大跨度桥梁的稳定理论
- 格式:pptx
- 大小:1.26 MB
- 文档页数:20
桥梁的马蹄概念桥梁的马蹄概念源自于对桥梁结构的研究和设计中的一种理论模型。
马蹄概念主要是指桥梁的承载结构在荷载作用下形成的一种特殊的变形形态,常见于悬索桥、斜拉桥等大跨度桥梁。
以下将从马蹄概念的起源、桥梁结构中的应用、桥梁的稳定性等方面详细阐述这一概念。
马蹄概念起源于对悬索桥和斜拉桥研究过程中的观察和实践总结。
悬索桥是一种以主梁为主承重构件,通过斜拉索悬挂索索桥塔上的主缆,以此支撑交通、荷载等在桥面上行驶的构造物。
当悬索桥荷载作用下,主梁受到弯矩和挠度的同时,斜拉索、悬索的受力也会发生变化,这种变化的过程中,主梁可以看作是马蹄的下半部分。
桥梁结构中的马蹄概念的应用主要是指悬索桥和斜拉桥在设计与施工中,为了达到更好的结构性能和稳定性,需要考虑桥梁在荷载下的变形行为。
在桥梁设计中,通过对桥梁模型在荷载作用下的变形进行数值计算和实验研究,可以得到桥梁的马蹄形态,从而为后续的设计和施工提供有力的依据。
桥梁的马蹄概念对于桥梁结构的稳定性和安全性具有重要意义。
在桥梁设计中,马蹄概念可以用来评估和预测桥梁结构在荷载下的变形和破坏状态,从而设计出满足荷载要求的合理结构。
在桥梁施工中,通过控制桥梁的马蹄形变,可以保证桥梁的稳定性和安全性,避免出现结构失稳或破坏的情况。
桥梁的马蹄概念不仅应用于悬索桥和斜拉桥的设计和施工中,还可以拓展到其他类型的桥梁结构中。
例如,连续梁桥在荷载作用下会发生挠度和弯矩变化,也类似于马蹄的形态。
因此,马蹄概念对于不同类型的桥梁结构具有一定的普遍性。
总之,桥梁的马蹄概念是指桥梁在荷载作用下形成的一种特殊的变形形态,特别适用于悬索桥、斜拉桥等大跨度桥梁。
通过对桥梁结构中的马蹄概念的研究和应用,可以提高桥梁的结构性能和稳定性,确保桥梁的安全使用。
这一概念将继续在桥梁领域的研究和实践中发挥重要作用,为桥梁工程的发展和进步做出贡献。
大跨度钢结构拱桥承载能力与施工控制研究发布时间:2022-10-30T05:47:18.669Z 来源:《城镇建设》2022年12期6月作者:陈濡森[导读] 随着我国经济水平的日益提高,工程建设的规模逐渐增大,陈濡森珠海航空城工程建设有限公司摘要:随着我国经济水平的日益提高,工程建设的规模逐渐增大,大跨度钢结构技术是桥梁工程建设中最常使用的施工技术,但该技术在实际应用中依然存在一定的风险。
大跨度钢结构能够满足不同大型建筑的需求,主要有以下几个原因:美观的造型、高强度的跨越能力、良好的景观效应、独特的优势。
因此,为了我国交通运输业的稳定发展,务必投入人力、物力研究和探索大跨度钢结构技术,使其在桥梁工程的建设中发挥更大的作用。
于此,文章探索并研究了大跨度钢结构桥梁施工技术,可为今后桥梁工程建设提供一定的参考借鉴。
关键词:大跨度钢结构;恒载索力;几何非线性;极限承载力一、大跨度钢结构桥梁施工技术案例金岛大桥为珠海航空产业园滨海商务区市政配套工程二期中的一座桥梁,该桥位于金岛路上,跨越主排洪渠,桥梁起点为KC0+132.00,桥梁终点为KC0+232.00。
金岛大桥桥孔布置为1×100m,采用非对称异形拱桥结构形式。
上部结构概述;本桥为跨径100m的非对称异形拱肋拱桥,桥梁位于直线段内,凸型竖曲线半径为R=2700m。
拱肋采用钢箱截面,断面尺寸为2.8×2.8m。
主梁为钢—混凝土组合梁结构。
由箱型纵梁、横梁、小纵梁组成的纵横体系,其上设混凝土桥面板。
吊杆采用环氧涂层钢绞线成品吊杆。
为保证施工监控计算数据的准确性,本项目拟采用成熟的有限元软件进行计算,不同计算人员之间相互复核计算成果。
本监控项目采用的计算软件见表6.1。
其中,利用MIDAS/Civil软件建立空间模型,进行施工过程仿真计算、结构安全验算,局部构件分析采用ANSYS分析软件进行。
1.1大跨度钢结构拱桥施工模拟计算的有关问题1.1.1大跨度钢结构拱桥设计计算的校核与施工控制预测计算施工控制在实施时的第一步工作是要形成控制的目标。
《高等桥梁结构理论》教学大纲
课程编号:1321007
英文名称:Advanced Structural Theory in the Bridge
课程类别:学位课学时:60 学分:3 适用专业:土木工程
预修课程:有限元理论与程序设计、桥梁工程
课程内容:
《高等桥梁结构理论》主要介绍桥梁结构的力学理论和分析方法。
介绍桥梁设计计算公式的由来和规范条文的理论依据,从原理上和问题的本质上去认识桥梁结构的受力性能。
课程的主要内容包括:长悬臂行车道板计算理论;薄壁箱梁计算理论;曲线桥计算理论;斜桥计算理论;混凝土的收缩、徐变及温度效应理论;混凝土的强度、裂缝及刚度理论;钢桥的计算理论;桥梁结构几何非线性计算理论;大跨度桥梁的稳定理论。
目的是使学生运用已经掌握的数学力学知识,在解决桥梁结构的基本力学问题时,能够获得比较满意的结果。
学习的重点在于掌握桥梁结构基本分析理论、掌握大跨径桥梁用高性能材料的性能、掌握大跨径桥梁结构模拟分析方法等。
教材:
项海帆. 高等桥梁结构理论. 北京:人民交通出版社,2001
参考书目:
1. 杜国华. 桥梁结构分析. 上海:同济大学出版社,1997
2. 张士铎. 桥梁设计理论. 北京:人民交通出版社,1984
3. 范立础. 桥梁工程. 北京:人民交通出版社,1987
4. 李国豪. 桥梁结构稳定与振动. 北京:中国铁道出版社,1992
考核方式与要求:
课程论文。
大跨度钢桁拱桥的极限承载力分析盖卫明;任伟新【摘要】钢桁拱桥是以承压为主的结构体系,随着跨径的不断增大,其非线性效应会变得十分突出,因此研究其极限承载力并对其安全性进行准确评估就变得尤为重要.本文以主跨436m的中承式钢桁拱桥新蕉门大桥为例,运用大型有限元软件ANSYS 详细分析了该桥的极限承载力,并探讨了不同荷载分布方式对其极限承载力的影响.结果表明以分支点稳定理论为基础的线弹性分析大大高估了桥梁的安全系数:与几何非线性分析结果相比较,材料非线性对此桥极限承载能力的影响较大:不同的荷载分布方式对此桥的极限承载力影响较小a.【期刊名称】《土木工程与管理学报》【年(卷),期】2008(025)004【总页数】4页(P328-331)【关键词】钢桁拱桥;几何非线性:材料非线性;极限承载力;有限元分析【作者】盖卫明;任伟新【作者单位】中南大学土木建筑学院,湖南,长沙,410075;中南大学土木建筑学院,湖南,长沙,410075【正文语种】中文【中图分类】U441拱桥的稳定问题一直是人们关心的问题之一。
国内外学者对拱桥稳定的研究,经历了从线性到非线性、从平面到空间、从裸拱到全桥的发展过程,早期多集中于采用线性方法对简化桥梁模型的分析,如今随着电子计算机的快速发展,采用非线性有限元法对实际全桥极限承载力进行研究已成为一种趋势[1,2]。
近年来,我国的拱桥建设不断向大跨度方向发展,特别是钢桁拱桥,拟将建成的重庆朝天门大桥主跨达到了552 m。
随着拱桥跨径的不断增大,其非线性稳定问题会变得尤为突出,所以对其极限承载力进行研究将具有重要意义[3,4]。
本文在总结稳定分析方法的基础上,应用ANSYS详细分析了一座钢桁拱桥的极限承载力。
结构的失稳是由于在平衡路径上出现了奇异点,也叫临界点,包括分支点和极值点两种[4~6]。
分支点失稳假定结构失稳时处于弹性小变形范围,结构的内力与外荷载成比例关系,达到临界荷载时,结构的平衡出现了分支,此时结构的平衡方程为:分支点稳定问题为一特征值问题,求解该特征方程组可得结构临界荷载为。
探析大跨度桥梁设计的设计要点与优化策略大跨度桥梁作为现代桥梁工程中的重要组成部分,具有跨度大、结构复杂、技术难度高等特点。
其设计要点和优化策略对于保障桥梁的安全和稳定具有重要意义。
本文将探析大跨度桥梁设计的要点和优化策略,旨在为大跨度桥梁的设计提供参考。
一、大跨度桥梁设计的要点1. 结构稳定性大跨度桥梁跨度大,结构复杂,因此结构稳定性是设计的重点之一。
在设计过程中,需要充分考虑桥梁结构受力特点,采取合理的结构形式和构造方式,确保桥梁能够承受各种外部荷载和环境影响而不失稳定性。
2. 材料选择大跨度桥梁通常采用混凝土、钢材等材料进行构造。
在设计过程中,需要根据桥梁的实际工作环境和受力情况,选用合适的材料并进行合理的组合,以确保桥梁具有足够的承载能力和使用寿命。
3. 抗风性能大跨度桥梁容易受到风力的影响,因此抗风性能是设计的重要考虑因素。
在设计过程中,需要通过风洞实验等手段分析桥梁在风载作用下的响应情况,采取相应的措施提高桥梁的抗风性能。
4. 地震防护大跨度桥梁设计还需要考虑地震的影响。
在设计过程中,需要根据桥梁的地理位置和地震烈度等因素,合理确定桥梁的抗震设防要求,并采取相应的结构措施和材料措施,提高桥梁的抗震性能。
5. 施工工艺大跨度桥梁的施工工艺具有一定的复杂性,需要充分考虑桥梁结构的实际情况和施工条件,合理确定施工方法和工序,确保施工的安全性和有效性。
二、大跨度桥梁设计的优化策略1. 结构优化大跨度桥梁的结构优化是设计的关键环节。
通过采用先进的结构优化方法,如有限元分析、参数化设计等,对桥梁结构进行优化设计,使其在保证强度和稳定性的前提下,达到结构轻量化和材料节约的效果。
2. 材料优化大跨度桥梁的材料优化是提高桥梁整体性能的重要手段。
通过选择新型材料、改进现有材料性能、优化材料组合等方式,提高材料的强度、耐久性和抗腐蚀性能,以达到延长桥梁使用寿命和减少维护成本的目的。
3. 抗风性能优化大跨度桥梁的抗风性能优化是确保桥梁安全稳定运行的重要保障。