∞上的减函数.(2)若曲线()y f x =在点()()1,1f 处的切线与直线0x y -=平行,求a 的值.(3)若0x >,证明:()ln 11x x xxe +>-(其中 2.71828e =L 是自然常数).。
佛山一中2018届高三数学三模试题(理含答案)
5 c 佛市第一中学2018高考理科数学模拟题
第I卷
一.选择题(本大题共12小题,每小题5分,共60分.)
1、集合,,则
A B c D
2、记复数的共轭复数为,若,则复数的虚部为
A B c D
3、《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题“今有女不善织,日减功迟,初日织五尺,末日织一尺,今三十织迄,问织几何”其意思为有个女子不善于织布,每天比前一天少织同样多的布,第一天织五尺,最后一天织一尺,三十天织完,问三十天共织布()
A30尺 B90尺 c150尺 D180尺
4、已知命题函数是奇函数,命题函数在上为增函数,则在命题中,真命题是
A B c D
5、已知,则的值为
A B c D
6、如图是某四面体ABcD水平放置时的三视图(图中网格纸的小正方形的边长为1,则四面体ABcD外接球的表面积为()
A B c D
7、程序框图如图所示,该程序运行后输出的S的值是
A2 B- c-3 D
8、平面直角坐标系中,圆c经过原点,点,若圆c的一条弦的中点坐标为,则所在直线的方程为()
A. B c D
9、已知的图像,若有直线与图像的三个相邻交点的横坐标恰。
佛山市2018届高三学情调研测试理科数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若,,则集合中元素的个数为()A. B. C. D.【答案】C【解析】,所以有4个元素,故选D。
2. ,复数为虚数,则()A. B. C. , D. ,【答案】B【解析】由题意,,故选B。
3. 执行如图所示的程序框图,输出的结果是()A. B. C. D.【答案】A【解析】,故选A。
4. 函数的值域是()A. B. C. D.【答案】C【解析】,且,所以值域为,故选C。
5. 已知函数,则()A. 是奇函数且在上有最小值B. 是奇函数且在上有最大值C. 是偶函数且在上有最小值D. 是偶函数且在上有最大值【答案】C【解析】,所以是偶函数,又,满足对勾函数的性质,且,所以可知当时,有最小值。
故选C。
6. 农历2月初2是中国春节期间最后一个节日,叫“2月2龙抬头”这一天河北农村有一风俗叫“吃燎斗”,就是吃自家炒的黄豆.设想炒熟黄豆后,把两粒生黄豆混入其中,平均分成三份,取其一份恰好含有生黄豆的概率是()A. B. C. D.【答案】D【解析】假设两颗生黄豆为不同的两颗,则把两颗生黄豆分到三份里边,共有9中分法,所以。
故选D。
7. 皮球从高处落下,每次着地后又跳回原来的高度的一半,再落下,当它第次着地时,共经过了() .A. B. C. D.【答案】D【解析】,故选D。
8. 一个几何体的三视图如图所示,那么该几何体的表面积是()A. B. C. D.【答案】B【解析】该几何体为四棱柱,则,故选B。
9. 设,,,则()A. B. C. D.【答案】A【解析】,,所以,故选A。
点睛:本题考查对数的大小比较。
本题中的大小比较不明显,所以根据题中的,联想会与有大小关系,则想到本题采取中间量法进行大小比较。
对数的大小比较采用转化为同底对数进行比较。
20仃-2018学年佛山市普通高中高三教学质量检测(一)数学(理科)第I 卷(选择题共60 分)、选择题:(本大题共 12小题,每小题5分,满分60分.)1 _2i1.复数"齐的实部为(C . 12.已知全集U = R ,集合A -「0,1,2,3,4 ?, B - \x|x 2-2x 0^,则图1中阴影部分表示的集合为()2+答案】A解析:8 = {x\x'-2x>0} = {x\x(x-2)>Q} = {x\x<0^x>2}t = {x\0^x^2}.阴彩部分亚示的集合为^nC ^ = {0J,2|y 乞0 r3.若变量x,y 满足约束条件 x -2y -1 一 0 ,贝V z =3x -2y 的最小值为()x _4y - 3- 0A . -132 3 挖川料牟为< ・纵毂距为—三的也线*作直^y = -x 22‘2当直线过点^(-1,-1)时.H 线在y 轴上的戴距最大. 此时畫取得最小值.=3x (-l )-2x (-l )—1.1-21 解析d 八馳-2Y£_l-2i_(l-2i)(2-i)_-5i__h 其实部为。
含详细解答2018年1月A .「0,1,2?B . d,2?D .「0,3,41解析:作町行域为如图所示的A.1BC .C .「3,41图14•已知 x • R ,则’x 2 =X • 2 ”是 “x 二5T~2 ”的()A •充分不必要条件B •必要不充分条件C •充要条件D •既不充分也不必要条件4.答案* B解析:由*' =x+2» 得F — J -2 = Q,(j;-2Xjr 十】)=0 * 解得工=2 或= 一1:由x = >/x + 2 ’ 得x = 2 ・ 肢"/=x + 2 ” ft "X =V7+2 “的必嘅不充分条件. 1原来的一,得到曲线C 2,则C 2(2于唯咖称7•当m =5,n =2时,执行图2所示的程序框图,输出的 S 值为()A • 20B • 42C • 60D • 1807.答案* C解析,刖=殳“ =2->直= T 否=4—香*$ = 20/ = 3T 否= 2—> 是->输出£=605 .曲线Ci: y = 2sin I x 上所有点向右平移I 6丿TT—个单位长度,再把得到的曲线上所有点的横坐标变为6A •关于直线x =6对称兀B .关于直线x 对称3JIC .关于点护对称D •关于点 ,0对称16 .丿解析;y = 2sinl x —・向右平畤个戦长應和心“=2sin x — I 3・再把得到的曲线上所有点的杯閒短为原来幻®亠“当耳二一时.尹=0,所以曲线G 关6.已知 tan vta n°=4 ,COS 2解析:(an^+—-sinOsiir + cos 2^”4・所Wsin tfcos^ = -1 从而tan 9 cos^ sin^ sin cossin (9 cos41 + cosj 2&+1 \sin 2& = 2sin- — , cos 2 +1* " 1-- I 一血 2"2 I= ---------- = ・| = 一24图2图3 8某几何体的三视图如图3所示,该几何体的体积为()21B. 1533 “A . C . D . 18228.荐案;C解折*该几何体的直覘图如图所;可以苕成是一个直四梭柱戴去 ,〔棱锥’其体积9.已知f(x)=2x•步为奇函数,g(x)=bx-log 4x 1为偶函数,则f(ab)=( )17 5 15 3A .B . C. D.4 2 4 2。
佛山市达标名校2018年高考一月调研数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知x ,y R ∈,则“x y <”是“1xy<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件2.在区间[1,1]-上随机取一个数k ,使直线(3)y k x =+与圆221x y +=相交的概率为( ) A .12B .13C .24D .233.已知函数2ln(2),1,()1,1,x x f x x x -⎧=⎨-+>⎩若()0f x ax a -+恒成立,则实数a 的取值范围是( ) A .1,12⎡⎤-⎢⎥⎣⎦B .[0,1]C .[1,)+∞D .[0,2]4.已知双曲线的中心在原点且一个焦点为(7,0)F ,直线1y x =-与其相交于M ,N 两点,若MN 中点的横坐标为23-,则此双曲线的方程是 A .22134x y -=B .22143x y -=C .22152x y -=D .22125x y -=5.已知()()cos 0,0,,2f x A x A x R πωϕωϕ⎛⎫=+>><∈ ⎪⎝⎭的部分图象如图所示,则()f x 的表达式是( )A .32cos 24x π⎛⎫+⎪⎝⎭B .2cos 4x π⎛⎫+⎪⎝⎭C .2cos 24x π⎛⎫-⎪⎝⎭D .32cos 24x π⎛⎫-⎪⎝⎭6.下列与函数y =定义域和单调性都相同的函数是( ) A .2log 2xy =B .21log 2xy ⎛⎫= ⎪⎝⎭C .21log y x= D .14y x =7.中国古代数学著作《算法统宗》中有这样一个问题;“三百七十八里关,初行健步不为难,次后脚痛递减半,六朝才得到其关,要见每朝行里数,请公仔细算相还.”其意思为:“有一个人走了378里路,第一天健步走行,从第二天起脚痛每天走的路程是前一天的一半,走了6天后到达目的地,求该人每天走的路程.”由这个描述请算出这人第四天走的路程为( ) A .6里B .12里C .24里D .48里8.设(),1,a b ∈+∞,则“a b > ”是“log 1a b <”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件9.已知命题2:21,:560p x m q x x -<++<,且p 是q 的必要不充分条件,则实数m 的取值范围为( )A .12m >B .12m ≥C .1mD .m 1≥10.512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为 A .-40B .-20C .20D .4011.在ABC ∆中,D 在边AC 上满足13AD DC =,E 为BD 的中点,则CE =( ). A .7388BA BC - B .3788BA BC -C .3788BA BC +D .7388BA BC +12.已知全集U =R ,集合{}1A x x =<,{}12B x x =-≤≤,则()UA B =( )A .{}12x x <≤B .{}12x x ≤≤C .{}11x x -≤≤D .{}1x x ≥-二、填空题:本题共4小题,每小题5分,共20分。
2018年广东省佛山市顺德区高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|﹣1≤x≤3},B={x∈Z|x2<5},则A∩B=()A.{0,1}B.{﹣1,0,1,2} C.{﹣1,0,1}D.{﹣2,﹣1,0,1,2} 2.(5分)已知复数z=1﹣i,则下列命题中正确的个数为:()①|z|=;②=1+i;③z的虚部为﹣i.A.0 B.1 C.2 D.33.(5分)向量=(1,x+1),=(1﹣x,2),⊥,则(+)(﹣)=()A.﹣15 B.15 C.﹣20 D.204.(5分)△ABC中,tanA=,AC=2,BC=4,则AB=()A.2﹣B.﹣ C.+D.2+5.(5分)将一根长为6m的绳子剪为二段,则其中一段大于另一段2倍的概率为()A.B.C.D.6.(5分)执行如图所示的程序框图,输出的S值是()A.B.﹣1 C.0 D.17.(5分)《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何.刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1丈),那么该刍甍的体积为()A.4立方丈B.5立方丈C.6立方丈D.12立方丈8.(5分)已知a=log 52,b=log73,c=log3,则a,b,c的大小关系()A.a<b<c B.a<c<b C.b<a<c D.c<b<a9.(5分)已知P(x,y)为平面区域内的任意一点,当该区域的面积为3时,z=2x﹣y的最大值是()A.6 B.3 C.2 D.110.(5分)已知三棱锥S﹣ABC的各顶点都在一个半径为r的球面上,且SA=SB=SC=1,AB=BC=AC=,则球的表面积为()A.4πB.3πC.8πD.12π11.(5分)若圆(x﹣)2+(y﹣1)2=9与双曲线﹣=1(a>0,b>0)经过二、四象限的渐近线,交于A,B两点且|AB|=2,则此双曲线的离心率为()A.B.C.2 D.12.(5分)对于实数a、b,定义运算“⊗”:a⊗b=,设f(x)=(2x﹣3)⊗(x﹣3),且关于x的方程f(x)=k(k∈R)恰有三个互不相同的实根x1、x2、x3,则x1•x2•x3取值范围为()A.(0,3) B.(﹣1,0)C.(﹣∞,0)D.(﹣3,0)二、填空题:本大题共4小题,每小题5分,共20分).13.(5分)若sin(α+β)cosα﹣cos(α+β)sinα=,则cos2β=.14.(5分)4名同学去参加3 个不同的社团组织,每名同学只能参加其中一个社团组织,且甲乙两位同学不参加同一个社会团体,则共有种结果.15.(5分)已知f(x)=f(4﹣x),当x≤2时,f(x)=e x,f′(3)+f(3)=.16.(5分)设抛物线y2=4x的焦点为F,准线为l,过焦点的直线交抛物线于A,B两点,分别过A,B作l的垂线,垂足为C,D,若|AF|=2|BF|,则三角形CDF 的面积为.三、解答题:本大题共5小题,共70分.解答写出文字说明、证明过程或演算过程.17.(12分)已知数列{a n}的前n项和为S n,a n>0且满足a n=2S n﹣﹣(n ∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{}的前n项和T n.18.(12分)如图,在三棱锥D﹣ABC中,DA=DB=DC,E为AC上的一点,DE⊥平面ABC,F为AB的中点.(Ⅰ)求证:平面ABD⊥平面DEF;(Ⅱ)若AD⊥DC,AC=4,∠BAC=45°,求二面角A﹣BD﹣C的余弦值.19.(12分)某市市民用水拟实行阶梯水价,每人用水量不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了100位市民,获得了他们某月的用水量数据,整理得到如下频率分布直方图,并且前四组频数成等差数列,(Ⅰ)求a,b,c的值及居民用水量介于2﹣2.5的频数;(Ⅱ)根据此次调查,为使80%以上居民月用水价格为4元/立方米,应定为多少立方米?(精确到小数掉后2位)(Ⅲ)若将频率视为概率,现从该市随机调查3名居民的用水量,将月用水量不超过2.5立方米的人数记为X,求其分布列及其均值.20.(12分)已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线x2=﹣4y的焦点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若圆O:x2+y2=r2与椭圆C交于A,B,C,D四点,当半径r为多少时,四边形ABCD的面积最大?并求出最大面积.21.(12分)设函数f(x)=xlnx﹣ax+1,g(x)=﹣2x3+3x2﹣x+.(Ⅰ)求函数f(x)在[,e]上有两个零点,求a的取值范围;(Ⅱ)求证:f(x)+ax>g(x).[选修4-4:坐标系与参数方程选讲]22.(10分)在直角坐标系xOy中,曲线C1的参数方程为(α为参数),曲线C1经过坐标变换后得到的轨迹为曲线C2.(Ⅰ)求C2的极坐标方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣3|﹣|x+5|.(Ⅰ)求不等式f(x)≤2的解集;(Ⅱ)设函数f(x)的最大值为M,若不等式x2+2x+m≥M恒成立,求m的取值范围.2018年广东省佛山市顺德区高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|﹣1≤x≤3},B={x∈Z|x2<5},则A∩B=()A.{0,1}B.{﹣1,0,1,2} C.{﹣1,0,1}D.{﹣2,﹣1,0,1,2}【解答】解:∵A={x|﹣1≤x≤3},B={x∈Z|x2<5}={x∈Z|﹣<x<}={﹣2,﹣1,0,1,2},∴A∩B={﹣1,0,1,2},故选:B.2.(5分)已知复数z=1﹣i,则下列命题中正确的个数为:()①|z|=;②=1+i;③z的虚部为﹣i.A.0 B.1 C.2 D.3【解答】解:∵z=1﹣i,∴|z|=,故①正确;,故②正确;z的虚部为﹣1,故③错误.∴正确命题的个数为2个.故选:C.3.(5分)向量=(1,x+1),=(1﹣x,2),⊥,则(+)(﹣)=()A.﹣15 B.15 C.﹣20 D.20【解答】解:向量=(1,x+1),=(1﹣x,2),若⊥,则•=(1﹣x)+2(x+1)=x+3=0,解可得x=﹣3,则=(1,﹣2),=(4,2),(+)=(5,0),(﹣)=(﹣3,﹣4);则(+)(﹣)=﹣15;故选:A.4.(5分)△ABC中,tanA=,AC=2,BC=4,则AB=()A.2﹣B.﹣ C.+D.2+【解答】解:已知tanA=,由于:0<A<π,解得:A=,利用余弦定理:BC2=AC2+AB2﹣2AC•AB•cosA,解得:AB=(负值舍去).故选:C.5.(5分)将一根长为6m的绳子剪为二段,则其中一段大于另一段2倍的概率为()A.B.C.D.【解答】解:绳子的长度为6m,折成两段后,设其中一段长度为x,则另一段长度6﹣x,记“其中一段长度大于另一段长度2倍”为事件A,则A={x|}={x|0<x<2或4<x≤6},∴P(A)=,故选:B.6.(5分)执行如图所示的程序框图,输出的S值是()A.B.﹣1 C.0 D.1【解答】解:本题为直到型循环结构的程序框图,由框图的流程知:算法的功能是求S=cos+cosπ+…+cos的值,∵y=cos的周期为4,2017=504×4+1∴输出S=504×(cos+cosπ+cos+cos2π)+cos=0故选:C7.(5分)《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何.刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1丈),那么该刍甍的体积为()A.4立方丈B.5立方丈C.6立方丈D.12立方丈【解答】解:三棱柱的底面是边长为3,高为1的等腰三角形.三棱柱的高为2.∴三棱柱的体积V=.两个相同的四棱锥合拼,可得底面边长为2和3的矩形的四棱锥,其高为1.∴体积V==2.该刍甍的体积为:3+2=5.故选:B.8.(5分)已知a=log 52,b=log73,c=log3,则a,b,c的大小关系()A.a<b<c B.a<c<b C.b<a<c D.c<b<a【解答】解:∵c=log3=log 53>log73,b=log 73>=,a=log52<=,则a,b,c的大小关系为:a<b<c.故选:A.9.(5分)已知P(x,y)为平面区域内的任意一点,当该区域的面积为3时,z=2x﹣y的最大值是()A.6 B.3 C.2 D.1【解答】解:由作出可行域如图,由图可得A(a,a),D(a,a),B(a+1,a+1),C(a+1,﹣a﹣1)由该区域的面积为3时,×1=3,得a=1.∴A(1,1),C(2,﹣2)化目标函数z=2x﹣y为y=2x﹣z,∴当y=2x﹣z过C点时,z最大,等于2×2﹣(﹣2)=6.故选:A.10.(5分)已知三棱锥S﹣ABC的各顶点都在一个半径为r的球面上,且SA=SB=SC=1,AB=BC=AC=,则球的表面积为()A.4πB.3πC.8πD.12π【解答】解:三棱锥S﹣ABC中,SA=SB=SC=1,AB=BC=AC=,∴共顶点S的三条棱两两相互垂直,且其长均为1,三棱锥的四个顶点同在一个球面上,三棱锥是正方体的一个角,扩展为正方体,三棱锥的外接球与正方体的外接球相同,正方体的对角线就是球的直径,所以球的直径为:,半径为,外接球的表面积为:4π×()2=3π.故选:B.11.(5分)若圆(x﹣)2+(y﹣1)2=9与双曲线﹣=1(a>0,b>0)经过二、四象限的渐近线,交于A,B两点且|AB|=2,则此双曲线的离心率为()A.B.C.2 D.【解答】解:依题意可知双曲线的经过二、四象限的渐近线方程为bx+ay=0,∵|AB|=2,圆的圆心为(,1),半径为3,∴圆心到渐近线的距离为=,即=,解得b=a,∴c==a,∴双曲线的离心率为e==.故选:A.12.(5分)对于实数a、b,定义运算“⊗”:a⊗b=,设f(x)=(2x﹣3)⊗(x﹣3),且关于x的方程f(x)=k(k∈R)恰有三个互不相同的实根x1、x2、x3,则x1•x2•x3取值范围为()A.(0,3) B.(﹣1,0)C.(﹣∞,0)D.(﹣3,0)【解答】解:∵a⊗b=,∴f(x)=(2x﹣3)⊗(x﹣3)=,其图象如下图所示:由图可得:x1=﹣k,x2•x3=k,故x1•x2•x3=﹣k2,k∈(0,3),∴x1•x2•x3∈(﹣3,0),故选:D.二、填空题:本大题共4小题,每小题5分,共20分).13.(5分)若sin(α+β)cosα﹣cos(α+β)sinα=,则cos2β=﹣.【解答】解:∵sin(α+β)cosα﹣cos(α+β)sinα=sin[(α+β)﹣α]=sinβ=,则cos2β=1﹣2sin2β=1﹣2•=﹣,故答案为:﹣.14.(5分)4名同学去参加3 个不同的社团组织,每名同学只能参加其中一个社团组织,且甲乙两位同学不参加同一个社会团体,则共有54种结果.【解答】解:根据题意,先计算4名同学去参加3 个不同的社团组织的情况数目,4个同学中每人可以在3 个不同的社团组织任选1个,即每人有3种不同的选法,则4人有3×3×3×3=81种情况,再计算甲乙参加同一个社团组织的情况数目,若甲乙参加同一个社团组织,甲乙两人有3种情况,剩下的2人每人有3种不同的选法,则剩下的2人有3×3=9种情况,则甲乙参加同一个社团组织的情况有3×9=27种;则甲乙两位同学不参加同一个社团组织的情况有81﹣27=54种;故答案为:54.15.(5分)已知f(x)=f(4﹣x),当x≤2时,f(x)=e x,f′(3)+f(3)=0.【解答】解:由f(x)=f(4﹣x)可得,函数f(x)的图象关于直线x=2对称,当x≤2时,f(x)=e x,f′(x)=e x,∴f(3)=f(1)=e,f′(3)=﹣f′(1)=﹣e,故f′(3)+f(3)=0,故答案为:0.16.(5分)设抛物线y2=4x的焦点为F,准线为l,过焦点的直线交抛物线于A,B两点,分别过A,B作l的垂线,垂足为C,D,若|AF|=2|BF|,则三角形CDF 的面积为3.【解答】解:如图,抛物线y2=4x的焦点F(1,0),准线l为x=﹣1,设l所在直线方程为y=k(x﹣1),设A(x1,y1),B(x2,y2)联立,得k2x2﹣(2k2+4)x+k2=0,∴x1x2=1,①∵|AF|=2|BF|,∴x1+1=2(x2+1),②由①②解得x2=,x1=2,或x1=﹣1,x2=﹣1(舍去)∴y1=2,y2=﹣,∴|CD|=y1﹣y2=3,∵|FG|=1+1=2,∴S=×|CD|×|FG|=×3×2=3,△CDF故答案为:3三、解答题:本大题共5小题,共70分.解答写出文字说明、证明过程或演算过程.17.(12分)已知数列{a n}的前n项和为S n,a n>0且满足a n=2S n﹣﹣(n ∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{}的前n项和T n.【解答】解:(Ⅰ)当n=1时,,解得a1=1;由a n=2S n﹣﹣,整理得,①∴,②②﹣①得:,∴(a n+1+a n)(a n+1﹣a n﹣2)=0,∵a n>0,∴a n+1﹣a n﹣2=0,即a n﹣1﹣a n=2.∴数列{a n}是以1为首项,以2为公差的等差数列,则a n=1+2(n﹣1)=2n﹣1;(Ⅱ)=,③,④③﹣④得:==.∴.18.(12分)如图,在三棱锥D﹣ABC中,DA=DB=DC,E为AC上的一点,DE⊥平面ABC,F为AB的中点.(Ⅰ)求证:平面ABD⊥平面DEF;(Ⅱ)若AD⊥DC,AC=4,∠BAC=45°,求二面角A﹣BD﹣C的余弦值.【解答】证明:(Ⅰ)∵DE⊥平面ABC,∴AB⊥DE,又∵F为AB的中点,DA=DB,∴AB⊥DF,DF∩DE=E,且DF、DE⊂平面DEF,又∵AB⊂平面ABD,∴平面ABD⊥平面DEF;解:(Ⅱ)∵DE⊥平面ABC,∴AC⊥DE,又∵DA=DC,∴E为AC中点,∵F是AB中点,∴EF∥BC,由(Ⅰ)知AB⊥EF,∴AB⊥BC,又∵∠BAC=45°,∴△ABC为等腰直角三角形,AC=4,∴AB=BC=DA=DB=DC=2,取BD中点G,连结AG、CG,则AG⊥DB,CG⊥DB,∴∠AGC为二面角A﹣BD﹣C的平面角,在△AGC中,cos∠AGC==﹣,∴二面角A﹣BD﹣C的余弦值为﹣.19.(12分)某市市民用水拟实行阶梯水价,每人用水量不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了100位市民,获得了他们某月的用水量数据,整理得到如下频率分布直方图,并且前四组频数成等差数列,(Ⅰ)求a,b,c的值及居民用水量介于2﹣2.5的频数;(Ⅱ)根据此次调查,为使80%以上居民月用水价格为4元/立方米,应定为多少立方米?(精确到小数掉后2位)(Ⅲ)若将频率视为概率,现从该市随机调查3名居民的用水量,将月用水量不超过2.5立方米的人数记为X,求其分布列及其均值.【解答】解:(Ⅰ)∵前四组频数成等差数列,∴所对应的频率也成等差数列,设a=0.2+d,b=0.2+2d,c=0.2+3d,∴0.5(a+0.2+d+0.2+2d+0.2+3d+0.2+d+0.1+0.1+0.1)=1,解得d=0.1,a=0.3,b=0.4,c=0.5.居民月用水量介于2~2.5的频率为0.25.居民月用水量介于2~2.5的频数为0.25×100=25人.(Ⅱ)由图可知,居民月用水量小于2.5的频率为0.7<0.8,∴为使80%以上居民月用水价格为4元/立方米,应定为ω=2.5+≈2.83立方米.(Ⅲ)将频率视为概率,设A代表居民月用水量,由图知:P(A≤2.5)=0.7,由题意X~B(3,0.7),P(X=0)==0.027,P(X=1)==0.189,P(X=2)==0.441,P(X=3)==0.343.∴X的分布列为:∵X~B(3,0.7),∴E(X)=np=2.1.20.(12分)已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线x2=﹣4y的焦点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若圆O:x2+y2=r2与椭圆C交于A,B,C,D四点,当半径r为多少时,四边形ABCD的面积最大?并求出最大面积.【解答】解:(Ⅰ)∵椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线x2=﹣4y的焦点,离心率等于,∴设椭圆方程为,根据题意得:,解得:所以椭圆C的方程为;(Ⅱ)设A(x0,y0),则矩形ABCD的面积S=4|x0y0|由,得,∴==﹣(﹣2)2+1,∴时,()max=1,∴S max=4×1=4,此时r2==.即r=.21.(12分)设函数f(x)=xlnx﹣ax+1,g(x)=﹣2x3+3x2﹣x+.(Ⅰ)求函数f(x)在[,e]上有两个零点,求a的取值范围;(Ⅱ)求证:f(x)+ax>g(x).【解答】解:(Ⅰ)由f(x)=xlnx﹣ax+1=0,得:a=lnx+,问题转化为a=lnx+在[,e]上有2个不同的解,令h(x)=lnx+,x∈[,e],则h′(x)=,令h′(x)>0,解得:x>1,令h′(x)<0,解得:0<x<1,故h(x)在(0,1)递减,在(1,+∞)递增,而h(1)=1,h()=e﹣1,h(e)=1+<e﹣1,故a的范围是(1,1+);(Ⅱ)要证f(x)+ax≥g(x),只要证明xlnx+1≥g(x),先证xlnx+1≥x,构造函数F(x)=xlnx+1﹣x,∵F′(x)=1+lnx﹣1=lnx,x=1时,F′(x)=0,当0<x<1时,F′(x)<0,x>1时,F′(x)>0,故F(x)在[0,1]递减,在[1,+∞)递增,故F(x)≥F(1)=0,即证xlnx+1≥x,等号成立当且仅当x=1,再证明x∈[,+∞)时,g(x)≤x,构造函数G(x)=x﹣g(x)=2,∵G′(x)=6≥0,∴G(x)在[,+∞)递增,∴G(x)≥G()=0,即证明g(x)≤x,等号成立当且仅当x=,故x∈(0,)时,构造函数φ(x)=f(x)+ax=xlnx+1,∵φ′(x)=1+lnx,∴x=时,φ′(x)=0,当0<x<时,φ′(x)<0,当<x<时,φ′(x)>0,即φ(x)在(0,)递减,在(,)递增,∴x∈(0,)时,φ(x)≥φ()=1﹣,∵g′(x)=﹣6+1,x∈(0,)时,﹣<g′(x)<1,又g′(0)=﹣<0,g′()=1>0,存在x0∈(0,),使得g′(x0)=0,且g(x)在(0,x0)递减,在(x0,)递增,故x∈(0,)时,g(x)<max{g(0),g()}=,∴g(x)<<1﹣≤φ(x),综上,对任意x>0,f(x)+ax>g(x).[选修4-4:坐标系与参数方程选讲]22.(10分)在直角坐标系xOy中,曲线C1的参数方程为(α为参数),曲线C1经过坐标变换后得到的轨迹为曲线C2.(Ⅰ)求C2的极坐标方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.【解答】解:(Ⅰ)曲线C1的参数方程为(α为参数),转化为直角坐标方程为:x2+y2=1,曲线C1经过坐标变换后得到的轨迹为曲线C2.即:,故C2的直角坐标方程为:.转化为极坐标方程为:.(Ⅱ)曲线C1的参数方程为(α为参数),转化为极坐标方程为ρ1=1,由题意得到:A(1,),将B(ρ,)代入坐标方程:.得到,则:|AB|=.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣3|﹣|x+5|.(Ⅰ)求不等式f(x)≤2的解集;(Ⅱ)设函数f(x)的最大值为M,若不等式x2+2x+m≥M恒成立,求m的取值范围.【解答】解:(Ⅰ)x≥3时,f(x)=﹣8,此时f(x)≤2恒成立,﹣5<x<3时,f(x)=﹣2x﹣2,由f(x)≤2,解得:﹣2≤x<3,x≤﹣5时,f(x)=8,此时f(x)≤2,无解,综上,f(x)≤2的解集是{x|x≥﹣2};(Ⅱ)由(Ⅰ)得f(x)=,易知函数的最大值是8,若x2+2x+m≥8恒成立,得m≥﹣x2﹣2x+8恒成立,即m≥﹣(x+1)2+9,故m≥9.。
2017-2018学年佛山市普通高中高三教学质量检测(一)
数学(理科)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.
第Ⅰ卷(选择题 共60分)
一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数5
122i
z i
-=+的实部为( )
A .1-
B .0
C .1
D .2
2.已知全集U R =,集合{}0,1,2,3,4A =,{}
2
|20B x x x =->,则图1中阴影部分表示
的集合为( )
A .{}0,1,2
B .{}1,2
C .{}3,4
D .{}0,3,4
图1
3.若变量,x y 满足约束条件0210430y x y x y ≤⎧⎪
--≥⎨⎪--≤⎩
,则32z x y =-的最小值为( )
A .1-
B .0
C .3
D .9
4.已知x R ∈,则“22x x =+”是“2x x =+ )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必
要条件
5.曲线1:2sin 6C y x π⎛⎫
=- ⎪⎝
⎭
上所有点向右平移
6
π
个单位长度,再把得到的曲线上所有点的横坐标变为原来的
1
2
,得到曲线2C ,则2C ( )
A .关于直线6
x π
=
对称
B .关于直线3
x π
=
对称
C .关于点,012π⎛⎫
⎪⎝⎭
对称 D .关于点,06π⎛⎫
⎪⎝⎭
对称
6.已知1tan 4tan θθ+
=,则2cos 4πθ⎛
⎫+= ⎪⎝
⎭( )
A .
1
2 B .
13
C .
14
D .
15
7.当5,2m n ==时,执行图2所示的程序框图,输出的S 值为( )
A .20
B .42
C .60
D .180
图
2 图3
8.某几何体的三视图如图3所示,该几何体的体积为( )
A .
21
2
B .15
C .
332
D .18
9.已知()22
x
x a f x =+
为奇函数,()()log 41x
g x bx =-+为偶函数,则()f ab =( ) A .
174 B .
52
C .154
-
D .32
-
10.ABC ∆内角,,A B C 的对边分别为,,a b c ,若11
5,,cos 3
14
a B A π
===
,则ABC ∆的面积S =( )
A .
103
3
B .10
C .103
D .203
11.已知三棱锥P ABC -中,侧面PAC ⊥底面ABC ,90BAC ∠=︒,4AB AC ==,
10PA =,2PC =,则三棱锥P ABC -外接球的表面积为( )
A .24π
B .28π
C .32π
D .36π
12.设函数322()32(0)f x x ax a x a =-+≠,若1212,()x x x x <是2
()()g x f x a x λ=-函数的
两个极值点,现给出如下结论: ①若10λ-<<,则12()()f x f x <; ②若02λ<<,则12()()f x f x <; ③若2λ>,则12()()f x f x <; 期中正确的结论的个数为( )
A .0
B .1
C .2
D .3
第Ⅱ卷(非选择题 共90分)
本卷包括必考题和选考题两部分,第13-21题为必考题,每个试题考生都必须作答.第22-23为选考题,考生根据要求作答.
二、填空题:本大共4小题,每小题5分,满分20分.
13.设(1,2),(1,1),a b c a b λ==-=+,若a c ⊥,则实数λ的值等于 . 14.已知0a >,()
()4
12ax x -+的展开式中2x 的系数为1,则a 的值为 .
15.设袋子中装有3个红球,2个黄球,1个蓝球,规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分,现从该袋子中任取(有放回,且每球取得的机会均等)2个球,则取出此2球所得分数之和为3分的概率为 .
16.双曲线22
22:1(0,0)x y C a b a b
-=>>的左、右焦点分别为12,F F ,焦距为2c ,以右顶点A
为圆心,半径为
2
a c
+的圆与过1F 的直线l 相切于点N .设l 与C 的交点为,P Q ,若2PQ PN =,则双曲线C 的离心率为 .
三、解答题:本大题共6小题,共70分,解答须写出文字说明、证明过程或演算步骤. 17.(本题满分12分)
已知各项均不为零的等差数列{}n a 的前n 项和为n S ,且满足2
2,n n S a n R λλ=+∈.
(Ⅰ)求λ的值; (Ⅱ)求数列21211
n n a a -+⎧
⎫⎨⎬⎩⎭
的前n 项和为n T .
18.(本题满分12分)
有甲乙两家公司都愿意用某求职者,这两家公司的具体聘用信息如下:
甲公司 乙公司
(Ⅰ)根据以上信息,如果你是该求职者,你会选择哪一家公司?说明理由;
(Ⅱ)某课外实习作业小组调查了1000名职场人士,就选择这两家公司的意愿做了统计,得到以下数据分布: 选择意愿 人员结构 40岁以上(含40
岁)男性
40岁以上(含40
岁)女性
40岁以下男性 40岁以下女性
选择甲公司 110 120 140 80 选择乙公司 150
90
200
110
若分析选择意愿与年龄这两个分类变量,计算得到的2K 的观测值为1 5.5513k ≈.请用统计学知识分析:选择意愿与年龄变量和性别变量中哪一个关联性更大? 附
:
2
2
()()()()()
n ad bc K a b c d a c b d -=
++++
职位 A B C D 月薪/元 5000 7000 9000 11000 获得相应职位概率
0.4
0.3
0.2
0.1
()2P K k ≥ 0.050
0.025 0.010 0.005 k 3.841
5.024
6.635
7.879
19.(本题满分12分)
如图4,已知四棱锥ABCD P -中,CD AB //,AD AB ⊥,3=AB ,6=CD ,4==AP AD ,
︒=∠=∠60PAD PAB .
(Ⅰ)证明:顶点P 在底面ABCD 的射影落在BAD ∠的平分线上; (Ⅱ)求二面角C PD B --的余弦值.
20.(本题满分12分)
已知椭圆1C :22
221x y a b
+=()00a b >>,的焦点与抛物线2C :282y x =的焦点F 重合,
且椭圆右顶点P 到F 的距离为322-. (Ⅰ)求椭圆1C 的方程;
(Ⅱ)设直线l 与椭圆1C 交于A ,B 两点,且满足PA PB ⊥,求PAB ∆的面积最大值.
21.(本题满分12分) 已知函数x x a x x f 2
1
ln )()(+
-=(其中R a ∈). (Ⅰ)若曲线)(x f y =在点
))((00x f ,x 处的切线方程为x y 2
1
=,求a 的值; (Ⅱ)若e a e
221
<<(e 是自然对数的底数),求证:0)(>x f .
请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清楚题号.
22.(本题满分10分)选修4-4:坐标系与参数方程选讲
在直角坐标系xOy 中,直线l 的参数方程为⎩
⎨⎧+==αα
sin 2cos t y t x (t 为参数,πα<≤0),曲线C
的参数方程为⎩
⎨⎧+==ββ
sin 22cos 2y x (β为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立
极坐标系.
(Ⅰ)求曲线C 的极坐标方程;
(Ⅱ)设C 与l 交于M ,N 两点(异于原点),求ON OM +的最大值.
23.(本题满分10分)选修4-5:不等式选讲 已知函数R a a x x x f ∈-=,)(.
(Ⅰ)求1)1()1(>-+f f ,求a 的取值范围;
(Ⅱ)若0a >,对(],,x y a ∀∈-∞,都有不等式5
()4
f x y y a ≤++-恒成立,求a 的取值范围.。