大学物理 习 题 5答案
- 格式:doc
- 大小:627.48 KB
- 文档页数:5
第五章 真空中的静电场一、思考讨论题1、电场强度与电势有什么关系?试回答下列问题,并举例说明: (1)场强为零的地方,电势是否一定为零? (2)电势高的地方,场强是否一定大? (3)电势相等处,场强是否一定相等?(4)已知某一点的电势,可否求出该点的场强?反之如何? 解:(1)不一定。
比如两同种点电荷连线中点,场强为零,电势不为零。
(2)不一定。
匀强电场,场强处处相等,而电势不等。
(3)不一定。
点电荷产生的电场线中,电势相等的地方场强方向不一样。
(4)都不可以求。
2、已知某一高斯面所包围的空间内0=∑q ,能否说明穿过高斯面上每一部分的电通量都是0?能否说明高斯面上的场强处处为0?解:由高斯定理∑⎰=⋅=q S d E S1εψ ,0=∑q 仅指通过高斯面的电通量为零,并非场强一定在高斯面处处为零(高斯面外的电荷也在高斯面上各点产生场强)。
3、已知某高斯面上处处E =0,可否肯定高斯面内0=∑q ,可否肯定高斯面处处无电荷?解:可以肯定。
高斯面上处处E =0,0=⋅⎰S d E S,由高斯定理必有0=∑q 。
4、如图1.1所示,真空中有A 、B 两均匀带电平板相互平行并靠近放置,间距为d (d 很小),面积均为S ,带电分别为+Q 和-Q 。
关于两板间的相互作用力,有人说,根据库仑定律应有:2024dQ f πε=; 又有人说,根据f QE =,应有:SQ f 02ε=。
他们说得对吗?你认为f 应等于多少?解:(1)2024dQ f πε=是错误的,因为库仑定律只适用于点电荷,两个带电平板不能直接用库仑定律计算。
(2)SQ f 02ε=也错误。
因为用sqE 0ε=计算的场强是两带电平板产生的合场强,而Eq F =中的场强是一个带电板的电荷量乘以另一个所产生的场强,而不是合场强。
电荷与图1.1自身产生的场强作用力恒为零。
正确答案是:Sq q S qEdq F 02022εε=⋅==⎰ 5、在无限大带电平面和无限长带电直线的电场中,确定各点电荷时,可否选无穷远处为0势点?为什么?解:不能。
练习 一(曲线运动、直线运动、圆周运动、抛体运动、相对运动)一、选择题 1. 质点沿轨道AB 作曲线运动,速率逐渐减小,图中哪一种情况正确地表示了质点在C 处的加速度? ( C )(A) (B) (C) (D)解:(C)a 指向曲线凹侧,a 、v 间夹角大于900,速率减小,a 、v间夹角小于900,速率增加2.一质点沿x 轴作直线运动,其v -t 曲线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为 . ( B )(A) 5m . (B) 2m . (C) 0.(D) -2 m . (E) -5 m. 解:(B) 根据曲线下面积计算 3. 一质点沿x 轴运动的规律是x =t 2-4t +5(SI 制)。
则前三秒内它的 ( D )(A)位移和路程都是3m ; (B)位移和路程都是-3m ;(C)位移是-3m ,路程是3m ; (D)位移是-3m ,路程是5m 。
解: (D)由运动方程得42-=t v x ,令0=x v 得s t 2=,此值在前三秒内,因此前三秒内质点作回头运动.m x 5)0(=,m x 1)2(=,m x 2)3(=,m x x x 352)0()3(-=-=-=∆,m x x x x s 5)1()2()2()0(=-+-=∆4. 一质点的运动方程是j t R i t R rωωsin cos +=,R 、ω为正常数。
从t =ω/π到t =2 (1)该质点的位移是 (A) -2R i ; (B) 2R i ; (C) -2j ;(D) 0。
( B )(2)该质点经过的路程是 (A) 2R ; (B) R π;(C) 0; (D) ωR π。
(B ) 解: (1)(B),(2)B.由运动方程知质运点轨迹方程为圆, i R i R i R r r r2)()/()/2(=--=-=∆ωπωπ5.一质点在平面上运动,已知质点位置矢量的表示式为j bt i at r 22+=(其中a 、b 为常量), 则该质点作 ( B )(A) 匀速直线运动; (B) 变速直线运动;(C) 抛物线运动; (D)一般曲线运动.解:(B)a bx y bt y at x /,,22===6.某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是 ( C ) (A) 0221v v +=kt ; (B) 0221v v +-=kt ; (C) 02121v v +=kt ; (D) 02121v v +-=kt . 解:( C )⎰⎰-=t v v ktdt v dv 020 7. 某人以4km/h 的速率向东前进时,感觉风从正北吹来,如将速率增加一倍,则感觉风从东北方向吹来。
大学物理第七版马文蔚答案第五章1、39.下列关于热现象的解释正确的是()[单选题] *A.从冰箱中拿出的雪糕冒“白气”是雪糕升华后的水蒸气液化而成的B.汽车必须熄火加油,是因为汽油在常温下易升华成蒸气,遇明火容易爆炸C.被水蒸气烫伤比沸水烫伤更严重是因为水蒸气液化时要放出热量(正确答案)D.衣柜中的樟脑丸过一段时间会变小甚至没有了,这是汽化现象2、27.下列物态变化属于液化的是()[单选题] *A.夏天,挂在衣架上的湿衣服晾干了B.北方的冬天,水蒸气在树上形成了雾凇C.春天到来,江河中的冰化成水D.初秋的清晨,树叶上的露珠(正确答案)3、72.学习质量和密度的知识后,小明同学想用天平、量筒和水完成下列实验课题,你认为不能够完成的是()[单选题] *A.测量牛奶的密度B.鉴别金戒指的真伪C.鉴定铜球是否空心D.测一捆铜导线的长度(正确答案)4、44.下列现象不可能出现的是()[单选题] *A.衣柜里的樟脑丸放置很长时间后会变小B.潮湿的夏天,从冰箱里取出的啤酒瓶上会出现小水珠C.有风的天气,游泳后从水中出来会感觉冷D.冬天,戴眼镜的人从室内走到室外,眼镜上会出现小水珠(正确答案)5、一吨棉花的体积会比一吨石头的体积大很多。
下列说法中正确的是()*A.布朗运动是悬浮在液体中固体分子所做的无规则运动B.叶面上的小露珠呈球形是由于液体表面张力的作用(正确答案)C.当液晶中电场强度不同时,液晶对不同颜色光的吸收强度不同(正确答案)D.当两分子间距离大于平衡位置的间距ro时,分子间的距离越大,分子势能越小6、1.与头发摩擦过的塑料尺能吸引碎纸屑。
下列与此现象所反映的原理相同的是()[单选题] *A.行驶的汽车窗帘被吸出去B.挤压后的吸盘吸在光滑的墙上C.用干燥的双手搓开的塑料袋会吸在手上(正确答案)D.两个表面光滑的铅块挤压后吸在一起7、3.这一秒末的速度是前一秒末的速度的2倍.[判断题] *错(正确答案)8、14.自习课上,老师能根据声音辨别出哪位同学在说话,依据的是声音的()[单选题] *A.音调B.音色(正确答案)C.响度D.频率9、人潜水的深度不能太大,这是因为大气压随着水的深度的增加而增大[判断题] *对错(正确答案)答案解析:液体压强随着水的深度的增加而增大10、行驶的汽车关闭发动机后还能行驶一段距离是因为汽车受到惯性力作用[判断题] *对错(正确答案)答案解析:汽车具有惯性11、将钢棒一端靠近验电器,若验电器金属箔没有张开,则钢棒没有磁性[判断题] *对错(正确答案)答案解析:验电器是检测物体是否带电的12、8.将耳朵贴在长铁水(管中有水)管的一端,让另外一个人敲击一下铁水管的另一端。
⼤学物理习题及解答(运动学、动量及能量)1-1.质点在Oxy 平⾯内运动,其运动⽅程为j t i t r )219(22-+=。
求:(1)质点的轨迹⽅程;(2)s .t 01=时的速度及切向和法向加速度。
1-2.⼀质点具有恒定加速度j i a 46+=,在0=t 时,其速度为零,位置⽮量i r 100=。
求:(1)在任意时刻的速度和位置⽮量;(2)质点在oxy 平⾯上的轨迹⽅程,并画出轨迹的⽰意图。
1-3. ⼀质点在半径为m .r 100=的圆周上运动,其⾓位置为342t +=θ。
(1)求在s .t 02=时质点的法向加速度和切向加速度。
(2)当切向加速度的⼤⼩恰等于总加速度⼤⼩的⼀半时,θ值为多少?(3)t 为多少时,法向加速度和切向加速度的值相等?题3解: (1)由于342t +=θ,则⾓速度212t dt d ==θω,在t = 2 s 时,法向加速度和切向加速度的数值分别为 222s 2t n s m 1030.2-=??==ωr a22s t t s m 80.4d d -=?==t r a ω(2)当2t 2n t 212a a a a +==时,有2n 2t 3a a=,即 22212)24(3)r t (tr = s 29.0s 321==t此时刻的⾓位置为 rad.t 153423=+=θ (3)要使t n a a =,则有2212)24()t (r tr =s .t 550=3-1如图所⽰,在⽔平地⾯上,有⼀横截⾯2m 20.0=S 的直⾓弯管,管中有流速为1s m 0.3-?=v 的⽔通过,求弯管所受⼒的⼤⼩和⽅向。
解:在t ?时间内,从管⼀端流⼊(或流出)⽔的质量为t vS m ?=?ρ,弯曲部分AB 的⽔的动量的增量则为()()A B A B v v t vS v v m p -?=-?=?ρ依据动量定理p I ?=,得到管壁对这部分⽔的平均冲⼒()A B v v I F -=?=Sv t ρ从⽽可得⽔流对管壁作⽤⼒的⼤⼩为N 105.2232?-=-=-='Sv F F ρ作⽤⼒的⽅向则沿直⾓平分线指向弯管外侧。
实验五十三 微波光学实验-布拉格衍射【预习题】1.微波有哪些特点?答:微波是电磁波频谱中极为重要的一个波段,波长在1mm-1m 之间,频率为8103⨯Hz ~11103⨯Hz 。
具有波长短、频率高、穿透性强等特点,因其直线传播和良好的反射特性使它在通信、雷达、导航等方面得到广泛应用。
同时微波可以穿透地球周围的电离层而不被反射,这一不同于短波的反射特性,使其可广泛用于宇宙通信、卫星通信等方面。
而其量子特性(在微波波段,单个量子的能量约为10-6eV-10-3eV,刚好处于原子或分子发射或吸收的波长范围内)为研究原子和分子结构提供了有力的手段。
2.晶体(模拟晶体)在布拉格衍射中实际起什么作用?答:实验中仿照X 射线入射真实晶体发生衍射的基本原理,人为做了一块放大了的晶体模型,以微波代替X 射线向模拟晶体入射,观察入射波射到“晶体”的不同晶面上发生的衍射。
使得布拉格衍射实验更形象、直观、感性地呈现在我们眼前。
晶体(模拟晶体)在布拉格衍射中实际起着衍射光栅的作用。
【思考题】1.什么叫晶面和晶面间距?答:晶体是由许多质点(代表原子、离子或分子)在三维空间作有规则排列而成的固体物质。
组成晶体的质点可以看成分别处在一系列相互平行、间距一定的平面族上,这些平面称为晶面,通常用晶面指数来表示。
晶面族是一组平行且等间距的平面,其中最邻近的二晶面间的距离称为晶面间距,用hkl d 表示,简写为d 。
2.为什么(100)面只能看到二级衍射?其他面呢?答:对于(100)面,mm a d 400100==,由布拉格方程 λθn d =sin 2100 (n=1,2,3…)λθsin 2100d n = 由于1sin ≤θ,所以2.3422100⨯==极大λd n 极大n < 3 对于(100)面,将只能看到一、二级衍射。
对于其他面,λhkl d n 2=极大。
《大学物理》练习题一.单项选择题:1.以下说法正确的选项是()参看课本P32-36惯性系中,真空中的光速与光源的运动状态没关,与光的频次相关惯性系中,真空中的光速与光源的运动状态没关,与光的频次没关惯性系中,真空中的光速与光源的运动状态相关,与光的频次没关惯性系中,真空中的光速与光源的运动状态相关,与光的频次相关2.以下说法正确的选项是()参看课本P32-36A. 伽利略变换与洛伦兹变换是等价的B. 全部惯性系对全部物理定律都是不等价的C. 在全部惯性系中,真空的光速拥有同样的量值 cD. 由相对论时空观知:时钟的快慢和量尺的长短都与物体的运动没关3.以下说法正确的选项是()参看课本P58,76,103动量守恒定律的守恒条件是系统所受的合外力矩为零角动量守恒定律的守恒条件是系统所受的合外力为零机械能守恒定律的守恒条件是系统所受的合外力不做功以上说法都不正确4. 以下对于牛顿运动定律的说法正确的选项是()参看课本P44-45牛顿第一运动定律是描绘物体间力的相互作用的规律牛顿第二运动定律是描绘力处于均衡时物体的运动规律牛顿第三运动定律是描绘物体力和运动的定量关系的规律牛顿三条运动定律是一个整体,是描绘宏观物体低速运动的客观规律5.以下对于守旧力的说法错误的是()参看课本P71-72..由重力对物体所做的功的特色可知,重力是一种守旧力由弹性力对物体所做的功的特色可知,弹性力也是一种守旧力由摩擦力对物体所做的功的特色可知,摩擦力也是一种守旧力由万有引力对物体所做的功的特色可知,万有引力也是一种守旧力6.已知某质点的运动方程的重量式是x Rcost,yRsin t,式中R、ω是常数.则此质点将做()参看课本P19A.匀速圆周运动B.匀变速直线运动C.匀速直线运动D.条件不够,没法确立7.如下图,三个质量同样、线度同样而形状不一样的均质物体,它们对各自的几何对称轴的转动惯量最大的是()A.薄圆筒B.圆柱体参看课本P95C.正方体D.同样大8.以下对于弹性碰撞的说法正确的选项是()中学知识在讲堂已复习A.系统只有动量守恒B.系统只有机械能守恒C.系统的动量和机械能都守恒D.系统的动量和机械能都不守恒-1-9.某人张开双臂,手握哑铃,坐在转椅上,让转椅转动起来,若今后无外力矩作用.则当这人回收双臂时,人和转椅这一系统的() 参看课本P104A. 转速不变,角动量变大B. 转速变大,角动量保持不变C. 转速和角动量都变大D. 转速和角动量都保持不变10.以下对于卡诺循环的说法正确的选项是()参看课本P144A.卡诺循环是由两个均衡的等温过程和两个均衡的绝热过程构成的B. 卡诺循环是由两个均衡的等温过程和两个均衡的等体过程构成的C. 卡诺循环是由两个均衡的等体过程和两个均衡的等压过程构成的D.卡诺循环是由两个均衡的绝热过程和两个均衡的等压过程构成的11.如下图,在场强为E 的匀强电场中,有一个半径为R 的半球面,若场强E 的方向与半球面的对称轴平行,则经过这个半球面 的电通量大小为()参看课本P172-173A.R 2EB.2R 2EC. 2R 2E D.0一点电荷,放在球形高斯面的中心处,以下状况中经过高斯面的电通量会发生变化的()参看课本P173A. 将另一点电荷放在高斯面内B. 将高斯面半径减小C. 将另一点电荷放在高斯面外D. 将球心处的点电荷移开,但仍在高斯面内r13.如下图,在与均匀磁场 B 垂直的平面内有一长为l 的铜棒rMN ,设棒绕M 点以匀角速度 ω转动,转轴与B平行,则棒的动 生电动势大小为() 参看课本P257A. BlB. Bl 2C.1BlD.1 Bl 222v 、方均14.已知温度不变的某定量气体分子的算术均匀速率为根速率为v 2 、最概然速率为v p ,则这气体分子的三种速率的关系是()A .vv 2 v p B .v 2v v p 参看课本P125C .v p vv 2D .vv 2 v p15. 以下对于导体静电均衡的说法错误..()参看课本P190-191A. 导体是等势体,其表面是等势面B.导体内部场强到处为零C. 导体表面的场强到处与表面垂直D. 导体内部到处存在净电荷16. 以下哪一种现代厨房电器是利用涡流原理工作的()参看课本P259A. 微波炉B. 电饭锅C. 电热炉D. 电磁灶17. 以下对于电源电动势的说法正确的选项是()参看课本P249-250A.电源电动势等于电源把电荷从正极经内电路移到负极时所作的功 B. 电源电动势的大小只取于电源自己的性质,而与外电路没关-2-电动势的指向习惯为自正极经内电路到负极的指向沿着电动势的指向,电源将提升电荷的电势能18.磁介质有三种,以下用相对磁导率r正确表征它们各自特征的是()顺磁质顺磁质顺磁质D.顺磁质rrrr1,抗磁质2,抗磁质3,抗磁质4,抗磁质rrrr0,铁磁质r?1参看课本P39-2401,铁磁质r?10,铁磁质r01,铁磁质r?1在均匀磁场中,一带电粒子在洛伦兹力作用下做匀速率圆周运动,假如磁场的磁感应强度减小,则()参看课本P231A.粒子的运动速率减小B.粒子的轨道半径减小C.粒子的运动频次不变D.粒子的运动周期增大两根无穷长的载流直导线相互平行,通有大小相等,方向相反的I1和I2,在两导线的正中间放一个通有电流I的矩形线圈abcd,如图所示.则线圈遇到的协力为()参看课本P221-223A.水平向左B.水平向右C.零D.没法判断21.以下说法错误的选项是()参看课本P263..经过螺线管的电流越大,螺线管的自感系数也越大螺线管的半径越大,螺线管的自感系数也越大螺线管中单位长度的匝数越多,螺线管的自感系数也越大螺线管中充有铁磁质时的自感系数大于真空时的自感系数一电偶极子放在匀强电场中,当电矩的方向与场强的方向不一致时,则它所受的合力F和协力矩M分别为()参看课本P168-169A.F=0,M=0B.F≠0,M≠0C. F=0,M≠0D. F≠0,M=023.若一平面载流线圈在磁场中既不受磁力,也不受磁力矩作用,这说明()A.该磁场必定均匀,且线圈的磁矩方向必定与磁场方向平行参看课本P223-224该磁场必定不均匀,且线圈的磁矩方向必定与磁场方向平行该磁场必定均匀,且线圈的磁矩方向必定与磁场方向垂直该磁场必定不均匀,且线圈的磁矩方向必定与磁场方向垂直24.以下对于机械振动和机械波的说法正确的选项是()参看课本P306质点做机械振动,必定产活力械波波是指波源质点在介质的流传过程波的流传速度也就是波源的振动速度波在介质中的流传频次与波源的振动频次同样,而与介质没关25.在以下矢量场中,属守旧力场的是()A.静电场B.涡旋电场参看课本P180,212,258C.稳恒磁场D.变化磁场如下图,一根长为2a的细金属杆AB与载流长直导线共面,导线中经过的电流为I,金属杆A端距导线距离为 a.金属杆AB以-3-速度v 向上匀速运动时,杆内产生的动生电动势为( )参看课本P261(8-8)A.C.iIv ln2,方向由B →AB.20IvD.iln3,方向由B →A2Ivln2,方向由A →B 2iIvln3,方向由A →B2 27.在驻波中,两个相邻波节间各质点的振动( )参看课本P325A. 振幅同样,相位同样B. 振幅不一样,相位同样C. 振幅同样,相位不一样D. 振幅不一样,相位不一样28.两个质点做简谐振动,曲线如下图,则有()A. A 振动的相位超前 B 振动π/2 参看课本P291B. A 振动的相位落伍 B 振动π/2C.A 振动的相位超前B 振动πD.A 振动的相位与B 振动同相29.同一点光源发出的两列光波产生相关的必需条件是()参看课本P336A. 两光源的频次同样,振动方向同样,相位差恒定两光源的频次同样,振幅同样,相位差恒定两光源发出的光波流传方向同样,振动方向同样,振幅同样D. 两光源发出的光波流传方向同样,频次同样,相位差恒定30.如下图,在一圆形电流I 所在的平面内选用一个齐心圆形闭合环路 L ,则由安培环路定理可知( )参看课本P235A.?rr 0,且环路上任一点B=0 BdlLrrB.?0,但环路上任一点B ≠0BdlLrrC. ?L Bdl0,且环路上任一点 B ≠0 D.?rr0,且环路上任一点B=常量BdlL二.填空题:平行板电容器充电后与电源断开,而后充满相对电容率为εr 的各向均匀电介质.则 其电容C 将______,两极板间的电势差 U 将________.(填减小、增大或不变 ) 参看课本P195,200某质点沿x 轴运动,其运动方程为:x=10t –5t 2,式中x 、t 分别以m 、s 为单位.质 点随意时辰的速度 v=________,加快度 a =________. 参看课本P16-1733. 某人相对地面的电容为 60pF ,假如他所带电荷为 6.0 108C ,则他相对地面的电 势差为__________,他拥有的电势能为 _____________. 参看课本P200,202 34. 一人从10m 深的井中提水,开端时,桶中装有 10kg 的水,桶的质量为 1kg ,由 于水桶漏水,每高升 1m 要漏去0.1kg 的水,则水桶匀速地从井中提到井口,人所作的功 为____________.参看课本P70(2-14)质量为m 、半径为R 、自转运动周期为T 的月球,若月球是密度均匀散布的实球体,则其绕自转轴的转动惯量是__________,做自转运动的转动动能是__________.参看课本 P100(3-4)-4-1mol氢气,在温度为127℃时,氢气分子的总均匀动能是_____________,总转动动能是______________,内能是_____________.〔已知摩尔气体常量R=J/(mol·K)参看课本P120(4-8)如下图,两个平行的无穷大均匀带电平面,其面电荷密度分别为+σ和-σ.则地区Ⅱ的场强盛小 EⅡ=___________.参看课本P177用必定波长的单色光进行双缝干预实验时,要使屏上的干预条纹间距变宽,可采纳的方法是:(1)_________________________;________________________.参看课本P344经过磁场中随意闭合曲面的磁通量等于_________.感生电场是由______________产生的,它的电场线是__________曲线.(填闭合或不闭合)参看课本P212,25840.子弹在枪膛中行进时遇到的协力与时间关系为F 400 4105tN,子弹飞出枪口的速度为200m/s,则子弹遇到的冲量为_____________.参看课本P55-56将电荷量为×10-8C的点电荷,从电场中A点移到B点,电场力做功×10-6J.则A、B两点的电势差U AB=____________.参看课本P18142.如下图,图中O点的磁感觉强度大小B=______________.参看课本P229-23043.一个螺线管的自感L=10mH,经过线圈的电流I=2A,则它所储藏的磁能W=_____________.参看课本P26744.理想气体在某热力学过程中内能增添了E=250J,而气体对外界做功A=50J,则气体汲取的热量Q=.参看课本P132-13345.一平面简谐波沿x轴的正方向流传,波速为100m/s,t=0时的曲线如下图,则简谐波的波长λ=____________,频次ν=_____________.参看课本P309两个齐心的球面,半径分别为R1、R2(R1R2),分别带有总电量为Q1、Q2.设电荷均匀散布在球面上,则两球面间的电势差U12=________________________.参看课本P186-187三.计算题:47.一正方形线圈由外皮绝缘的细导线绕成,共绕有100匝,每边长为10cm,放在B=的磁场中,当导线中通有I的电流时,求:(1)线圈磁矩m的大小;(2)作用在线圈上的磁力矩M的最大值.参看课本P225(7-7)如下图,已知子弹质量为m,木块质量为M,弹簧的劲度系数为k,子弹以初速v o射入木块后,弹簧被压缩了L.设木块与平面间的滑动摩擦因数为μ,不计空气阻力.求初速v o.参看课本P80(2-23)一卡诺热机的效率为40%,其工作的低温热源温度为27℃.若要将其效率提升到50%,求高温热源的温度应提升多少?参看课本P148(5-14)-5-质量均匀的链条总长为l,放在圆滑的桌面上,一端沿桌面边沿下垂,其长度为a,如下图.设开始时链条静止,求链条刚才走开桌边时的速度.参看课本P70(2-18)一平面简谐波在t=0时辰的波形如下图,设波的频次ν=5Hz,且此时图中P点的运动方向向下,求:(1)此波的波函数;(2)P点的振动方程和地点坐标.参看课本P318(10-11)52.如下图,A和B两飞轮的轴杆可由摩擦啮合器使之连结,A轮的转动惯量J A=10kg·m2.开始时,B轮静止,A轮以n A=600r/min的转速转动.而后使A和B连结,连结后两轮的转速n=200r/min.求:(1)B轮的转动惯量J B;(2)在啮合过程中损失的机械能 E.参看课本P105(3-9及增补)53.如下图,载流I的导线处于磁感觉强度为B的均匀磁场中,导线上的一段是半径为R、垂直于磁场的半圆,求这段半圆导线所受安培力.参看课本P224-22554.如下图的截面为矩形的环形均匀密绕的螺绕环,环的内外半径分别a和b,厚度为h,共有N匝,环中通有电流为I.求: (1)环内外的磁感觉强度B;(2)环的自感L.参看课本P237-238(7-23及增补)55.如下图,一长直导线通有电流I,在与其相距d处放在有一矩形线框,线框长为l,宽为a,共有N匝.当线框以速度v沿垂直于长导线的方向向右运动时,线框中的动生电动势是多少?参看课本P255(8-3)-6-二.填空题:31. 增大减小32.1010tm/s10tm/s 233.1000VJ2234. 1029(或1050)J35. 2mR24mR36.4986J 3324J8310J55T 237.38.(1)将两缝的距离变小 (2) 将双缝到光屏的距离变大39. 零变化的磁场闭合40. Ns42.0I112R43. J44. 300J45. m125HzQ 1 1 146.R 1 R 240三.计算题:47. 线圈磁矩m NIS 100 10210Am 2线圈最大磁力矩MmaxmB 105 50Nm设子弹质量为m ,木块质量为M ,子弹与木块的共同速度v由动量守恒定律得 mv 0(mM)v①由功能原理得(m M)gL1kL 2 1(mM)v 2②22由①、②式得vm MkL 2 2(mM)gL 0mm M49.卡诺热机效率:1T 2 T 1T 2 300 T 11 500K1同理T 2300600KT 111 高温热源应提升的温度T 1T 1 600 500100K50. 51.52. 设桌面为零势面,由机械能守恒定律得amg a mg l1 mv 2l 22 2vg (l 2 a 2)l-7-51.解:(1)由图中v <0知此波沿x 轴负向流传,既而知原点此时向y 正向运动P原点处yA,v0 02又x=3m 处 y 3 0,v 3 032 32由2x2x3 0 得236m223yAcos2 2 x此波的波函数t10 tx2m183(2)P 点处y P0,v P <0P2P 点振动方程y PAcos(2t P )10tm2P 点地点坐标x p33621m322(1)由动量矩守恒定律得J A A(J A J B ) J A 2n A (J AJ B )2n10600 (10 J B )20060 60J B 20kgm 2损失的机械能E1J A2 1 (J A J B ) 21J A (2 n A ) 21 (J A J B )(2 n) 22 A222221 10 4 26001 (10 20) 4 2200104J2 6026053.依题意得F xdF x 0dF ydFsin BIdlsinBIRsind FF yBIRsind2BIR-8-r r54.(1)?Bdr B 2 r 0I环外的磁感觉强度B 0环内的磁感觉强度B 2 r0NIB 0NI2 r(2)dBhdr0NIhdr 2 rd0NIhb10NIhb2dr2 lnara环的自感LNN 2h bI2lnaI线框的动生电动势12N(B 1B 2)lv0NIlv1 1 0NIlav2 dda2d(da)-9-。
P习 题 55-2.如习题5-2图所示的直角三角形ABC 的A 点上有电荷q 1=1.8×10-9 C ,B点上有电荷q 2=-4.8×10-9 C ,试求C 点的电场强度(设BC=0.04m ,AC=0.03m )。
解:设CB 为x 轴,AC 为y 轴,则C N E x/107.204.04108.44209⨯=⨯⨯=-πε,C N E /108.103.04108.14209y ⨯=⨯⨯=-πε,C N E E E y x /102.3422⨯=+=,电场方向和CB 的夹角为︒==7.33arctanxy E E ϕ5-3.用绝缘细线弯成的半圆环,半径为R ,其上均匀地带有正电荷Q ,试求圆心处的电场强度。
[解] 将半圆环分成无穷多小段,取一小段dl ,带电量l RQ q d d π=dq 在O 点的电场强度20204d 4d d R lR Q R q E πεππε== 从对称性分析,y 方向的电场强度相互抵消,只存在x l R Q E E d sin 4sin d d 302x ⋅=⋅=θεπθ θd d R l =θεπθd 4sin d 202x RQ E =2020202x x 2d 4sin d R QR Q E E E επθεπθπ====⎰⎰ 方向沿x 轴正方向5-4.如习题5-4图所示,真空中一长为L 的均匀带电细直杆,总电量为q ,试求在直杆延长线上到杆的一端距离为d 的点P 的电场强度。
[解] 建立如图所示坐标系ox ,在带电直导线上距O 点为x 处取电荷元x Lqq d d =,它在P 点产生的电电场强度度为 ()x x d L Lq x d L qE d 41d 41d 2020-+=-+=πεπε则整个带电直导线在P 点产生的电电场强度度为()d L d qx x d L Lq E L+=-+=⎰002041d 41πεπε故()iE d L d q+=04πε5-5.一厚度为d 的“无限大”均匀带电平板,电荷体密度为ρ。
求板内外的电场分布,并画出电场强度随坐标x 变化的图线(设原点在带电平板的中央平面上,Ox 轴垂直于平板)。
解:做底面平行带电平板、侧面垂直于带电平板的圆柱状高斯面,高斯面的中心位于带电平板的中央平面上。
设圆柱状高斯面的高度为2x , 根据高斯定理,有:习题5-2图ABC0022222ερερxS ES d x dS ES d x =<=>时,时,,得⎪⎩⎪⎨⎧>≤≤-<=2/2/2/-d/2x )d/(2x/)d/(2-000d x d x d E ερερερ5-6.一半径为R 的带电球体,其电荷体密度分布为ρ=Ar (r ≤R ),ρ=0 (r >R ),A 为常量。
试求球内、外的场强分布。
[解] 在带电球体内外分别做与之同心的高斯球面。
应用高斯定理有024επqrE =⋅q 为高斯球面内所包围的电量。
设距球心r 处厚度为d r 的薄球壳所带电量为d qr Ar r r q d 4d 4d 32ππρ=⋅=r ≤R 时 403d 4Ar r Ar q rππ==⎰解得 024εAr E = (r ≤R ) (或24Ar ε=r E e ) r >R 时高斯面内包围的是带电体的总电量Q4030d 4d AR r Ar q Q RR ππ===⎰⎰应用高斯定理024επQrE =⋅2044r AR E ε= (r >R ) (或r E 2044r AR ε=) 当A >0时,电场强度方向均径向向外;当A <0时,电场强度方向均指向球心。
5-7. 如习题5-7图所示,一半径为R 的无限长圆柱面形薄筒,均匀带电,单位长度上的带电量为λ,试求圆柱面内外的电场分布。
解:由条件知电场分布具有轴对称性,做半径为r 的同轴圆柱高斯面,由高斯定理,0202ελl πrl ,E R r πrl ,E R r =⋅>=⋅<时时,得⎪⎩⎪⎨⎧><=R r rR r E ,2,00πελ5-8.如习题5-8图所示,A 、B 为真空中两个平行的“无限大”均匀带电平面,已知两平面间的电场强度为E 0,两平面外侧电场强度大小都是E 0/3,方向如图。
求两平面A 、B 上的面电荷密度σA 和σB 。
[解] 无限大平面产生的电场强度为02εσ=E则A A 2εσ=EB B 2εσ=E 习题5-8图000习题5-7图⎪⎪⎩⎪⎪⎨⎧=+=-322220A 0B 0A0B E E εσεσεσεσ 解得 00A 32E εσ-= 00B 34E εσ=5-9.如习题5-9图所示为一真空中半径为R 的均匀带电球面,总电量为q (q <0)。
今在球面上挖去非常小的一块面积△S (连同电荷),且假设不影响原来的电荷分布,求挖去△S 后球心处电场强度的大小和方向。
解:原来球心处电场强度为零,挖去△S 后球心处电场强度等于△S 处电荷产生的电场强度的负值,即等于4022*******R S q R S q R επππε∆=∆,方向由△S 指向球心。
5-10.习题5-10图为两个半径均为R 的非导体球壳,表面上均匀带电,带电量分别为+Q 和-Q ,两球心距离为d (d>>2R ),求两球心间的电势差。
[解] 设带正电的球壳中心的电势为1U ,带负电的为2U 。
根据电势叠加原理有d QR Q U 00144πεπε-= dQR Q U 00244πεπε+-= 两球心间的电势差⎪⎭⎫⎝⎛-=-=-=d R Q dQ RQ U U U 112220002112πεπεπε5-11. 如习题5-11图所示为一均匀带电的球壳,其电荷体密度为ρ,球壳内表面半径为R 1,球壳外表面半径为R 2。
设无穷远处电势为零,求空腔内任一点的电势。
解:利用电势叠加法,将球壳分成无穷多个半径为r ,厚度为d r 的薄球壳,有)(2444dQ dU U 21220R R R R 020R R 212121R R r dr r r-====⎰⎰⎰ερπεπρπε5-12.电量q 均匀分布在长为2l 的细杆上,求在杆外延长线上与杆端距离为a 的点P 的电势(以无穷远为电势零点)。
[解] 取如图所示的电荷元d q ,x lqq d 2d =,它在P 点产生的电势为 ()()x a l xl q x a l q u -+=-+=2d 82d 41d 00πεπε 则整个带电直线在P 点产生的电势为()aal l q x a l x lq x a l xl qU l+=-+=-+=⎰⎰2ln82d 82d 802000πεπεπε 5-13.如习题5-13图所示,把一块原来不带电的金属板B 移近一块已带有正电荷Q 的金属板A ,平行放置。
设两板面积都是S ,板间距为d ,S d <<,忽略边缘效应,求B 板两个表面的感应电荷面密度和A 、B 两板间的电势差。
[解] (1)两带电平板导体相向面上电量大小相等符号相反,而相背面上电量大小相等符号相同,因此当板B 不接地,电荷分布为习题5-9图习题5-10图习题5-13图+QP dqOB 板靠近A 一侧S2Q -=σ,远离A 一侧S2Q =σ 因而板间电场强度为SQ E 02ε=电势差为SQdEd U 0AB 2ε== 5-14.如习题5-14图所示,一厚度为d 的无限大均匀带电导体板,单位面积上两表面带电量之和为σ。
试求离左表面的距离为a 的点与离右表面的距离为b 的点之间的电势差。
[解] 导体板内场强0=内E ,由高斯定理可得板外场强为2εσ=E故A 、B 两点间电势差为()a b x x x U bd a da d a a aBA -=++-=⋅=⎰⎰⎰⎰++++0000AB 2d 2d 0d 2d εσεσεσl E 5-15.半径都是R 的两根无限长均匀带电直导线,其电荷线密度分别为和,两直导线平行放置,相距为d (d >>R )。
试求该导体组单位长度的电容。
[解] 由高斯定理可求出,两导线之间任一点的电电场强度度为()r d r E -+=0022πελπελ 两导线间的电势差为()RRd rr d r r U R d R Rd RRd R-=-+=⋅=⎰⎰⎰---ln d 2d 2d 000πελπελπελ∆r E该导体组单位长度的电容Rd RRd Uln lnC 0πεπελ=-=∆=5-16.一电容为C 的空气平行板电容器,接端电压为U 的电源充电后随即断开。
试求把两个极板间距增大至n 倍时外力所做的功。
[解] 断开电源后Q 不变,电容由原来的dSC0ε=,变为ndSC 0ε='外力所做的功即相当于系统静电能的改变量221CU W =221U C W ''='λ+λ--λR E -λxdP rd-rOE λR +λBA-Q/2Q/2Q/2Q/2ⅠⅢⅡ abdσ由于Q 不变,C n C '=,所以nU U =' 因此2221U n C W '=' ()()12121222-=-'=-'=∆n CU C n C U W W W即外力做功()1212-=n CU A。