人教版九年级数学下册反比例函数专题讲义
- 格式:doc
- 大小:1.36 MB
- 文档页数:37
专题26.1反比例函数、定义图象与性质(八大考点)【考点1反比例函数的定义】【考点2 反比例函数系数K的几何意义】【考点3 反比例函数的图象】【考点4 反比例函数图象的对称性】【考点5 反比例函数的性质】【考点6 反比例函数图象点坐标特征】【考点7 待定系数法求反比例函数解析式】【考点8 反比例函数与一次函数的交点问题】【考点1反比例函数的定义】1.(2023秋•来宾期中)下列关系式中表示y是x的反比例函数的是( )A.y=B.y=2x+1C.y=x2D.y=【答案】D【解答】解:A、y=是正比例函数,不符合题意;B、y=2x+1是一次函数,不符合题意;C、y=x2中,x的次数不是1,不符合题意;D、y=是反比例函数,符合题意.故选:D.2.(2023秋•苍梧县期中)反比例函数的比例系数是( )A.3B.2C.D.【答案】D【解答】解:,故.故选:D.3.(2023秋•临颍县期末)已知函数y=(m+1)是反比例函数,则m的值为( )A.1B.﹣1C.1或﹣1D.任意实数【答案】A【解答】解:∵函数y=(m+1)是反比例函数,∴m2﹣2=﹣1且m+1≠0,解得m=1.故选:A.4.(2022秋•朝阳期末)反比例函数(m为常数)当x<0时,y随x的增大而增大,则m的取值范围是( )A.m<0B.C.D.m≥【答案】C【解答】解:根据题意得:1﹣2m<0,解得:m>.故选:C.【考点2 反比例函数系数K的几何意义】5.(2023秋•娄底期末)如图,点A在反比例函数y=(k≠0)的图象上,过点A作AB⊥x轴于点B,若△OAB的面积为3,则k的值为( )A.﹣6B.6C.﹣3D.3【答案】A【解答】解:根据题意可知:S=|k|=3,△AOB又反比例函数的图象位于第二象限,k <0,则k =﹣6.故选:A .6.(2024•浙江一模)如图,点A 在反比例函数y =(x >0)的图象上,点B 在反比例函数y =(x <0)的图象上,AB ∥x 轴,点C 在x 轴上,△ABC 的面积为3,则k 的值为( )A .1B .﹣1C .2D .﹣2【答案】D【解答】解:连接OA ,OB ,如图,∵AB ⊥y 轴,∴OC ∥AB ,∴S △OAB =S △ABC =3,∴+|k |=3,∵k <0,∴k =﹣2.故选:D .7.(2024•新吴区一模)如图,第一象限的点A 、B 均在反比例函数的图象上,作AC⊥x 轴于点C ,BD ⊥x 轴于点D ,连接AO 、BO ,若OC =3CD ,则△AOB 的面积为( )A .B .C .D .【答案】D【解答】解:设CD =a ,则OC =3CD =3a ,∴OD =OC +CD =4a ,∵点A 、B 均在反比例函数的图象上,作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,∴点A,B ,四边形ACDB 为直角梯形,∴AC =,BD =,∴S 梯形ACDB =(AC +BC )•CD ==,根据反比例函数比例系数的几何意义得:S △OAC =S △OBD ,∵S △AOB =S △OAC +S 梯形ACDB ﹣S △OBD =S 梯形ACDB =.故选:D .8.(2024•钦州一模)点P ,Q ,R 在反比例函数(常数k >0,x >0)图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线,图中所构成的三处阴影部分的面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 1+S 3=15,则S 2的值为( )A .2B .3C .4D .5【答案】B【解答】解:∵CD=DE=OE,∴可以假设CD=DE=OE=a,则P(,3a),Q(,2a),R(,a),∴CP=,DQ=,ER=,∴OG=AG,OF=2FG,OF=GA,∴S1=S3=2S2,∵S1+S3=15,∴S3=9,S1=6,S2=3,故选:B.9.(2024•黔东南州一模)如图,已知A(1,y1)、B(4,y2)为反比例函数y=(x>0)图象上的两点,连接OA,OB,AB,则三角形OAB的面积是( )A.4B.C.D.【答案】D【解答】解:由A(1,y1)、B(4,y2)为反比例函数y=(x>0)图象上的两点,得A(1,4)、B(4,1),得直线AB表达式为:y=5﹣x,得如图中C(0,5),故三角形OAB的面积=三角形OCB的面积﹣三角形OAC的面积=5×4÷2﹣5×1÷2=7.5,故选:D.10.(2024春•德惠市期中)如图,在▱ABCD 中,AB ∥x 轴,点B 、D 在反比例函数y =(k ≠0)的图象上,若▱ABCD 的面积是8,则k 的值是( )A .2B .4C .6D .8【答案】B【解答】解:连接OB ,∵四边形ABCD 是平行四边形,▱ABCD 的面积是8,∴△ABC 的面积=的面积=,AB =CD ,AB ∥CD ,∴点B 、D 横坐标互为相反数,∴点B 、D 纵坐标也互为相反数,又∵AB ∥x 轴,AB ∥CD ,∴OA =OC ,∴,∴k =2S △AOB =S △ABC =4,故选:B.11.(2024•江西模拟)如图,在平面直角坐标系中,点P在反比例函数y=(x>0)的图象上,点A,B在x轴上,且PA⊥PB,PA交y轴于点C,AO=BO=BP.若△ABP的面积是4,则k的值是( )A.1B.2C.D.【答案】B【解答】解:连接OP,作PD⊥x轴于D,∵△ABP的面积是4,AO=BO,∴△OBP的面积为2,∵PA⊥PB,AO=BO=BP,∴sin∠PAB=,∵sin30°=,∴∠PAB=30°,∴∠PBA=60°,∴△POB为等边三角形,∴S△POD =S△POB=1,∴=1,∴k=±2,∵反比例函数的图象位于第一象限,∴k =2.故选:B .12.(2023秋•昌图县期末)如图,过x 轴上任意点P 作y 轴的平行线,分别与反比例函数y =(x >0),y =﹣(x >0)的图象交于A 点和B 点,若C 为y 轴任意一点.连接AB 、BC ,则△ABC 的面积为 .【答案】.【解答】解:设点P 坐标为(a ,0)则点A 坐标为(a ,),B 点坐标为(a ,﹣)∴S △ABC =S △APC +S △CPB =+==.故答案为:.【考点3 反比例函数的图象】13.(2023秋•岳阳楼区期末)如图所示,该函数表达式可能是( )A .y =3x 2B .C .D .y =3x【答案】C【解答】解:由图象可得,该函数图象位于第二、四象限,在每个象限内y随x的增大而增大,且是双曲线,故选:C.14.(2024春•普陀区期中)反比例函数与一次函数y=﹣kx+k在同一坐标系中的大致图象是( )A.B.C.D.【答案】A【解答】解:当k<0时,﹣k>0,反比例函数在二,四象限,一次函数y=﹣kx+k 的图象过一、三、四象限,无符合选项;当k>0时,﹣k<0,反比例函数在一、三象限,一次函数y=﹣kx+k的图象过一、二、四象限,A选项符合.故选:A.15.(2024•昭阳区模拟)在同一直角坐标系中,函数y=kx+k与的图象大致为( )A.B.C.D.【答案】C【解答】解:①当k>0时,一次函数y=kx+k经过一、二、三象限,反比例函数的的图象在一、三象限,故C选项的图象符合要求;②当k<0时,一次函数y=kx+k经过二、三、四象限,反比例函数的的图象在二、四象限,没有符合条件的选项.故选:C.16.(2024•青岛一模)一次函数y=ax+b与反比例函数在同一直角坐标系中的图象可能是( )A.B.C.D.【答案】D【解答】解:A、由一次函数y=ax+b的图象知,a>0,b>0,则ab>0,所以反比例函数y=的图象位于第一、三象限,不符合题意;B、由一次函数y=ax+b的图象知,a>0,b>0,则ab>0,所以反比例函数y=的图象位于第一、三象限,符合题意;C、由一次函数y=ax+b的图象知,a>0,b<0,则ab<0,所以反比例函数y=的图象位于第二、四象限,不符合题意;D、由一次函数y=ax+b的图象知,a<0,b<0,则ab>0,所以反比例函数y=的图象位于第一、三象限,不符合题意;故选:D.17.(2024春•泰兴市期中)函数y=kx﹣k与在同一平面直角坐标系内的图象可能是( )A.B.C.D.【答案】B【解答】解:A.∵由反比例函数的图象在一、三象限可知,﹣k>0,∴k<0,∴一次函数y=kx﹣k的图象应经过一、二、四象限,故本选项不符合题意;B.∵由反比例函数的图象在二、四象限可知,﹣k<0,∴k>0,∴一次函数y=kx﹣k的图象应经过一、三、四象限,故本选项符合题意;C.∵由反比例函数的图象在一、三象限可知,﹣k<0,∴k>0,∴一次函数y=kx﹣k的图象应经过一、三、四象限,故本选项不符合题意;D.∵由反比例函数的图象在一、三象限可知,﹣k>0,∴k<0,∴一次函数y=kx﹣k的图象经过一、二、四象限,故本选项不符合题意.故选:B.18.(2024•商河县一模)反比例函数的图象如图所示,则一次函数y=kx+b的图象可能是( )A.B.C.D.【答案】D【解答】解:由反比例函数的图象可知:kb>0,当k>0,b>0时,∴直线经过一、三、四象限,当k<0,b<0时,∴直线经过一、二、四象限,故选:D.【考点4 反比例函数图象的对称性】19.(2023秋•宣汉县期末)正比例函数与反比例函数的图象相交于A、B两点,其中点A的坐标为(3,2),那么点B的坐标为( )A.(﹣3,﹣2)B.(﹣3,2)C.(﹣2,﹣3)D.(2,3)【答案】A【解答】解:解方程组得,.因为点A的坐标为(3,2),那么点B的坐标为(﹣3,﹣2).故选:A.20.(2023秋•竞秀区期末)如图,点P(﹣2a,a)是反比例函数y=的图象与⊙O的一个交点,图中阴影部分的面积为10π,则该反比例函数的表达式为( )A.y=﹣B.y=﹣C.y=﹣D.y=﹣【答案】D【解答】解:设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:πr2=10π.解得:r=2.∵点P(﹣2a,a)是反比例函数y=(k<0)与⊙O的一个交点.∴﹣2a2=k且=r.∴a2=8.∴k=﹣2×8=﹣16,则反比例函数的解析式是:y=﹣.故选:D.21.(2023秋•九龙坡区校级月考)反比例函数的图象经过点A(2,﹣4),则当x=﹣2时,y的值为( )A.﹣4B.C.D.4【答案】D【解答】解:因为反比例函数的图象是双曲线,且关于坐标原点成中心对称,又点A(2,﹣4)在反比例函数的图象上,所以点A关于坐标原点的对称点也在该反比例函数的图象上.又点A关于坐标原点的对称点的坐标为(﹣2,4),即x=﹣2时,y=4.故选:D.【考点5 反比例函数的性质】22.(2024春•长寿区校级期中)若点P(1,3)在反比例函数的图象上,则k的值为( )A.B.3C.﹣3D.【答案】B【解答】解:∵点P(1,3)在反比例函数的图象上,∴,解得:k=3.故选:B.23.(2024春•苏州期中)对于反比例函数,下列说法正确是( )A.函数图象位于第一、三象限B.函数图象经过点(﹣2,﹣3)C.函数图象关于y轴对称D.x>0时,y随x值的增大而增大【答案】D【解答】解:A.因为y=﹣,k=﹣6<0,所以函数图象位于第二、四象限,不符合题意;B.当x=﹣2时,y=﹣=3,函数图象经过点(﹣2,3),不符合题意;C.函数图象关于原点对称,不符合题意;D.x>0时,y随x值的增大而增大,符合题意.故选:D.24.(2024•临沂一模)如图,平面直角坐标系xOy中有4条曲线分别标注着①,②,③,④,是双曲线y=﹣的一个分支的为( )A.①B.②C.③D.④【答案】A【解答】解:∵双曲线y=﹣中,k<0,∴双曲线y=﹣的分支在第二、四象限,可排除③④;由图可知,①经过(﹣2,3),②经过(﹣1,3),而3=﹣,故为双曲线y=﹣的一个分支的是①,故选:A.25.(2024•绥江县模拟)反比例函数的图象位于( )A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限【答案】D【解答】解:∵,k=﹣3<0,∴函数图象过二、四象限.故选:D.26.(2024•香洲区校级一模)若反比例函数y=在每个象限内的函数值y随x的增大而减小,则( )A.k<0B.k>0C.k>1D.k<1【答案】C【解答】解:∵反比例函数y=在每个象限内的函数值y随x的增大而减小,∴k﹣1>0,∴k>1,故选:C.27.(2023秋•南开区期末)若函数的图象在每个象限内y的值随x的增大而增大,则m的取值范围是( )A.m>2B.m>﹣2C.m<2D.m<﹣2【答案】C【解答】解:∵函数的图象在每个象限内y的值随x的增大而增大,∴m﹣2<0,解得m<2.故选:C.28.(2024•顺德区二模)若点(2,3)在反比例函数的图象上,下列哪个点也在函数图象上( )A.(﹣2,﹣3)B.(2,﹣3)C.(﹣2,3)D.(﹣3,2)【答案】A【解答】解:∵点(2,3)在反比例函数的图象上,∴k=6,∵A(﹣2,﹣3)中纵横坐标之积=﹣2×(﹣3)=6,∴点A在反比例函数的图象上.故选:A.【考点6 反比例函数图象点坐标特征】29.(2024•佛山一模)已知点A(﹣2,a),B(1,b),C(3,c)在反比例函数的图象上,下列结论正确的是( )A.a<b<c B.a<c<b C.b<c<a D.c<b<a【答案】B【解答】解:∵反比例函数的图象分布在第一、三象限,∴在每一象限内y随x的增大而减小,∵点A(﹣2,a),B(1,b),C(3,c)在反比例函数的图象上,且﹣2<0<1<3,∴a<0,b>c>0,∴a<c<b,故选:B.30.(2024•怀化一模)反比例函数的图象一定经过的点是( )A.(1,﹣16)B.(2,﹣8)C.(4,﹣4)D.(8,2)【答案】D【解答】解:反比例函数图象上点的纵横坐标之积为定值16,A、1×(﹣16)=﹣16≠16,点(1,﹣16)不在反比例函数图象上,不符合题意;B、2×(﹣8)=﹣16≠16,点(2,﹣8)不在反比例函数图象上,不符合题意;C、4×(﹣4)=﹣16≠16,点(4,﹣4)不在反比例函数图象上,不符合题意;D、8×2=16,点(8,2)在反比例函数图象上,符合题意.故选:D.31.(2024•西和县二模)已知反比例函数的图象经过点(2,6),若该反比例函数的图象也经过点(﹣1,n),则n的值为( )A.﹣12B.3C.﹣6D.﹣3【答案】A【解答】解:∵反比例函数的图象经过点(2,6),点(﹣1,n),∴2×6=﹣1×n,∴n=﹣12.故选:A.32.(2024春•兴化市期中)函数y=﹣(k≠0,k为常数)的图象上有三点(﹣3,y1),(﹣2,y2),(4,y3),则函数值的大小关系是( )A.y1<y2<y3B.y3<y2<y1C.y2<y3<y1D.y3<y1<y2【答案】D【解答】解:因为﹣|k|<0,所以函数y=﹣图象在第二、四象限.由于在第二象限,y值随x的增大而增大,(﹣3,y1),(﹣2,y2)在第二象限的双曲线的分支上,因为﹣3<﹣2,所以y1<y2,且y1,y2都是正数.在第四象限双曲线中的点,对应的y值小于0,而点(4,y3)在第四象限的双曲线的分支上,则y3<0,所以大小关系是y3<y1<y2.故选:D.【考点7 待定系数法求反比例函数解析式】33.已知点(―2,5)在反比例函数y=kx的图象上,则k的值为()A.10B.―10C.25D.―2534.在平面直角坐标系中,点A(1,4a),B(a,a+2)都在反比例函数y=kx(k≠0)的图象上,则k的值为()A.2B.4C.6D.835.已知点A(2,3)在反比例函数y=k的图象上,下列各点中也在该函数图象上的是()xA.(―2,3)B.(―1,―6)C.(1,―6)D.(―3,2)36.如图,平面直角坐标系中,四边形OABC为菱形,点A(4,3),点C在x轴正半轴,则经过点B的反比例函数的表达式为.37.在平面直角坐标系中,将点A(2,3)向下平移5个单位长度得到点B,若点B恰好在反比例函数的图象上,则此反比例函数的表达式为.【考点8 反比例函数与一次函数的交点问题】39.如图,一次函数y=ax+b与反比例函数y=k的图象交于点A(1,2),Bx的解集是()(m,―1).ax+b≥kxA.x<―2或0<x<1B.x≤―2或0<x≤1C.―2<x<0或x>1D.―2≤x<0或x≥140.如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=k2(k2≠0)相交于xA、B两点,已知点A的坐标为(1,2),则点B的坐标()A.(―1,―2)B.(―2,―1)C.(―1,―1)D.(―2,―2)41.如图,一次函数y=x+3与反比例函数y=k相交于点A(m,4)和点B(―4,n),则关于x的x不等式x+3<k的解集是()xA.x<―4或0<x<1B.―4<x<0或x>1C.―1<x<0或x>4D.x<―1或0<x<442.如图所示是一次函数y1=kx+b和反比例函数y2=m的图象,观察图象写出当y1>y2时,xx的取值范围为()A.x<―2或0<x<3B.x<―2或3<xC.―2<x<0或3<x D.―2<x<0或0<x<3【答案】C【分析】本题考查了一次函数与反比例函数的交点问题,根据图象即可求解,掌握数形结合思想是解题的关键.【详解】解:由函数图象可得,当―2<x<0或x>3时,y1>y2,故选:C.43.在平面直角坐标系中,函数y=6―x与y=4(x>0)的图象交于点A,B,若点A的坐标为x(m,n),则宽为m,长为n的矩形的面积、周长分别为()A.4,6B.4,12C.8,6D.8,1244.如图,一次函数y=k1x+b的图象与反比例函数y=k2(x>0)的图象相交于A(1,4),Bx时,x的取值范围为()(4,1)两点,当k1x+b<k2xA.x<1B.0<x<1或x>4C.1<x<4D.x>4【答案】B【分析】本题考查反比例函数与一次函数的综合应用.找到直线在双曲线下方时,x的取值范围即可得解.45.已知反比例函数y=k与正比例函数y=ax的一个交点坐标为(2,3),则另一个交点坐标x为()A.(―2,―3)B.(―3,―2)C.―1,―12D,122【答案】A【分析】本题考查了正比例函数与反比例函数的性质,抓住二者图象均关于原点对称是解题关键.【详解】解:∵正比例函数与反比例函数的图象均关于原点对称,∴两图象的交点关于原点对称∵一个交点为(2,3),∴另一个交点坐标为(―2,―3)故选:A。
反比例函数的应用复习:反比例函数y =kx 比例系数k 的意义知识点一:反比例函数与正比例函数的交点问题 直线y =k 1x 与双曲线y =k2x 的交点情况:①当k 1与k 2满足:______________,直线y =k 1x 与双曲线y =k2x无交点②当k 1与k 2满足:_______________,直线y =k 1x 与双曲线y =k2x有两个交点。
若其中一个交点坐标为(m ,n ),另一个交点坐标为___________. 【例1】已知函数y =ax 和y =4−a x的图象有两个交点,其中一个交点的横坐标为1,则两个函数图象的交点坐标是 .【变式一】已知函数y =k1x 与y =k 2x x 的图象交点是(-2,5)是,则它们的另一个交点是( )A .(2,5)B .(5,-2)C .(-2,-5)D .(2,-5)【变式二】在同一直角坐标平面内,如果直线y =k 1x 与双曲线y =k2x 有交点,那么k 1和k 2的关系一定是( )A. k 1<0,k 2>0B. k 1>0,k 2<0 C . k 1、k 2同号 D. k 1、k 2异号【变式三】已知:如图,在平面直角坐标系xOy 中,Rt △OCD 的一边OC 在x 轴上,∠C =90°,点D 在第一象限,OC =3,DC =4,反比例函数的图象经过OD 的中点A . (1)求该反比例函数的解析式;(2)若该反比例函数的图象与Rt △OCD 的另一边交于点B ,求过A 、B 两点的直线的解析式.yxN M AOPQ知识点二:反比例函数与一次函数直线y =k 1x +b 与双曲线y =k2x 的交点情况:【例2】当k <0时,反比例函数y =kx 和一次函数y =k 1x +2的图象大致是图中的 ( )A B C D【变式1】如图,已知一次函数y 1=x +m (m 为常数)的图象与反比例函数y 2=kx (k 为常数,k ≠0)的图象相交于点A (1,3).(1)求这两个函数的解析式及其图象的另一交点B 的坐标; (2)观察图象,写出使函数值y 1≥y 2的自变量x 的取值范围.【变式二】如图,已知一次函数y =kx +b(k ≠0)的图象与反比例函数y =−8x (m ≠0)的图象交于A ,B 两点,且A 点的横坐标与B 点的纵坐标都是2 ; (1)求一次函数的解析式; (2)求△AOB 的面积.yxBAO【变式三】已知正比例函数和反比例函数的图象都经过点A(3,3).(1)求正比例函数和反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;(3)在(2)中的一次函数图象与x轴、y轴分别交于C、D,求四边形OABC的面积.【综合例题1】已知正比例函数y=2x的图象与反比例函数y=kx(k≠0)在第一象限内的图象交于点A,过点A作x轴的垂线,垂足为点P,已知△OAP的面积为1.(1)求反比例函数的解析式;(2)有一点B的横坐标为2,且在反比例函数图象上,则在x轴上是否存在一点M,使得MA+MB最小?若存在,请求出点M的坐标;若不存在,请说明理由.【综合练习一】已知,如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=nx(n为常数且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D.若OB=2OA=3OD=6.(1)求一次函数与反比例函数的解析式;(2)求两函数图象的另一个交点坐标;(3)直接写出不等式:kx+b≤nx的解集.【综合练习二】如图,一次函数y=kx+1(k≠0)与反比例函数y=mx(m≠0)的图象有公共点A(1,2),直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别相交于点B,C,连接AC. (1)求k和m的值;(2)求点B的坐标;(3)求△ABC的面积.【综合练习三】如图,反比例函数y=2x的图象与一次函数y=kx+b的图象交于点A、B,点A、B的横坐标分别为1、-2,一次函数图象与y轴交于点C,与x轴交于点D.(1)求一次函数的解析式;(2)对于反比例函数y=2x,当y<-1时,写出x的取值范围;(3)在第三象限的反比例函数图象上是否存在一点P,使得S△ODP=2S△OCA?若存在,请求出点P的坐标;若不存在,请说明理由.【综合练习四】如图,点A(-2,n),B(1,-2)是一次函数y=kx+b的图象和反比例函数y=mx的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围;(3)若C是x轴上一动点,设t=CB-CA,求t的最大值,并求出此时点C的坐标.。
第二十六章 反比例函数1. 反比例函数的意义预习归纳两个变量x ,y 满足 时,y 是x 的反比例函数,其中k 是 .例题讲解【例】在反比例函数4y x=中,当x =2时,函数 y 的值为( ) A .4 B .2 C .-2 D .0基础题训练1.下列函数中是反比例函数的是( ) A .y =2x B .2x y = C . 2y x = D . 21y x =+ 2.下列函数:①12y x =;②2x y =③xy =3 ;④ky x=;⑤12y x -=,其中y 是x 的反比例函数的有( )A .1个B .2个C .3个D .4个 3.若函数1a y x+=是反比例函数,则 a 的取值范围是( ). A .a>-1 B .a≠-1 C .a<-1 D .a≠0 4.当路程 s 一定时,速度 v 与时间 t 之间的函数关系是( ).A .正比例函数B . 一次函数C .反比例函数D .不同于以上的函数关系 5.下列函数关系中是反比例函数的是( )A .等边三角形面积与边长的关系B .直角三角形两锐角的关系C .长方形面积一定时,长与宽的关系D .等腰三角形顶角与底角的关系 6.下列各点中,在函数2y x=的图象上的是( ) A .(2,1) B .(-2,1) C .(2,-2) D .(2,2) 7. (2014.齐齐哈尔)在平面直角坐标系x o y 中,点 P 到x 轴的距离为3个单位长度,到原点o 的距离为5个单位长度,则经过点 P 的反比例函数的解析式为 . 8.已知 y 是x 的反比例函数,当 x =2时,y =-6 (1)求 y 与x 的函数关系式; (2)当 x =4时,求 y 的值中档题训练9.函数21y k x +=是反比例函数,则k 的取值范围是( ). A .k ≠12- B .k >12- C .k <12- D .k ≠0 .10.若 y 与x 成正比例,y 与 z 成反比例,则下列说法正确的是( )A .z 是x 的正比例函数B .z 是x 的反比例函数C .z 是x 的一次函数D .z 不是x 的函数 11.若y 与一3x 成反比例,x 与z 成正比例,则 y 是z 的( )A .正比例函数B .反比例函数C . 一次函数D .不能确定12.反比例函数()212m y m +=-的函数值为3时,求自变量x 的值.13.已知梯形的面积为60cm 2 ,其上底是下底的13,设下底长为x cm ,高为 y cm . (1)求y 与.x 的函数关系式; (2)当 y =6时,求x 的值.综合题训练14.已知函数 y =y 1-y 2 ,y 1与x 成反比例,y 2与 x -2成正比例,且当x =1时,y =-1;当x =3时,y =5(l)求 y 与x 的函数关系式;(2)当x =-3时,求y 的值.2.比例函数的图象与性质(一)预习归纳1.反比例函数的图象叫做2.反比例函数kyx=与kyx=-的图象关于对称,也关于对称.例题讲解【例】如图是我们学过的反比例函数的图象,它的函数解析式可能是( )A. y=x2B.4yx= C.3yx=- D. y=12x基础题训练1.(2014 邵阳)若反比例函数kyx=的图象经过点(-1,2),则k的值是.2. (2015 河南) 如图,直线y = kx与双曲线y =2x(x>0)交于点A(1,a),则k= .3.函数2(1)my m x-=-为反比例函数,则m为()A. 1B.±1C.0D. -14.反比例函数的图象经过点(3,2),下列各点中,在此函数图象上的点是()A. (3,-2)B. (-3,2)C. (-3,-2)D. (-2,3)5.反比例函数2yx=的图象位于()A.第一、三象限B.第二、三象限C. 第二、四象限D.第三、四象限6.已知点(1,1)在反比例函数ky x=(k 为常数,k ≠0)的图象上,则这个反比例函数的大致图象是( )7.(2014年漳州)双曲线1k y x+=所在象限内,y 的值随x 值的增大而减小,则满足条件的一个数值k 为8.(2015温州)如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限,若反比例函数ky x=的图象经过点B ,则k 的值.9.若点(-1,4)是反比例函数ky x=图象上一点,则此函数图象必经过点( ). A. (2,2) B .(2,-2) C .(-4,-1) D .(-1,-4) 10.已知反比例函数1y x=,下列结论不正确的是( ). A.图象经过点(1,1) B.图象在第一、三象限 C. C. 当x>1时,0<y<1D.当x<0时,y 随x 的增大而增大11.在同一直角坐标系中,正比例函数y=x 与反比例函数2y x=的图象大致是( )A. B. C. D.12.反比例函数3y x=关于x 轴对称的图象的函数解析式为13.(2015·哈尔滨)点A (-1,1y ),B (-2,2y )在反比例函数2y x=的图象上,则1y ,2y 的大小关系是( ).A. 1y > 2yB.1y = 2yC.1y <1y D .不能确定 14.如图,若点A 在反比例函数ky x=(k≠0)的图象上,AM ⊥x 轴于点M ,△AMO 的面积为3.(1)求k 的值;(2)当A 点在反比例函数图象上运动时,其他条件不变,△AMO 的面积会发生变化吗?并说明你的理由.综合题训练15.(2015·沈阳)如图,已知一次函数332y x =-与反比例函数ky x=的图象相交于点A(4,n ),与x 轴相交于点B.(1)填空:n 的值为 ,k 的值为 ;(2)以AB 为边作菱形ABCD ,使点C 在x 轴正半轴上,点D 在第一象限,求点D 的坐标; (3)考察反比例函数ky x=的图象,当y≥2时,请直接写出自变量x 的取值范围.3.反比例函数的图象与性质(二)预习归纳1.当k >0时,反比例函数()0ky k x=≠的图象在第 象限;在每个象限的图象上,y 随x 的增大而 . 2.当k <0时,反比例函数()0ky k x=≠的图象在第 象限;在每个象限的图象上,y 随x 的增大而 .例题讲解【例】(2015·泰州)点(a -1,y 1)、(a +1,y 2)在反比例函数()0ky k x=>的图象上,若y 12,则a 的取值范围是 .基础题训练1.若双曲线21k y x -=经过第一、三象限,则k 的取值范围是( ). A .12k > B .12k < C .12k = D .不存在2.反比例函数1k y x-=的图象,当0x <时,y 随x 的增大而减小,则k 的取值范围是( ).A .k <1B .k ≤1C .k >1D .k ≥13.(2015·包头)已知点A (-2,y 1)B (-1,y 2)和C (3,y 3)都在反比例函数3y x=的图象上,则y 1,y 2,y 3的大小关系为 (用“<”连接). 4.正比例函数y =kx 和反比例函数ky x=在同一坐标系内的图象为( ).ABC D5.(2014·天水)已知函数my x=的图象如图,以下结论:①m <0;②在每个分支上,y 随x 的增大而增大; ③若点A (-1,a )点B (2,b )在图象上,则a <b ;④若点P (x ,y )在图象上,则点P 1(-x , -y )也在图象上.其中正确的个数是( ).A .4个B .3个C .2个D .1个 6.(2015·广州)已知反比例函数7m y x-=的图象的一支位于第一象限. (1)判断该函数图象的另一支所在的象限,并求m 的取值范围; (2)如图,O 为坐标原点,点A 在该反比例函数位于第一象限的图 象上,点B 与点A 关于x 轴对称,若△OAB 的面积为6,求m 的值.7.如图,已知一次函数()0y kx b k =+≠的图像与x 轴,y 轴分别交于A (1,0),B (0,1)两点,且又与反比例函数()0my m x=≠的图象在第一象限交于C 点,C 标为2.(1)求一次函数的解析式;(2)求C 点坐标及反比例函数的解析式.中档题训练8.(2015·兰州)在同一直角坐标系中,一次函数y =kx -k 与反比例函数()0≠=k xky 的图象大致是( )ABC D9.反比例函数xky =的图象与正比例函数y =kx 的图象的交点个数为( ). A . 0个 B .1个 C .2个 D .1个或2个 10.(2015·天津)已知反比例函数xy 6=,当1时,y 的取值范围是( ). A .0<y <1 B .1<y <2 C .2<y <6 D .y >6综合题训练11.(2015·上海)已知:如图,在平面直角坐标系xOy 中,正比例函数x y 34=的图象经过点A ,点A 的坐标为4,反比例函数xmy =的图象也经过点A ,第一象限内的点B 在这个反比例函数的图象上,过点B 作BC ∥x 轴,交y 轴于点C ,且AC =AB ,求: (1)这个反比例函数的解析式; (2)直线AB 的表达式 .专题 反比例函数的概念、性质小结与复习一、反比例函数的基本概念1.在下列函数中,m 为何值时y 是x 的反比例函数?(1)xm y 2+= (2)x m y 42-= (3)()221-+=m x m y2.已知点A (x 1,y 1)和点B (x 2,y 2)都在xy 6=的图象上,若x 1· x 2=4,求y 1· y 2的值.二、反比例函数图象的性质3. 若反比例函数xm y 1+=的图象在第一、三象限,则m 的取值范围是( ). A . m >-1 B .m ≥-1 C .m <-1 D .m ≤-1 4.若反比例函数ky x=的图象在第二、四象限, 则一次函数y =kx +k 图象经过( ). A .第一、二、三象限 B .第二、三、四象限 C .第一、二、四象限 D .第一、三、四象限5.(2015·武汉)在反比例函数xmy 31-=图象上有两点A (x 1,y 1),B (x 2,y 2),x 1<0< x 2,y 1< y 2,则m 的取值范围是( ). A . 31>m B .31<m C .31≥m D .31≤m 6.在同一坐标系中,函数xky =与k kx y +=的图象大致是( ).BDO7.(2014·赤峰)如图,反比例函数xky =(k >0)的图象与以原点(0,0)为圆心的圆 交于A 、B 两点,且A (1,),图中阴影部分的面积等于 .(结果保留π)8.(2015·兰州)若点P 1(x 1,y 1),P 2(x 2,y 2)在反比例函数xky =(k >0)的图 象上,且x 1=-x 2,则( ).A.y 1<y 2 B.y 1=y 2 C.y 1>y 2 D.y 1=-y 29.如图,已知反比例函数xky =(x >0),则k 的取值范围是( ). A .1<k < B .2<k <3 C .2<k <4 D .2≤k ≤4211 B专题 反比例函数与一次函数1.已知反比例函数xky =(k 为常数,k ≠0)的图象经过点A (2,3). (1)求这个函数的解析式;(2)判断点B (-1,6),C (3,2)是否在这个函数的图象上,并说明理由; (3)当-3<x <-1时,求y 的取值范围.2.(2015·广东)如图,反比例函数xky =(k ≠0,x >0)的图象与直线y =3x 相交于点C ,过直线上点A (1,3)作AB ⊥x 轴于点B ,交反比例函数图象于点D ,且AB =3BD . (1)求k 的值;(2)求点C 的坐标;(3)在y 轴上确定一点M ,使点M 到C ,D 两点距离之和d =MC +MD 最小,求点M 的坐标.3.如图,A (-4,n ),B (2,-4)是一次函数y =kx +b 的图象和反比例函数xmy =的图象的两个交点.(1)求反比例函数和一次函数的解析式 ;(2)求方程kx +b -xm=0的解(请直接写出答案);B(3)求不等式kx +b -xm<0的解集(请直接写出答案).4.如图,一次函数y =kx +b 与反比例函数y =xm的图象交于A (2,3)、B (-3,n )两点. (1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx +b >xm的解集 ; (3)过点B 作BC ⊥x 轴,垂足为C ,求S △ABC .5.(2015·北京)在平面直角坐标系xOy 中,直线y =kx +b (k ≠0)与双曲线y =x8的一个交点为P (2,m ),与x 轴、y 轴分别交于点A 、B . (1)求m 的值;(2)若P A =2AB ,求k 的值.6.如图,已知反比例函数y =xk的图象经过第二象限内的点A (-1,m ),AB ⊥x 轴于点B ,△AOB 的面积为2,若直线y =ax +b 经过点A ,并且经过反比例函数y =xk的图象上另一点C (n ,-2).(1)求直线y =ax +b 的解析式;(2)设直线y =ax +b 与x 轴交于点M ,求AM 的长.专题 勾股定理与反比例函数1.如图,直线y =2x 与双曲线y =xk(x >0)的图象交于点A ,且OA =5,求k 的值.2.如图,直线y =x 向右平移b 个单位后得到直线l ,l 与函数y =xk(x >0)的图象相交于点A ,与x 轴相交于点B ,且228OA OB -=,求k 的值.x3.如图,点B 为双曲线y =xk(x >0)上一点,直线AB 平行于y 轴交直线y =x 于点A ,若224OB AB -=,求k 的值.4.如图,点A 为双曲线()20y x x=-<上一点,AB ∥x 轴交直线y x =于点B ,求22AB OA -的值.5.如图,反比例函数y =xk(x >0)图象上的两点A 、B 的横坐标分别为1,3.点P 为x 轴正半轴上一点,若PA PB -的最大值为,则k = .6.如图,直线y =x -1交x 轴于D ,交双曲线y =xk(x >0)于B ,直线y =2x 交双曲线y =xk(x >0)于A ,OA =OB ,求k 的值.7.如图,直线y x =向右平移b 个单位后得直线l ,l 与双曲线()60y x x=>相交于点A ,与x 轴相交于点B ,求22OA OB -的值.8.如图,B 点为双曲线()100y x x=>上一点,直线AB 平行于y 轴,交直线y x =于点A ,求22OB AB -的值.9.如图,直线y x m =-+与双曲线2y x=-相交于C 点,与y 轴交于B ,与x 轴交于A 点,求BC AC ⋅的值.10.如图,直线4y x =-+交x 轴于点A ,交y 轴于点B ,点P 为双曲线()60y x x=>上一点,PC ⊥x 轴于C ,交AB 于点N ,PD ⊥y 轴于D ,交AB 于点M . (1)求证:OA =OB ;(2)当P 点运动时,AM BN ⋅的值是否发生变化?若不变,求其值.4.实际问题与反比例函数预习归纳基本公式:s =vt ,F =PS ,U =IR ,S △=21ah .例题讲解【例】在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会改变.密度ρ(单位:kg/m 3)是体积V (单位:m 3)的反比例函数,它的图象如图所示,则当体积V =10cm 3时,气体的密度为( ). A .5kg/m 3 B .2kg/m 3 C .100kg/m 3 D .1kg/m3(m 3)基础题训练1.某同学要到离家2000米外的学校上学,那么他每分钟走m (米)和所用时间t (分钟)之间的函数关系式为______________.2.已知三角形的面积一定,则它底边a 上的高h 与底边a 之间的函数关系的图象大致是( ).A .B .C .D .3.已知甲、已两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系的图象大致是( )A .B .C .D . 4.(2015·河北)一台印刷机每年可印刷的书本数量y (万册)与它的使用时间x (年)成反比例关系,当x =2时,y =20,则y 与x 的函数图象大致是( )A .B .C .D .5.你吃过拉面吗?实际在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y (m )是面条粗细(横截面积)S (mm 2)的反比例关系,其图象如图所示. (1)写出y 与S 之间的函数关系式;(2)当面条粗1.62mm 时,求面条的总长度.中档题训练6.某空调厂的装配车间计划组装9000台空调.(1)从组装空调开始,每天组装的台数y (台)与组装的天数x (天)有怎样的函数关系?(2)原计划60天完成,由于气温升高,厂家决定让这批空调提前10天上市,那么组装车间每天至少要多组装多少台?(mm 2)m,6小时可将满池水全部排空.7.某蓄水池的排水管每小时排水83(1)求蓄水池的容积;m),此时将满池水排空所需时间t (2)如果增加排水管,使每小时排水量达到Q(3(h),求Q与t之间的函数关系式;(3)如果准备在5小时内将满池水排空,那么每小时的排水量至少为多少?8.有200个零件需要一天内加工完成,设当工作效率为每人加工P个零件时,需要q个工人.(1)求q与p的函数关系式;(2)若每人每天工作效率提高25%,则工人数减少百分之多少?综合题训练9.某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x(元)与日销售量y(1)猜测并确定y与x之间的函数关系式;(2)设销售贺卡的利润为w元,求w与x之间的函数关系式;(3)若规定此贺卡的售价最高不能超过10元/个,当日销售单价x定为多少时,才能获得最大日销售利润?5.实际问题与反比例函数(二)预习归纳基本公式:s =vt ,F =PS ,U =IR ,S ∆=12ah . 例题讲解【例】汽车油箱中有油20升,汽车行驶过程中每小时耗油x 升,则其行驶时间y (小时)与x (升)之间的函数关系式为( ) A .y =20x B .y =20x C .y =20x D .y =20—x 基础题训练1. 面积为4的矩形一边为x ,另一边为y ,则y 与x 的变化规律用图象大致表示为( )2. 一定质量的二氧化碳,当它的体积V =53m 时,它的密度3=1.98kg m ρ/ . (1)求ρ与V 的函数关系式;(2)当V =93m 时,求二氧化碳的密度ρ.3.几位同学玩撬石头的游戏,已知阻力和阻力臂不变,分别是1200牛顿和0.5米,设动力为F ,动力臂为l .(1)动力F 与动力臂有怎样的函数关系?(2)小刚选取了动力臂为2米的撬棍,你能得出他撬动石头至少需要多大的力吗? 4.(2014▪云南)将油箱注满k 升油后,轿车行驶的总路程s (单位:千米)与平均耗油量a (单位:升/千米)之间满足反比例函数关系s =ka(k 是常数,k ≠0).已知某轿车油箱 注满后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.D(1)求该轿车可行驶的总路程s 与平均耗油量a 之间的函数解析式(关系式); (2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?中档题训练5.如图,一个圆台形的物体的上底面是下底面的12,放在桌子上它对桌面的压强为100Pa ,若倒过来后,它对桌面的压强是 Pa .6.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (kPa)是气球体积V (3m )的反比例函数,其图象如图所示,当气球内的气压大于160kPa 时,气球将爆炸,为了安全起见,气球的体积应( ).A .不大于0.63m B .不大于963m C .不小于0.63m D .不小于963m7.码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间 (1)轮船到达目的地后开始卸货,卸货速度v (单位:吨/天)与卸货时间t (单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5日内卸载完毕,那么平均每天至少要卸多少吨货物?3m )18.制作一种产品,需先将材料加热,达到60℃后,再进行操作.据了解,该材料停止加热时,温度y (℃)与时间x (min )成反比例关系,如图所示.已知该材料在操作加工前的温度为15℃,加热5min 后温度达到60℃. (1)当x ≥5时,求y 与x 的函数关系式;(2)根据工艺要求,当材料的温度低于15℃时,必须停止操作,那么从开始加热到停止操作,共经历了多少时间?综合题训练9.(2015▪衡阳)某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体实验.测得成人服药后血液中药物浓度y (微克/毫升)与服药时间x (时)之间的函数关系如图所示(当4≤x ≤10时,y 与x 成反比).(1)根据图象分别求出血液中药物浓度上升和下降阶段y 与x 之间的函数关系式; (2)血液中药物浓度不低于4微克/毫升的持续时间为多少小时?)专题 反比例函数与面积问题1.如图,A 是反比例函数图象上一点,过点A 作AB ⊥y 轴于点B ,点P 在x 轴上,△ABP的面积为2,求反比例函数的解析式.2.如图,点A 为双曲线y =2x 的图象上一点,过A 作AB ∥x 轴交双曲线y =-4x于点B ,连AO ,BO ,求△AOB 的面积.3.如图,点A 在双曲线y =1x 上,点B 在双曲线y =kx上,且AB ∥x 轴,AD ⊥x 轴,BC ⊥x 轴,C 、D 在x 轴上,若长方形ABCD 的面积为6,求k 的值.4.如图,在平面直角坐标系中,函数y =kx(x >0,常数k >0)的图象经过点A (1,2)和点B ,过点B 作y 轴的垂线,垂足为C ,若△ABC 的面积为2,求点B 的坐标.5.如图,直线y =2x —4交x 轴、y 轴于B 、C ,交双曲线y =kx于E ,且BC =2BE ,求k6.(2015·成都)如图,一次函数y =-x +4的图象与反比例函数ky x(k 为常数,且k ≠0)的图象交于A (1,a ),B 两点.⑴求反比例函数的表达式及点B 的坐标;⑵在x 轴上找一点P ,使PA +PB 的值最小,求满足条件的点P 的坐标及△PAB 的面积.7.(2015·陕西)如图,在平面直角坐标系中,过点M (-3,2)分别作x 轴、y 轴的垂线与反比例函数4y=的图象交于A 、B 两点,求四边形MAOB 的面积.8.如图,点B 为x 轴正半轴上一点,点A 为双曲线4y x=(x >0)上一点,且AO =AB ,过B 作BC ⊥x 轴交双曲线于C 点,求S △ABC .9.(2015·南通)如图,直线y =-mx +n 与双曲线ky x=相交于A (-1,2),B (2,b )两点,与y 轴相交于点C . ⑴求m 、n 的值;⑵若点D 与点C 关于x 轴对称,求△ABD 的面积.x专题 反比例函数与几何小综合1.如图,直线122y x =-+交x 轴于A 点,交y 轴于B 点,点P 为双曲线ky x=(x >0)上一点,且PA =PB ,∠APB =90°,求k 的值.2.如图,直线122y x =--与坐标轴交于A 、B 两点,与双曲线ky x=(x <0)交于C 点,且AC =AB .求k 的值.3.如图,y =-5x +5与坐标轴交于A 、B 两点,△ABC 为等腰直角三角形,BC =AC ,双曲线ky =(x <0)过C 点.求k 的值.4.双曲线ky x=经过P 1,P 2两点,△AOP 1为等腰直角三角形,AP 2⊥x 轴且AP 2=1,求k 的值.5.如图,直线115y x =-分别与x 轴、y 轴相交于B 、A ,点M 为双曲线ky x=(x >0)上一点,若△AMB 是以AB 为底的等腰三角形,求k 的值.6.(2010·兰州) 如图,P 1是反比例函数ky x=(k >0)在第一象限图象上的一点,点A 1的坐标为(2,0) .⑴当点P 1的横坐标逐渐增大时,△P 1OA 1的面积将如何变化?⑵若△P OA 与△P A A 均为等边三角形,求反比例函数的解析式及A 2点的坐标.7.如图,直线y =2x -4分别交x 轴、y 轴于B 、A 两点,交双曲线ky x=(x >0)于点C ,且S △AOC =8.⑴求双曲线的解析式;⑵在C 点右侧的双曲线上是否存在点P ,使∠PBC =45°?若存在,求P 点坐标;若不存在,请说明理由.8.如图所示,已知A(4,m),B(-1,n)在反比例函数8yx=的图象上,直线AB与x轴交于C,如果点D在y轴上,且DA=DC,⑴求C点的坐标;⑵求D点的坐标.9.如图1,直线y=-x+4交x轴、y轴于B、C,点A为x轴正半轴上一点,S△ABC=165,C A的延长线交双曲线kyx=(x>0)于E点,且A C=4AE.⑴求点A的坐标及k的值;⑵如图2,正方形OMKN的顶点M、N分别在双曲线及线段BC上,求出点M、N的坐标.专题反比例函数与四边形1.如图,四边形ABCO为等腰梯形,双曲线kyx=过点B,且S四ABCO=4,求k的值.2.如图,矩形ABCO,点E在AB上,且BE=2AE,点F在BC上,双曲线kyx=正好过E、F两点,S△BOF=4,求k的值.3.如图,B(-1,0),正方形ABCD的中心为O1,双曲线kyx=正好经过C,O1两点,求k的值.4.如图,矩形ABCD的面积为8,点A坐标为(1,2),双曲线kyx=正好经过B、D两点,且AB∥x轴,求k的值.5.如图,正方形ABCD,A(0,1),C(-5,0),双曲线kyx=过D点,求k的值.6.在平面直角坐标系中,直线y=-2x+2分别与x轴、y轴相交于点A、B,四边形ABCD是正方形,双曲线kyx=在第一象限经过D点.(1)求双曲线的函数解析式;(2)将正方形ABCD沿x轴向左平移多少个单位长度时,点C的对应点C’恰好落在(1)中的双曲线上?专题反比例函数与一元二次方程1.如图,已知直线y=-x+2分别与x轴、y轴相交于点A、B,与双曲线kyx=交于点E、F,若AB=3EF,求k的值.2.(2010·武汉)如图,直线y x b=+与y轴交于点A,与双曲线kyx=在第一象限交于B、C两点,且AB·AC=4,求k的值.3.如图,直线y=-x+5与双曲线kyx=交于A、B两点,点C为双曲线上A、B之间的一点,求△ABC的最大面积.4.如图,将直线y =-x 沿x 轴正方向平移5个单位后与()0ky k x=>的图像交于A 、B 两点,且AB=,求k 的值.5.如图,△ABC 的三个顶点分别为A (1,2),B (2,5),C (6,1).若函数ky x=在第一象限内的图象与△ABC 有交点,求k 的取值范围.专题 反比例函数与圆1.如图,半径为5的⊙P 与y 轴交于M (0,-4),N (0,-10)两点,函数()0ky x x=<的图象过P 点,求k 的值.2.如图,直线AB 与坐标轴交于A (-2,0),B (0,1)两点,M 为线段AB 上的一点,⊙M 分别与OA 、OB 相切与点C 、D ,反比例函数ky x=的图象过点M ,求k 的值.3.如图,⊙O 1与y 轴切于点C (0,-2),与x 轴负半轴交于点A (-2,0),B 两点,双曲线ky x=过点O 1,点P 在双曲线上,PE ⊥x 轴,垂足为E ,求S △OPE .4.如图,⊙O 1与坐标轴于A 、B 、C 、D 四点,A (1,0),B (-3,0),D (0,-1),双曲线ky x=过点O 1,求k 的值.5.如图,半径为5的⊙O 1与直线y =x +2于A (0,2),C 两点,交y 轴于B (0,10),CD 是⊙O 1的直径,若函数()0ky x x=<的图象过点D ,求k 的值.专题 反比例函数与二次函数1.(2010·武汉)二次函数()20y ax b b =+>与反比例函数ay x=在同一坐标系中的图象可能是( )A B C D 2.(2014·长沙) 函数ay x=与函数()20y ax a =≠在同一坐标系中的图象可能是( )A B C D3.(2014·南昌) 已知反比例函数ky x=与的图象如右图,则二次函数2224y kx x k =-+的图象大致是()A B C D4.(2014·河北)定义新运算:a ○+b =()()00ab ba b b⎧>⎪⎪⎨⎪-<⎪⎩,例如:4○+5=45,4○+(-5)=-45.则函数y =2○+x(x ≠0)的图象大致是( )A B C D专题 反比例函数综合1.(2014·济南)如图1,反比例函数ky x(x >0)的图象经过点A(1),射线AB 与反比例函数图象交于另一点B (1,a ),射线AC 与y 轴交于点C ,∠BAC =75°,AD ⊥y 轴,垂足为D .(1)求k 的值;(2)求tan ∠DAC 的值及直线AC 的解析式; (3)如图2,M 是线段AC 上方反比例函数图象上一动点,过M 作直线l ⊥x 轴,与AC 相交于点N ,连接CM ,求△CMN 面积的最大值.2.水产公司有一种产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下表:观察表中数据,发现这种海产品的每天销售量y (千克)是销售价格x (元/千克)的函数,且这种函数是反比例函数、一次函数中的一种.(1)请你选择一种合适的函数,求出它的函数关系式,并简要说明不选择另一种函数的理由;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)按(2)中定价继续销售15天后,公司发现声音的这些海产品不超过2天必须全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?图1。