五年级抽屉原理(一)教师用稿
- 格式:doc
- 大小:25.00 KB
- 文档页数:4
五年级春季第九讲抽屉原理(一)如果给你5盒饼干,让你把它们放到4个抽屉里,那么肯定有一个抽屉里至少有2盒饼干。
如果把4封信投到3个邮箱中,那么肯定有一个邮箱中至少有2封信。
如果把3本练习册分给两名同学,那么肯定其中有一名同学至少分到2本练习册。
这些事例中蕴含着数学中的“抽屉原理”。
基本的抽屉原理有两条:(1)如果把x+k(k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有2个或2个以上的元素。
(2)如果把m×x+k(x>k≥1)个元素放到x 个抽屉里,那么至少有一个抽屉里含有(m+1)个或(m+1)个以上的元素。
利用抽屉原理解决问题时要注意区分哪些是“抽屉”,哪些是“元素”。
然后按以下步骤解答:a.构造抽屉,指出元素。
b.把元素放入(或取出抽屉)。
c.说明理由,得出结论。
本讲我们先来学习第一条原理及其应用。
典例精讲例1某校六年级有367名学生,请问有没有2名学生的生日是在同一天?为什么?【思路点拨】把一年的天数看成是抽屉,把学生数看成是元素。
把367个元素放到366个抽屉中,至少有一个抽屉中有2个元素,即至少有2名学生的生日是在同一天。
平年一年有365天,闰年一年有366天。
把天数看做抽屉,考虑闰年,共366个抽屉。
把367名学生分别放入366个抽屉中,至少在一个抽屉里有2名学生,因此肯定有2名学生的生日是在同一天。
【详细解答】例2某班学生去买语文书、数学书、英语书。
买书的情况是:有买一本的、两本的,也有买三本的,问至少要去几名学生才能保证一定能有2名学生买到相同的书?(每种书最多买一本)【思路点拨】首先考虑买书的几种可能性,买一本、两本、三本共有7中类型,把7种类型看成7个抽屉,去的人数看成元素。
要保证至少有一个抽屉里有2名学生,那么去的人数应大于抽屉数。
所以至少要去7+1=8(名)学生才能保证一定有2名学生买到相同的书。
买书的类型有:买一本的:有语文、数学、英语3种。
买两本的:有语文和数学、语文和英语、数学和英语3种。
《抽屉原理》教学设计优秀4篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、演讲发言、策划方案、合同协议、心得体会、计划规划、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, speeches, planning plans, contract agreements, insights, planning, emergency plans, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《抽屉原理》教学设计优秀4篇作为一名专为他人授业解惑的人·民教师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。
第12讲抽屉原理(一)(五年级菁英秋季班)课程目标:掌握抽屉原理课程重点:抽屉原理课程难点:抽屉原理教学方法建议:理论联系实际,可用实物演示。
知识要点:抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。
抽屉原理2:将多于nm⨯件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于)1(+m件。
理解抽屉原理要注意以下几点:1)首先要学会构造抽屉,明确物品数要多于抽屉数。
2)不限制把物品放进抽屉里的方法,不规定每个抽屉中放入物品的数量,有的抽屉可以是空的。
3)满足要求的抽屉可能有多个,解题时只需保证有一个达到要求的抽屉就可以了。
4)将a件物品放入n个抽屉中,b=÷(b是非零自然数),至少有一个抽屉中a⋅⋅⋅nm的物品数不少于)1m件。
(+典型例题例1希望小学有500个学生,至少有几个学生在同一天过生日?解答:134=÷,1+1=2,至少有2人在同一天过生日。
500⋅⋅⋅1366点拨:一年中最多有366天(闰年)看作抽屉,500个学生看作物品,至少有2件物品在同一个抽屉中。
跟踪练习1有36个学生都是在7月份出生的,至少有几个学生在同一天过生日?例2 参加象棋比赛的380名运动员中,至少有几人属相相同?解答:380÷12=32⋅⋅⋅8,32+1=33,至少33人属相相同。
点拨:共12种属相看作抽屉,380名运动员看作物品。
跟踪练习2把128个小球分别涂上红色、黄色或绿色,至少有几个小球同色?例3(第11届“华罗庚金杯”少年数学邀请赛初赛试题)自制的一副玩具牌共计52张(含4种牌:红桃、红方、黑桃、黑梅。
每种牌都有1点、2点、…、13点牌各一张)。
洗好后背面朝上放好。
一次至少抽取张牌,才能保证其中必定有2张牌的点数和颜色都相同。
如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取张牌。
解:(1)去点数互不相同的红色牌和黑色牌各1张,此时没有2张牌得点数和颜色都相同。
《抽屉原理》说课稿《抽屉原理》说课稿1一、说教材《抽屉原理》共有三个例题,例1、例2的内容,教材通过几个直观例子,借助实际操作向同学介绍抽屉原理。
让同学经受抽屉原理的探究过程,重在引导同学通过实际操作发觉、总结规律,为后面学习抽屉原理〔二〕及利用这一原理解决问题做下了有力的铺垫。
二、说教学目标1、经受“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简约的实际问题。
2、通过操作进展同学的类推技能,形成比较抽象的数学思维。
3、通过“抽屉原理”的敏捷应用感受数学的魅力。
教学重点:经受“抽屉原理”的探究过程,初步了解“抽屉原理”。
教学难点:理解“抽屉原理”,并会用“抽屉原理”解决简约的实际问题。
三、说教学流程本节课共三个教学环节:游戏导入——探究新知——解决问题——课堂小结下面我分别说说前3个环节。
第一环节——游戏导入通过“抢椅子”游戏,体验不管怎么坐,肯定有一把椅子上至少坐两个同学。
激起同学认识上的爱好,趁机抓住他们认知上的求知欲,作为新课的切入点,这样导入极大地激发了同学探究新知的热忱,使同学积极主动地投入到新课的学习中。
第二环节——探究新知此环节正是本节课的关键一环,这一环节的教学,我重在让同学经受知识发生、进展的过程,让同学不但知其然,更要知其所以然。
课上我让同学通过小组合作摆一摆,说一说,让每一个同学都参加到知识的探究中来,让同学实际到讲台前演示,并对数进行分解法,把同学得出的结论进行汇总,最末由同学总结出了结论:5根小棒放进4个杯子,肯定有一个杯子里至少有2根小棒。
例2是让同学明确数量、抽屉和结论三者之间的关系,特别是对“肯定有一个杯子里至少有小棒的根数”是除法算式中的商加“1”,而不是商加“余数”,我适时挑出针对性问题进行沟通、争论,使同学从本质上理解了“抽屉原理”,引导同学总结归纳这一类“抽屉问题”的一般规律。
第三环节——解决问题此环节是对同学学习效果的检验,在设置习题方面采用层层深入,有肯定的梯度,由同学很简单找到抽屉的题型过度到抽屉隐蔽在题目中,渐渐提高难度,所选择的题力争与实际生活相结合。
小学奥数-抽屉原理(一) 先了解一下抽屉原理的概念,然后结合一些较复杂的抽屉原理问题,讨论如何构造抽屉。
抽屉原理1将多于n件物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。
抽屉原理2将多于m×n件物品任意放到到n个抽屉中,那么至少有一个抽屉中的物品不少于(m+1)件。
理解抽屉原理要注意几点:(1)抽屉原理是讨论物品与抽屉的关系,要求物品数比抽屉数或抽屉数的倍数多,至于多多少,这倒无妨。
(2)“任意放”的意思是不限制把物品放进抽屉里的方法,不规定每个抽屉中都要放物品,即有些抽屉可以是空的,也不限制每个抽屉放物品的个数。
(3)抽屉原理只能用来解决存在性问题,“至少有一个”的意思就是存在,满足要求的抽屉可能有多个,但这里只需保证存在一个达到要求的抽屉就够了。
(4)将a件物品放入n个抽屉中,如果a÷n= m……b,其中b是自然数,那么由抽屉原理2就可得到,至少有一个抽屉中的物品数不少于(m+1)件。
例1 五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。
已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。
问:至少有几名学生的成绩相同?分析与解:关键是构造合适的抽屉。
既然是问“至少有几名学生的成绩相同”,说明应以成绩为抽屉,学生为物品。
除3名成绩在60分以下的学生外,其余成绩均在75~95分之间,75~95共有21个不同分数,将这21个分数作为21个抽屉,把47-3=44(个)学生作为物品。
例2 夏令营组织2000名营员活动,其中有爬山、参观博物馆和到海滩游玩三个项目。
规定每人必须参加一项或两项活动。
那么至少有几名营员参加的活动项目完全相同?分析与解:本题的抽屉不是那么明显,因为问的是“至少有几名营员参加的活动项目完全相同”,所以应该把活动项目当成抽屉,营员当成物品。
营员数已经有了,现在的问题是应当搞清有多少个抽屉。
例3把125本书分给五(2)班学生,如果其中至少有1人分到至少4本书,那么,这个班最多有多少人?分析与解:这道题一下子不容易理解,我们将它变变形式。
合用标准文案抽屉原理知识要点最不利原则所谓“最不利原则”是指完成某一项工作先从最不利的状况下考虑,尔后研究任意状况下可能的结果。
由此获取充分可靠的结论。
抽屉原理又称鸽巢原理或Dirichlet原理抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷第一明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则。
抽屉原理是组合数学中一个重要而又基本的数学原理,利用它能够解决好多幽默的问题,而且常常能够起到令人惊诧的作用。
好多看起来相当复杂,甚至无从下手的问题,在利用抽屉原理后,能很快使问题获取解决。
第一抽屉原理:一、将多于n 件的物品任意放到n 个抽屉中,那么最少有一个抽屉中的物品很多于2件;二、将多于mn 件的物品任意放到n 个抽屉中,那么最少有一个抽屉中的物品很多于m 1 件。
第二抽屉原理:一、将少于n 件的物品任意放到n 个抽屉中,其中必有一个抽屉中没有物体。
二、把 mn 1个物体放入n 个抽屉,其中必有一个抽屉中至多有m 1 个物体。
平均值原理:若是n 个数的平均值为 a ,那么其中最少有一个数不大于 a ,也最少有一个不小于 a 。
运用抽屉原理求解的较为复杂的组共计算与证明问题.这里不但“抽屉”与“苹果”需要恰当地设计与采用,而且有时还应构造出达到最正确状态的例子.抽屉原理的解题方案(一)、利用公式行解苹果÷抽=商⋯⋯余数余数:(1)余数= 1,:最少有(商+ 1)个苹果在同一个抽里(2)余数= x 1 p x p n 1,:最少有(商+ 1)个苹果在同一个抽里(3)余数= 0,:最少有“商”个苹果在同一个抽里(二)、利用最原理解将目中没有明的量行极限,将复的目得特别,也就是常的极限思想“任我意”方法、特别方法.抽屉原理【例 1】数学趣小共23人,有一个同学在某一天大家宣布一个猜想:“我中必然有两个人生日在同一个月份” ,你知道他是怎么知道的?【解析】因数学趣小的人数超了12个人,而一年中只有12个月份,依照抽原理一,他即可以得出以上了。
第九讲 抽屉原理1、 典型抽屉原理的巩固和提高。
2、 熟练掌握最不利原则的应用。
3、 学会利用枚举、排列组合、图形计数构造抽屉解决问题。
抽屉原理有时也被称为鸽巢原理,它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原则。
它是组合数学中一个重要而又基本的数学原理,应用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用,因为许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.在每年的希望杯考试和小升初中抽屉原理的题目常常以填空题和口算题的形式出现,同学们一定要打好基础掌握好这一类经典题型。
那么,这一讲我就来巩固学习抽屉原则以及它的典型应用。
抽屉原理推广到一般情形有以下两种表现形式。
抽屉原理1:将多于n 件的物品任意放到n 个抽屉中,那么至少有一个抽屉中的物品不少于2件。
例:有5只鸽子飞进4个鸽笼里,那么一定有一个鸽笼至少飞进了2只鸽子。
抽屉原理2:将多于m×n 件的物品任意放到n 个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1。
例:如果将13只鸽子放进6只鸽笼里,那么至少有一只笼子要放3只或更多的鸽子。
道理很简单。
如果每只鸽笼里只放2只鸽子,6只鸽笼共放12只鸽子。
剩下的一只鸽子无论放入哪只鸽笼里,总有一只鸽笼放了3只鸽子。
分析:把两种颜色看成两个“抽屉”根据抽屉原理2可知,至少有三个面被涂上相同的颜色.知识说明专题精讲教学目标想挑战吗?给正方形涂上红色或蓝色的油漆,试证:正方形至少有三个面被涂上相同的颜色.Ⅰ、抽屉原理的典型应用解题思路:做抽屉问题关键是确定“抽屉”和“苹果”,当题目中出现多个对象时,通常数量较多者为“苹果”,数量较少者为“抽屉”。
苹果÷抽屉=商……余数,得到的结论为:至少有一个抽屉里有(商+1)个苹果。
【例1】(★★★)证明:(1)任意28个人中,至少有3个人的属相相同。
(2)要想保证至少4个人的属相相同,至少有几个人?(3)要想保证至少5个人的属相相同,但不能保证有6个人的属相相同,那么总人数应该在什么范围内?分析:(1)把12种属相看作12个抽屉,28÷12=2……4,根据抽屉原理,至少有3个人的属相相同。
一、 知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中 的问题,因此,也被称为狄利克雷原则•抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可 以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、 抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放 两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。
(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹 果。
我们称这种现象为抽屉原理。
三、 抽屉原理的解题方案(一) 、利用公式进行解题 苹果十抽屉=商……余数 余数:(1)余数=1,结论:至少有(商+ 1)个苹果在同一个抽屉里 (2)余数=x 1Y :X Y n-1,结论:至少有(商+ 1 )个苹果在同一个抽屉里(3) 余数=0,结论:至少有“商”个苹果在同一个抽屉里(二) 、利用最值原理解题将题目中没有阐明的量进行极限讨论, 将复杂的题目变得非常简单, 也就是常说的极限思想 “任我意” 方法、特殊值方法.知识精讲模块一、利用抽屉原理公式解题 (一)、直接利用公式进行解题 (1)求结论【例1】6只鸽子要飞进5个笼子,每个笼子里都必须有 1只,一定有一个笼子里有 2只鸽子•对吗?【巩固】 把9条金鱼任意放在 8个鱼缸里面,请你说明至少有一个鱼缸放有两条或两条以上金鱼.8-2抽屉原理、【巩固】教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业试说明:这5名学生中,至少有两个人在做同一科作业.【巩固】年级一班学雷锋小组有13人•教数学的张老师说:“你们这个小组至少有2个人在同一月过生日•”你知道张老师为什么这样说吗?【巩固】数学兴趣小组有13个学生,请你说明:在这13个同学中,至少有两个同学属相一样. 【巩固】光明小学有367名2000年出生的学生,请问是否有生日相冋的学生?【巩固】用五种颜色给正方体各面涂色(每面只涂一种色),请你说明:至少会有两个面涂色相冋.【例2】向阳小学有730个学生,问:至少有几个学生的生日是冋一天?【巩固】试说明400人中至少有两个人的生日相同.【例3】三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩.【例4】“六一”儿童节,很多小朋友到公园游玩,在公园里他们各自遇到了许多熟人.试说明:在游园的小朋友中,至少有两个小朋友遇到的熟人数目相等.【巩固】五年级数学小组共有20名冋学,他们在数学小组中都有一些朋友,请你说明:至少有两名冋学,他们的朋友人数一样多.【例5】在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除?【巩固】四个连续的自然数分别被3除后,必有两个余数相同,请说明理由.【例6】证明:任取8个自然数,必有两个数的差是7的倍数.【巩固】证明:任取6个自然数,必有两个数的差是5的倍数。
【本讲教育信息】一. 教学内容:抽屉原理抽屉原理在小学数学教材中没有作为知识向同学们介绍,但它却是我们解决数学问题的一种重要的思考方法。
抽屉原理最早是由德国数学家狄利克雷最早发现的,所以也叫做狄利克雷重叠原则。
下面我们就一起来研究“抽屉原理”。
【典型例题】1. 第一抽屉原理:把()mn +1个物体放入n 个抽屉中,其中必有一个抽屉中至少有()m +1个物体。
例如:把3个苹果放入2个抽屉中,必然有一个抽屉中有2个苹果。
2. 若把5个苹果放到6个抽屉中,就必然有一个抽屉是空着的。
这称为第二抽屉原理:把()mn -1个物体放在n 个抽屉中,其中必有一个抽屉中至多有()m -1个物体。
3. 构造抽屉的方法:在我们利用抽屉原理思想解决数学问题时,关键是怎样把题目中的数量相对应的想成苹果和抽屉,所以构造“抽屉”是解题的关键。
下面我们就通过例题介绍常见的构造“抽屉”的思想方法。
例1. 用“数的分组法”构造抽屉。
从1,2,3,……,100这100个数中任意挑出51个数来,证明在这51个数中,一定有:(1)2个数互质;(2)2个数的差为50;(3)8个数,它们的最大公约数大于1。
分析与解答:(1)将100个数分成50组{1,2},{3,4},……,{99,100}。
在选出的51个数中,一定有2个数属于同一组,这一组的2个数是相邻的整数,它们一定是互质的。
(2)我们可以将100个数分成下面这样的50组:{1,51},{2,52},……,{50,100}。
在选出的51个数中,必有2个数属于同一组,这一组的2个数的差为50。
(3)将100个数分成5组(一个数可以在不同的组内):第一组:2的倍数,即{2,4,……,100};第二组:3的倍数,即{3,6,……,99};第三组:5的倍数,即{5,10,……,100};第四组:7的倍数,即{7,14,……,98};第五组:1和大于7的质数,即{1,11,13,……,97}。
抽屉原理教学设计教学目标1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“抽屉原理”的灵活应用感受数学的魅力。
教学重难点:经历“抽屉原理”的探究过程,理解“抽屉原理”,并对一些简单实际问题加以“模型化”教学过程:一、创设情景,生成问题师带领学生玩“抢椅子”的游戏,规则这4位学生必须都坐下。
引导学生观察游戏结果——不管怎么坐,总有一个座位上至少坐了2位同学。
师:为什么?(学生回答)师:可不可能一个椅子上坐3位同学?(可能)可不可能每个椅子上只坐1位同学?(不可能)也就是说,不管怎么坐,总有一个椅子上至少要坐2位同学。
师:那么像这样的现象中隐藏着设么数学奥秘呢?大家想不想弄明白?好,就让我们一起走进数学广角来研究这个原理。
希望大家都能积极的动手动脑,参与到学习活动中来,齐心协力把这个数学奥秘弄懂!二探索交流,解决问题(一)教学例11、出示题目:把4枝铅笔放进3个文具盒里。
师:刚才我们做游戏,不管怎么坐,总有一把椅子上至少坐了2位同学。
那么,把4枝铅笔放进3个文具盒里,有多少种放法呢?会出现什么情况呢?大家可不可以大胆的猜测一下?(学情预设:不管怎么放,总有一个文具盒里至少放进了2枝铅笔。
)2、理解“至少”师:“至少”是什么意思?如何理解呢?(最少2枝,也可能比2枝多)师:到底我们猜测的对不对呢?怎么样证明这种现象呢?下面,就需要自己动手利用学具去摆一摆,动脑去想一想,看看能不能证明我们这个猜想。
3、自主探究(1)两人一组利用手中的学具1摆一摆,想一想,可以怎么样去摆放?老师帮大家准备了一个记录单,你们可以把摆放的不同方法记录下来,以便你们分析结果是不是符合我们之前的猜测。
(2)全班交流,学生汇报。
第一种方法:(4,0,0)(3,1,0)(2,2,0)(2,1,1)学生解释自己的想法,验证猜测。
教师课件演示,验证结论。
抽屉原理(一)
抽屉原理1:将多于n件物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。
抽屉原理2:将多于m×n件物品任意放到到n个抽屉中,那么至少有一个抽屉中的物品不少于(m+1)件。
理解抽屉原理要注意几点:(1)抽屉原理是讨论物品与抽屉的关系,要求物品数比抽屉数或抽屉数的倍数多,至于多多少,这倒无妨。
(2)“任意放”的意思是不限制把物品放进抽屉里的方法,不规定每个抽屉中都要放物品,即有些抽屉可以是空的,也不限制每个抽屉放物品的个数。
(3)抽屉原理只能用来解决存在性问题,“至少有一个”的意思就是存在,满足要求的抽屉可能有多个,但这里只需保证存在一个达到要求的抽屉就够了。
(4)将a件物品放入n个抽屉中,如果a÷n= m……b,其中b是自然数,那么由抽屉原理2就可得到,至少有一个抽屉中的物品数不少于(m+1)件。
例1、五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。
已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。
问:至少有几名学生的成绩相同?
分析与解:关键是构造合适的抽屉。
既然是问“至少有几名学生的成绩相同”,说明应以成绩为抽屉,学生为物品。
除3名成绩在60分以下的学生外,其余成绩均在75~95分之间,75~95共有21个不同分数,将这21个分数作为21个抽屉,把47-3=44(个)学生作为物品。
44÷21= 2……2,
根据抽屉原理2,至少有1个抽屉至少有3件物品,即这47名学生中至少有3名学生的成绩是相同的。
例2 、夏令营组织2000名营员活动,其中有爬山、参观博物馆和到海滩游玩三个项目。
规定每人必须参加一项或两项活动。
那么至少有几名营员参加的活动项目完全相同?
分析与解:本题的抽屉不是那么明显,因为问的是“至少有几名营员参加的
活动项目完全相同”,所以应该把活动项目当成抽屉,营员当成物品。
营员数已经有了,现在的问题是应当搞清有多少个抽屉。
因为“每人必须参加一项或两项活动”,共有3项活动,所以只参加一项活动的有3种情况,参加两项活动的有爬山与参观、爬山与海滩游玩、参观与海滩游玩3种情况,所以共有3+3=6(个)抽屉。
2000÷6=333……2,
根据抽屉原理2,至少有一个抽屉中有333+1=334(件)物品,即至少有334名营员参加的活动项目是相同的。
例3、把125本书分给五(2)班学生,如果其中至少有1人分到至少4本书,那么,这个班最多有多少人?
分析与解:这道题一下子不容易理解,我们将它变变形式。
因为是把书分给学生,所以学生是抽屉,书是物品。
本题可以变为:125件物品放入若干个抽屉,无论怎样放,至少有一个抽屉中放有4件物品,求最多有几个抽屉。
这个问题的条件与结论与抽屉原理2正好相反,所以反着用抽屉原理2即可。
由1255÷(4-1)=41……2知,125件物品放入41个抽屉,至少有一个抽屉有不少于4件物品。
也就是说这个班最多有41人。
同学们想一想,如果有42个人,还能保证至少有一人分到至少4本书吗?
例4、五(1)班张老师在一次数学课上出了两道题,规定每道题做对得2分,没做得1分,做错得0分。
张老师说:可以肯定全班同学中至少有6名学生各题的得分都相同。
那么,这个班最少有多少人?
分析与解:由“至少有6名学生各题的得分都相同”看出,应该以各题得分情况为抽屉,学生为物品。
如果用(a,b)表示各题的得分情况,其中a,b分别表示第一、二题的得分,那么有
(2,2),(2,1),(2,0),(1,2),(1,1),
(1,0),(0,2),(0,1),(0,0)
9种情况,即有9个抽屉。
本题变为:已知9个抽屉中至少有一个抽屉至少有6件物品,求至少有多少件物品。
反着用抽屉原理2,得到至少有9×(6-1)+1=46(人)。
例3与例4尽管都是求学生人数,但因为问题不同,所以构造的抽屉也不同,例3中将学生作为抽屉,例4中则将学生作为物品。
可见利用抽屉原理解题,应根据问题灵活构造抽屉。
一般地,当问“最少有多少××”时,应将××作为物品,如例1,2,4;当问“最多有多少××时,应将××作为抽屉,如例3。
例5、任意将若干个小朋友分为五组。
证明:一定有这样的两组,两组中的男孩总数与女孩总数都是偶数。
分析与解:因为一组中的男孩人数与女孩人数的奇偶性只有下面四种情况:(奇,奇),(奇,偶),(偶,奇),(偶,偶)。
将这四种情况作为4个抽屉,五组作为5件物品,由抽屉原理1知,至少有一个抽屉中有两件物品。
即这五组中至少有两组的情况相同,将这两组人数相加,男孩人数与女孩人数都是偶数。
例题6、从1到100的自然数中最多可以取出多少个数,使取出的数中每两个数的和都不是3的倍数?
练习题
1.某单位购进92箱桔子,每箱至少110个,至多138个,现将桔子数相同的作为一组,箱子数最多的一组至少有几箱?
2.幼儿园小朋友分200块饼干,无论怎样分都有人至少分到8块饼干,这群小朋友至多有多少名?
3.有若干堆分币,每堆分币中没有币值相同的分币。
任意挑选多少堆分币,才能保证一定有两堆分币的组成是相同的?
4.图书馆有甲、乙、丙、丁四类图书,规定每个同学最多可以借两本不同类的图书,至少有多少个同学借书,才能保证有两个人所借的图书类别相同?
5.我国人口已超过12亿,如果人均寿命不超过75岁,那么我国至少有两个人出生的时间相差不会超过2秒钟。
这个结论是否正确?
6.红光小学五(2)班选两名班长。
投票时,每个同学只能从4名候选人中挑选2名。
这个班至少应有多少个同学,才能保证有8个或8个以上的同学投了相同的2名候选人的票?
7.把135块饼干分给16个小朋友,若每个小朋友至少要分到一块饼干,那么不管怎样分,一定会有两个小朋友得到的饼干数目相同。
为什么?。