第3章 辐射干扰及其特性
- 格式:ppt
- 大小:16.70 MB
- 文档页数:103
电磁兼容题库整理终极版本(合集五篇)第一篇:电磁兼容题库整理终极版本一.填空1.电磁干扰按传播途径可以分为两类:传导干扰和辐射干扰。
构成电磁干扰的三要素是【干扰源】、【干扰途径】和【敏感单元】。
抑制电磁干扰的三大技术措施是【滤波】、【屏蔽】和【接地】。
8.辐射干扰的传输性质有:近场藕合及远场藕合。
传导干扰的传输性质有电阻藕合、电容藕合及电感藕合。
什么是传导耦合?答:传道耦合是指电磁干扰能量从干扰源沿金属导体传播至被干扰对象(敏感设备)2.辐射干扰源数学模型的基本形式包括电流源和磁流源辐射。
或辐射干扰源可归纳为【电偶极子】辐射和【磁偶极子】辐射3.如果近场中,源是电场骚扰源,那么干扰源具有小电流、大电压的特点。
6.屏蔽效能SE分别用功率密度、电场强度和磁场强度来描述应为 10logP1/P2,20logH1/H2,20logU1/U2。
13.设U1和U2分别是接入滤波器前后信号源在同一负载阻抗上建立的电压,则插入损耗可定义为【20lg(U2/U1)】分贝。
7.反射滤波器设计时,应使滤波器在通带内呈低的串联阻抗和高并联阻抗。
13.常见的电阻藕合有哪些?(1)公共地线阻抗产生的藕合干扰。
(2)公共电源内阻产生的藕合干扰。
(3)公共线路阻抗形成的藕合干扰。
9.双绞线多用于高频工作范围,在单位长度线长中互绞圈数越多,消除噪声效果越好。
在额定互绞圈数中,频率越高屏蔽效果越好。
10.反射滤波器设计时,应使滤波器在阻带范围,其并联阻抗应很小而串联阻抗则应很大。
11.100V= 40 dBV= 40000 dBmV。
12.一般滤波器由电容滤波器和电感滤波器构成。
13.减小电容耦合干扰电压的有效方法有三种:减小电流强度、减小频率、减小电容。
14.金属板的屏蔽效能SE(dB)包括吸收损耗、反射损耗和多次反射损耗三部分。
15.传导敏感度通常用电压表示、辐射敏感度可以用电场,或V/m 表示。
17.信号接地的三种基本概念是多点、单点和浮地。
电磁辐射防护与减少作业指导书第1章电磁辐射基础理论 (3)1.1 电磁辐射的概念与特性 (3)1.2 电磁辐射的来源与分类 (4)1.3 电磁辐射的生物效应 (4)第2章电磁辐射防护标准与法规 (5)2.1 国内外电磁辐射防护标准概述 (5)2.1.1 国际电磁辐射防护标准 (5)2.1.2 我国电磁辐射防护标准 (5)2.2 我国电磁辐射防护法规体系 (5)2.2.1 法律法规 (5)2.2.2 部门规章 (5)2.2.3 国家标准和行业标准 (5)2.3 电磁辐射限值与评价方法 (6)2.3.1 电磁辐射限值 (6)2.3.2 电磁辐射评价方法 (6)2.3.3 电磁辐射监测与评价 (6)第3章电磁辐射测量与监测 (6)3.1 电磁辐射测量原理 (6)3.1.1 电磁波传播原理 (6)3.1.2 电磁辐射测量基本方程 (6)3.1.3 电磁辐射测量方法 (6)3.2 电磁辐射测量设备与仪器 (7)3.2.1 电磁辐射测量设备 (7)3.2.2 电磁辐射测量仪器 (7)3.3 电磁辐射监测方案与实施 (7)3.3.1 电磁辐射监测目的 (7)3.3.2 电磁辐射监测方案 (7)3.3.3 电磁辐射监测实施 (8)第4章电磁辐射源识别与评估 (8)4.1 电磁辐射源识别方法 (8)4.1.1 现场调查法 (8)4.1.2 文献资料法 (8)4.1.3 仪器检测法 (8)4.2 电磁辐射源特性分析 (8)4.2.1 电磁辐射源的频率特性 (8)4.2.2 电磁辐射源的空间分布特性 (8)4.2.3 电磁辐射源的时变特性 (8)4.3 电磁辐射风险评估 (8)4.3.1 电磁辐射暴露剂量评估 (9)4.3.2 电磁辐射生物效应评估 (9)4.3.3 风险等级划分 (9)第5章电磁辐射防护技术 (9)5.1 屏蔽防护技术 (9)5.1.1 金属屏蔽 (9)5.1.2 纤维屏蔽 (9)5.1.3 复合屏蔽材料 (9)5.2 距离防护技术 (9)5.2.1 远离辐射源 (9)5.2.2 高效布局 (10)5.2.3 防护隔离 (10)5.3 吸收防护技术 (10)5.3.1 吸波材料 (10)5.3.2 吸波结构 (10)5.3.3 多功能吸波材料 (10)5.3.4 智能吸波材料 (10)第6章电磁辐射防护措施与实践 (10)6.1 电磁辐射防护工程设计 (10)6.1.1 设计原则 (10)6.1.2 设计内容 (11)6.2 电磁辐射防护设施与材料 (11)6.2.1 防护设施 (11)6.2.2 防护材料 (11)6.3 电磁辐射防护案例分析 (11)6.3.1 案例一:某通信基站电磁辐射防护 (11)6.3.2 案例二:某电子厂生产线电磁辐射防护 (11)6.3.3 案例三:某医院放射科电磁辐射防护 (12)第7章电磁辐射管理与培训 (12)7.1 电磁辐射管理体系建设 (12)7.1.1 管理体系概述 (12)7.1.2 管理体系构建 (12)7.1.3 管理体系运行与持续改进 (12)7.2 电磁辐射防护培训与教育 (12)7.2.1 培训目标与计划 (12)7.2.2 培训内容 (13)7.2.3 培训方式与实施 (13)7.3 电磁辐射应急预案 (13)7.3.1 应急预案制定 (13)7.3.2 应急预案内容 (13)7.3.3 应急预案演练与评估 (13)第8章特定环境电磁辐射防护 (13)8.1 居住区电磁辐射防护 (13)8.1.1 住宅区电磁辐射来源及特点 (13)8.1.2 居住区电磁辐射防护措施 (14)8.2 学校与医疗机构电磁辐射防护 (14)8.2.2 医疗机构电磁辐射防护 (14)8.3 电磁辐射敏感区域防护 (14)8.3.1 电磁辐射敏感区域识别 (14)8.3.2 电磁辐射敏感区域防护措施 (14)第9章电磁辐射监测与评估技术发展 (14)9.1 电磁辐射监测新技术 (15)9.1.1 空间分布式电磁辐射监测技术 (15)9.1.2 超宽带电磁辐射监测技术 (15)9.1.3 光学电磁辐射监测技术 (15)9.2 电磁辐射评估方法研究 (15)9.2.1 基于数值模拟的电磁辐射评估方法 (15)9.2.2 基于人工智能的电磁辐射评估方法 (15)9.2.3 综合指数法在电磁辐射评估中的应用 (15)9.3 电磁辐射防护技术发展趋势 (15)9.3.1 智能化电磁辐射防护技术 (15)9.3.2 绿色环保电磁辐射防护材料 (16)9.3.3 集成化电磁辐射防护技术 (16)第10章电磁辐射防护与减少作业总结与展望 (16)10.1 电磁辐射防护工作总结 (16)10.2 电磁辐射防护技术挑战与展望 (16)10.3 电磁辐射防护产业发展趋势分析 (17)第1章电磁辐射基础理论1.1 电磁辐射的概念与特性电磁辐射是指电磁波在空间中的传播过程,它是电场和磁场相互作用的结果。
电磁波对设备的干扰与防护一、电磁波的定义与特性1.电磁波的定义:电磁波是由电场和磁场交替变化而产生的一种能量传播形式。
2.电磁波的特性:电磁波在真空中的传播速度为常数,约为3×10^8m/s;电磁波的频率和波长相互关联,满足公式c=λf(其中c为光速,λ为波长,f为频率);电磁波可以穿透某些物质,如空气、玻璃等,但无法穿透金属等导体。
二、电磁波的干扰类型1.辐射干扰:指电磁波从干扰源向四周空间传播,对其他电子设备产生影响的现象。
2.传导干扰:指电磁波通过导线、电缆等传输介质传播,对其他电子设备产生影响的现象。
3.感应干扰:指电磁波通过电磁感应原理,在导体中产生电动势,对其他电子设备产生影响的现象。
三、电磁波干扰的影响1.信号失真:电磁波干扰可能导致电子设备接收到的信号产生误差,从而影响设备的工作性能。
2.设备误动作:电磁波干扰可能导致电子设备误判信号,产生误动作。
3.设备性能下降:长期受到电磁波干扰,可能导致电子设备性能下降,甚至损坏。
四、电磁波防护措施1.屏蔽:使用金属网、金属板等屏蔽材料,阻挡电磁波的传播。
2.接地:将设备的金属部分接地,以消除电磁波干扰。
3.滤波:在电路中加入滤波器,抑制电磁波干扰。
4.抗干扰元件:使用抗干扰元件,如磁珠、铁氧体等,减小电磁波干扰。
5.合理布线:采用合理的布线方式,减少电磁波干扰。
6.设备隔离:采用隔离变压器、光隔离器等,实现设备之间的隔离。
7.频率选择:避免在电磁环境复杂的场所使用敏感频率的设备。
8.功率控制:合理控制设备的工作功率,降低电磁波干扰。
五、中学生电磁波防护教育1.了解电磁波的基本概念和特性。
2.掌握电磁波干扰的类型和影响。
3.学习电磁波防护的基本措施和方法。
4.增强安全意识,遵守电磁波防护相关规定。
5.培养良好的电磁环境意识,减少电磁波污染。
综上所述,电磁波对设备的干扰与防护是一个重要的知识点。
了解电磁波的基本特性、干扰类型和防护措施,有助于我们更好地保护电子设备,提高生活质量。
电磁感应的传导干扰和辐射干扰我们知道,在开关电源里面,开关电源变压器是最大的磁感应器件。
反激式开关电源变压器,就是通过把流过变压器初级线圈的电流转换成磁能,并把磁能存储在变压器铁心之中,然后,等电源开关管关断的时候,流过变压器初级线圈的电流为0的时候,开关电源变压器才把存储在变压器铁心之中磁能转换成电能,通过变压器次级线圈输出。
开关电源变压器在电磁转换过程中,工作效率不可能100%,因此,也会有一部分能量损失,其中的一部分能量损失就是因为产生漏磁,或漏磁通。
这些漏磁通穿过其它电路的时候,也会产生感应电动势。
感应电动势的大小可由(13)、(14)或(16)式求得。
图8是磁感应产生传导干扰的原理图,图8表示开关电源变压器产生的漏磁通穿过其它电路时,在其它电路中也产生感应电动势,其中漏磁通M1、M2、M3产生的感应电动势e1、e2、e3属于是差模干扰信号;M5、M6、M7、M8产生的感应电动势e5、e6、e7、e8属于是共模干扰信号。
图8图9是开关电源变压器产生的漏磁通的原理图。
开关电源变压器的漏磁通大约在5%~20%之间,反激式开关电源变压器为了防止磁饱和,在磁回路中一般都留有气隙,因此漏磁通比较大,即:漏感比较大。
因此,产生漏感干扰也特别严重,在实际应用中,一定要用铜箔片在变压器外围进行磁屏蔽。
从原理上来说,铜箔片不是导磁材料,对漏磁通是起不到直接屏蔽作用的,但铜箔片是良导体,交变漏磁通穿过铜箔片的时候会产生涡流,涡流产生的磁场方向正好与漏磁通的方向相反,是部分漏磁通被抵消,因此,铜箔片也可以起到磁屏蔽的作用。
图9检测漏磁通干扰的简便方法是,用示波器探头接成一个小短路环进行测量,最简便的方法就是把探头与地线端短路连在一起,相当于一个磁感应检测线圈。
把磁感应检测线圈靠近变压器或干扰电路,很容易看到干扰信号的存在。
值得一提的是,开关电源变压器初级线圈的漏感产生的反电动势et,在所有干扰信号之中是最不容忽视的,如图10所示。