第9章代数系统
- 格式:ppt
- 大小:935.50 KB
- 文档页数:78
代数系统简介一、代数系统的基本概念代数系统,也称为代数结构或代数系统,是数学中一个重要的概念,它由集合和定义在这个集合上的运算组成。
代数系统是代数学的基本研究对象,也是泛代数、抽象代数、代数学等领域中重要的研究对象。
代数系统通常由两个部分组成:一个是非空元素集合,称为代数系统的论域或标量域;另一个是定义在论域上的运算,这些运算需满足一定的性质或公理。
根据所涉及的运算不同,代数系统可分为不同类型,如群、环、域、格等。
代数系统的概念来源于对数学中不同分支中抽象概念的概括和总结,其研究范围包括数学中不同领域的许多分支。
例如,集合论、抽象代数、泛代数、拓扑学等都是研究代数系统的重要领域。
二、代数系统的分类根据所涉及的运算和性质的不同,代数系统有多种分类方式。
以下是其中几种常见的分类方式:1.根据所涉及的运算的性质,可以将代数系统分为有交换律和结合律的代数系统(如群、环、域)和没有交换律和结合律的代数系统(如格、布尔代数)。
2.根据运算是否涉及单位元和逆元,可以将代数系统分为有单位元的代数系统和无单位元的代数系统。
前者如群、环、域等,后者如格等。
3.根据所涉及的元素是否具有可交换性,可以将代数系统分为可交换的代数系统和不可交换的代数系统。
前者如交换群等,后者如李群等。
4.根据所涉及的元素是否具有无限性,可以将代数系统分为有限代数系统和无限代数系统。
前者如有限群等,后者如无限群等。
此外,还可以根据其他性质和特征对代数系统进行分类。
通过不同的分类方式,我们可以更好地了解和研究不同类型代数系统的特性和性质。
三、代数系统的性质代数系统的性质是指代数系统中元素之间通过运算所表现出来的关系和性质。
以下是几个常见的代数系统的性质:1.封闭性:如果对于代数系统中的任意两个元素x和y,它们的运算结果仍属于该集合,则称该运算满足封闭性。
封闭性是代数系统中一个重要的性质,它保证了运算结果的元素仍属于该系统。
2.结合律:如果对于代数系统中的任意三个元素x、y和z,有(x·y)·z=x·(y·z),则称该运算满足结合律。
代数发展简史一门科学的历史是那门科学中最宝贵的一部分,因为科学只能给我们知识,而历史却能给我们智慧。
傅鹰数学的历史是重要的,它是文明史的有价值的组成部分,人类的进步和科学思想是一致的。
F. Cajori0、引言数学发展到现在,已经成为科学世界中拥有100多个主要分支学科的庞大的“共和国”。
大体说来,数学中研究数的部分属于代数学的范畴;研究形的部分,属于几何学的范筹;沟通形与数且涉及极限运算的部分,属于分析学的范围。
这三大类数学构成了整个数学的本体与核心。
在这一核心的周围,由于数学通过数与形这两个概念,与其它科学互相渗透,而出现了许多边缘学科和交叉学科。
在此简要介绍代数学的有关历史发展情况。
“代数”(algebra)一词最初来源于公元9世纪阿拉伯数学家、天文学家阿尔·花拉子米(al-Khowārizmī,约780-850)一本著作的名称,书名的阿拉伯文是‘ilm al-jabr wa’l muqabalah,直译应为《还原与对消的科学》.al-jabr 意为“还原”,这里指把负项移到方程另一端“还原”为正项;muqabalah 意即“对消”或“化简”,指方程两端可以消去相同的项或合并同类项.在翻译中把“al-jabr”译为拉丁文“aljebra”,拉丁文“aljebra”一词后来被许多国家采用,英文译作“algebra”。
阿布·贾法尔·穆罕默德·伊本·穆萨·阿尔—花拉子米的传记材料,很少流传下来.一般认为他生于花拉子模[Khwarizm,位于阿姆河下游,今乌兹别克境内的希瓦城(Хива)附近],故以花拉子米为姓.另一说他生于巴格达附近的库特鲁伯利(Qut-rubbullī).祖先是花拉子模人.花拉子米是拜火教徒的后裔,早年在家乡接受初等教育,后到中亚细亚古城默夫(Мерв)继续深造,并到过阿富汗、印度等地游学,不久成为远近闻名的科学家.东部地区的总督马蒙(al-Ma’mūn,公元786—833年)曾在默夫召见过花拉子米.公元813年,马蒙成为阿拔斯王朝的哈利发后,聘请花拉子米到首都巴格达工作.公元830年,马蒙在巴格达创办了著名的“智慧馆”(Bayt al-Hikmah,是自公元前3世纪亚历山大博物馆之后最重要的学术机关),花拉子米是智慧馆学术工作的主要领导人之一.马蒙去世后,花拉子米在后继的哈利发统治下仍留在巴格达工作,直至去世.花拉子米生活和工作的时期,是阿拉伯帝国的政治局势日渐安定、经济发展、文化生活繁荣昌盛的时期.花拉子米科学研究的范围十分广泛,包括数学、天文学、历史学和地理学等领域.他撰写了许多重要的科学著作.在数学方面,花拉子米编著了两部传世之作:《代数学》和《印度的计算术》.1859年,我国数学家李善兰首次把“algebra”译成“代数”。
(┐p∧q)→r,(┐(p→┐q))∧((r∨s)┐p)分别为∧成真小写重言蕴涵式【例】用附加前提证明法证明下面推理。
⌝前提:P→(Q→R),S∨P,Q 结论:S→R⌝证明:(1)S∨P前提引入规则(2)S 附加前提引入规则⌝(11)P∨R(10)置换规则(12)R (9)(11)析取三段论规则⌝(13)R∧R(4)(12)合取引入规则∀全称量词""对"∨"无分配律。
同样的,∃存在量词""对"∧"无分配律(3) x yF(x,y)x(F(x,a)∧F(x,b)∧F(x,c))(F(a,a)∧F(a,b)∧F(a,c))∨(F(b,a)∧F(b,b)∧F(b,c))∨(F(c,a)∧F(c,b)∧F(c,c))谓词逻辑的等价公式定理1设A(x)是谓词公式,有关量词否定的两个等价公式:∀⇔∃(1)﹁x A(x)x﹁A(x)∃⇔∀(2)﹁x A(x)x﹁A(x)定理2 设A(x)是任意的含自由出现个体变项x的公式,B是不含x出现的公式,则有∀⇔∀(1)x(A(x)∨B)x A(x)∨B∀⇔∀(2)x(A(x)∧B)x A(x)∧B∀⇔∃(3)x(A(x)→ B)x A(x)→ B∀⇔∀(4)x(B→A(x))B→x A(x)∃⇔∃(5)x(A(x)∨B)x A(x)∨B∃⇔∃(6)x(A(x)∧B)x A(x)∧B∃⇔∀(7)x(A(x)→ B)x A(x)→ B∃⇔∃(8)x(B→A(x))B→x A(x)定理3 设A(x)、B(x)是任意包含自由出现个体变元x的公式,则有:∀⇔∀∀(1)x(A(x)∧B(x))x A(x)∧x B(x)∃⇔∃∃(2)x(A(x)∨B(x))x A(x)∨x B(x)定理4 下列蕴涵式成立∀∀⇒∀(1)x A(x)∨x B(x)x(A(x)∨B(x))∃⇒∃∃(2)x(A(x)∧B(x))x A(x)∧x B(x)∀⇒∀∀(3)x(A(x)→ B(x))x A(x)→x B(x)∀⇒∃∃(4)x(A(x)→ B(x))x A(x)→x B(x)∃∀⇒∀(5)x A(x)→x B(x)x(A(x)→ B(x))【例】【例】【例】【例】【例】在一阶逻辑自然推理系统F中构造下面推理的证明(1)所有的人或者是吃素的或者是吃荤的,吃素的常吃豆制品,因而不吃豆制品的人是吃荤的。