03=空间力系
- 格式:ppt
- 大小:17.11 MB
- 文档页数:51
第三章空间力系二、基本内容1. 基本概念1) 力在空间直角坐标轴的投影(a) 直接投影法:巳知力F 和直角坐标轴夹角a 、丫,则力F 在三个轴上的投 影分别为X = F cos aZ = Feos/(b) 间接投影法(即二次投影法):巳知力F 和夹角八°,则力F 在三个轴上的 投影分别为X = F sin/cos^9Y = F sin/sin 。
Z = F cos/2) 力矩的计算(a) 力对点之矩—、目的和要求能熟练地计算力在空间直角坐标轴上的投影。
熟练掌握力对点之矩与力对轴之矩的计算。
对空间力偶的性质及其作用效应有清晰的理解。
了解空间力系向一点简化的方法,明确空间力系合成的四种结果。
能正确地画出各种常见空间的约束反力。
会应用各种形式的空间力系平衡方程求解简单空间平衡问题。
对平行力系中心和重心应有清晰的概念,能熟练地应用坐标公式求物体 的重心。
1、2、3、4、5、6^ 7、在空间情况下力对点之矩为一个定位矢量,其定义为i j kM0(F) = rx F = x y z = (yZ - zY)i + (zX - xZ)j + (xY - yX)kX Y Zr = xi + yj + zk F = Xi+ Yj + Zk其中尸为力尸作用点的位置矢径(b)力对轴之矩在空间情况下力对轴之矩为一代数量,其大小等于此力在垂直于该轴的平面上的投影对该轴与此平面的交点之矩,其正负号按右手螺旋法则来确定,即M Z(F) = ±F u,h = +2AOAB在直角坐标条下有Mx (乃=yZ-zY M y (F)=zX-xZ M z (F) =xY-yX(c)力矩关系定理力对己知点之矩在通过该点的任意轴上的投影等于同一力对该轴之矩。
在直角坐标系下有Mo(F)^M x(F)i+My(F)j+M2(F)k(d)合力矩定理空间力系的合力对任一点之矩等于力系中各力对同一点之矩的矢量和,即Mo g)二 W, (F)空间力系的合力对任一轴(例如z轴)之矩等于力系中各力对同一轴之矩的代数和,即M z(F R)=ZM z(F)=Z(xY-yX)3)空间力偶及其等效条件(a)力偶矩矢空间力偶对刚体的作用效果决定于三个要素(力偶矩大小、力偶作用面方位及力偶的转向),它可用力偶矩矢肱表示。
47第3章 空间力系本章要点● 理解力在空间直角坐标轴上的投影● 理解力对轴之矩● 掌握空间力系的平衡方程及其应用● 掌握重心及其计算前面我们讨论了平面力系,平面力系中各力的作用线分布在同一平面内,这是物体受力的特殊情况,现在将讨论物体受力的最一般的情况——空间力系。
当力系中各力的作用线不在同一平面,而呈空间分布时,称为空间力系。
本章主要介绍空间力系的简化与平衡问题。
在工程实际中,有许多问题都属于这种情况。
如图3-1所示车床主轴,受有切削力F x 、F y 、F z 和齿轮上的圆周力F t 、径向力F n 以及轴承A 、B 处的约束反力,这些力构成一组空间力系。
与平面力系一样,空间力系可分为空间汇交力系、空间平行力系及空间一般力系。
图3-1 车床主轴3.1 力在空间直角坐标轴上的投影在平面力系中,常将作用于物体上某点的力向坐标轴x 、y 上投影。
同理,在空间力系中,也可将作用于空间某一点的力向坐标轴x 、y 、z 上投影。
具体作法如下:1.直接投影法若一力F 的作用线与x 、y 、z 轴对应的夹角已经给定,如图3-2a 所示,则可直接将力F 向三个坐标轴投影,得⎪⎭⎪⎬⎫=== cos cos cos γβαF F F F F F z y x (3-1)48其中,α、β、γ分别为力F 与x 、y 、z 三坐标轴间的夹角。
2.二次投影法当力F 与x 、y 坐标轴间的夹角不易确定时,可先将力F 投影到坐标平面xoy 上,得一力F xy ,进一步再将F xy 向x 、y 轴上投影。
如图3-2b 所示。
若γ为力F 与z 轴间的夹角,φ为F xy 与x 轴间的夹角,则力F 在三个坐标轴上的投影为⎪⎭⎪⎬⎫===== cos sin sin sin cos sin cos γϕγϕϕγϕF F F F F F F F z xy y xy x (3-2)图3-2 二次投影法具体计算时,可根据问题的实际情况选择一种适当的投影方法。
理论力学试题库题型:A填空题,B选择题,C简答题,D判断题,E计算题,F综合题,G作图题。
编号A04001中,A表示填空题,04表示内容的章节号即题目内容属于第04章,001表示章节题号的序号,即此题是第04章填空题的001号题。
填空题:01:静力学公理和物体的受力分析A01001. (2分)作用在物体上的力可分为两类:一类是,一类是。
答案:主动力,被动力。
02:平面力系A02001. (4分)如图A02001所示桁架, 不经计算,试直接判断图A02001桁架中的零力杆为。
答案:3,9,11图A02001A02002. (4分)如图A02002所示桁架, 不经计算,试直接判断图A02003中零力杆为。
答案:1,2,5,7,9图A02002A02003. (6分)如图A02003所示桁架。
已知力、 和长度a 。
不经计算,则杆1内力1F =_________; 杆2内力2F =_________; 杆3内力3F =_________。
答案:0,-p ,0图A02003A02004. (3分)图A02004所示一等边三角形,边长为a ,沿三边分别作用有力F1、F2和F3,且F1=F2=F3=F ,则该力系的简化结果是 ,大小为 ,方向或转向为 。
答案:力偶,Fa 23,逆时针图A02004A02005 (3分)不经计算,试直接判断图A02005示桁架中的零杆为 。
答案:1,2,5,11,13图A02005A02006.(6分) 如图A02006所示,判断各平衡结构是静定的还是静不定的。
图(a) ,图(b ) ,图(c) ,图(d) ,图(e) 。
答案:静不定,静不定,静定,静不定,静不定图A02006A02007.(3分)有一平面一般力系,简化结果与简化中心无关,则该力系的简化结果为 。
答案:力偶03:空间力系A03001. (6分)如图A03001所示六面体三边长分别为4、4、cm ;沿AB 连线方向作用了一个力F ,则力F 在x 轴的投影为 ,对x 轴的23力矩为 。