人工智能 4.5 模糊推理
- 格式:ppt
- 大小:4.41 MB
- 文档页数:77
模糊推理系统在人工智能咨询中的应用分析人工智能(Artificial Intelligence,AI)的发展已经深入到各个领域,其中咨询服务领域也不例外。
模糊推理系统作为一种重要的人工智能技术,在人工智能咨询中发挥着重要作用。
本文将从模糊推理系统的基本原理、在人工智能咨询中的应用案例以及未来发展方向等方面进行深入分析。
一、模糊推理系统的基本原理模糊推理系统是一种基于模糊逻辑原理构建的推理系统。
与传统逻辑不同,传统逻辑只有真假两个取值,而模糊逻辑则引入了“可能性”的概念,使得取值可以是一个连续的区间。
在模糊推理系统中,输入数据经过隶属度函数进行隶属度计算,然后通过规则库进行规则匹配和融合,在经过去隶属度函数计算后得到最终输出结果。
二、模糊推理系统在人工智能咨询中的应用案例1. 模糊分类与预测在人工智能咨询中,对于一些复杂的问题,往往很难用传统的分类和预测方法进行准确的判断。
而模糊推理系统可以通过模糊分类和预测,对问题进行更准确的判断。
例如,在金融咨询中,可以通过模糊推理系统对股票市场进行预测,从而提供更准确的投资建议。
2. 模糊决策支持在人工智能咨询中,决策支持是一个重要的环节。
传统的决策支持方法往往需要建立复杂的数学模型和规则,而模糊推理系统则可以通过对问题进行隶属度计算和规则匹配,在不需要建立复杂数学模型和规则库的情况下提供有效的决策支持。
例如,在人力资源咨询中,可以通过模糊推理系统对候选人进行综合评价,并提供最佳人选。
3. 模糊风险评估在风险评估领域中,传统方法主要依赖于精确度高但计算量大、数据需求高等特点。
而在人工智能咨询中,由于数据不完备或者不精确等原因导致风险评估变得困难。
而模糊推理系统则可以通过对数据进行模糊化处理,从而提供更准确的风险评估结果。
例如,在保险咨询中,可以通过模糊推理系统对保险风险进行评估,并提供相应的保险建议。
三、模糊推理系统在人工智能咨询中的优势1. 灵活性模糊推理系统可以处理不确定性和不完备性的问题,对于一些复杂、模糊的问题具有较强的适应能力。
人工智能领域中的模糊逻辑推理算法人工智能(Artificial Intelligence,简称AI)是一门研究如何使计算机能够智能地表现出类似人类的思维和行为的科学。
在人工智能领域中,模糊逻辑推理算法是一种重要的方法,其可以有效地处理现实世界中存在的不确定性和模糊性问题。
本文将介绍人工智能领域中的模糊逻辑推理算法及其应用。
一、模糊逻辑推理算法概述模糊逻辑推理算法是基于模糊逻辑的推理方法,模糊逻辑是对传统的布尔逻辑的扩展,允许命题的真值在完全为真和完全为假之间存在连续的可能性。
模糊逻辑推理算法通过模糊化输入和输出,使用模糊规则进行推理,最终得到模糊结果。
模糊逻辑推理算法主要包括以下几个步骤:1. 模糊化:将输入的精确值转化为模糊化的值,反映出其模糊性和不确定性。
2. 模糊规则匹配:根据模糊规则库,匹配输入的模糊值和规则库中的规则。
3. 推理:根据匹配到的规则进行推理,得到模糊输出。
4. 解模糊化:将模糊输出转化为精确值,以便进行后续的处理和决策。
二、模糊逻辑推理算法的应用领域1. 专家系统专家系统是一种能够模拟人类专家的思维和行为的计算机程序。
在专家系统中,模糊逻辑推理算法可以用于处理专家知识中存在的模糊性和不确定性,帮助系统作出正确的决策和推理。
2. 模式识别模式识别是通过对事物特征进行抽象和分类,从而识别和理解事物的过程。
在模式识别中,模糊逻辑推理算法可以用于处理存在模糊性和不确定性的模式,提高模式识别的准确性和鲁棒性。
3. 数据挖掘数据挖掘是从大量的数据中发现潜在的、有效的信息,并进行模式的分析和提取的过程。
在数据挖掘中,模糊逻辑推理算法可以用于处理数据中存在的模糊性和不确定性,挖掘出更多有意义的信息。
4. 控制系统控制系统是指对某个对象或过程进行控制的系统。
在控制系统中,模糊逻辑推理算法可以用于处理控制对象的模糊输入和输出,实现对控制系统的智能化控制。
三、模糊逻辑推理算法的发展趋势随着人工智能领域的不断发展,模糊逻辑推理算法也在不断演化和完善。
人工智能模糊推理的一般过程
人工智能模糊推理的一般过程可以分为以下几个步骤:
1. 收集数据:首先需要收集相关的数据和信息,这些数据可以来自各
种传感器、测量仪器等获得的原始数据,以及专家知识和经验。
这些
数据将作为推理的依据。
2. 模糊化:在模糊推理中,需要将输入的数据和信息转化为模糊集合。
这个过程将原始数据映射到一个或多个模糊集合,并且给出每个集合
的隶属度。
3. 激活规则库中对应的模糊规则:根据输入的模糊集合和规则库中的
模糊规则,选择合适的模糊推理方法进行推理。
4. 对模糊结果进行去模糊化处理:推理后得到的结果是模糊集合,需
要进行去模糊化处理,将其转换为精确量或更明确的结论。
以上就是人工智能模糊推理的一般过程,不同的人工智能系统可能会
有一些细微的差别,但大体上都是按照这个流程进行的。
人工智能模糊推理案例一、确定模糊变量在模糊推理中,我们需要确定模糊变量。
这些变量可以是输入变量、输出变量或中间变量。
模糊变量的值称为模糊数,它用一个模糊集合来表示。
例如,假设我们的输入变量是温度,那么我们可以将温度分为“高”、“中”、“低”三个模糊集合,分别用H、M、L表示。
二、建立模糊集合在确定了模糊变量之后,我们需要建立模糊集合。
模糊集合是对该变量的所有可能值的隶属度进行定义的集合。
隶属度是一个介于0和1之间的实数,表示该值属于该集合的程度。
例如,对于温度的三个模糊集合,我们可以定义如下隶属度:●H:当温度大于等于25度时,隶属度为1;当温度小于20度时,隶属度为0;介于20度和25度之间的温度隶属度为线性插值。
●M:当温度在20度到30度之间时,隶属度为1;其它情况隶属度为0。
●L:当温度小于等于15度时,隶属度为1;当温度大于等于20度时,隶属度为0;介于15度和20度之间的温度隶属度为线性插值。
三、确定模糊关系在建立了模糊集合之后,我们需要确定模糊关系。
模糊关系是一个二维的隶属度函数,表示输入变量和输出变量之间的模糊关系。
例如,假设我们的输出变量是风力,那么我们可以定义如下模糊关系:●当温度为H时,风力为强(用S表示)。
●当温度为M时,风力为中(用M表示)。
●当温度为L时,风力为弱(用W表示)。
四、进行模糊推理在确定了模糊变量、建立了模糊集合、确定了模糊关系之后,我们就可以进行模糊推理了。
模糊推理是按照一定的推理规则进行的,例如“IF A THEN B”。
在我们的例子中,我们可以使用如下推理规则:●IF 温度 = H THEN 风力 = S.●IF 温度 = M THEN 风力 = M.●IF 温度 = L THEN 风力 = W.五、反模糊化处理经过模糊推理后,我们得到了一个模糊输出值。
这个值是一个模糊集合,不能直接用于控制风力。
因此,我们需要进行反模糊化处理。
反模糊化处理是将模糊输出值转换为实际数值的过程。
常用人工智能控制方法人工智能控制是将人工智能(AI, Artificial Intelligence)的理论和方法用于控制领域的技术,包括模糊逻辑与模糊控制(FL/FC, Fuzzy Logic/Fuzzy Control)、神经网络控制(ANN, Artificial Intelligence)、遗传算法(GA, Genetic Algorithm)和专家系统(ES, Expert System)等[6-10]。
4.1 模糊智能控制模糊控制是一种人类智能控制,它允许在模糊系统中纳入常识和自学习规则,并意味着一个学习模块能够用一个模糊规则集合来解释其行为。
因此模糊系统对使用者来说是透明的,与传统控制方法(如PID控制)相比,模糊控制利用人类专家控制经验,对非线性、复杂对象的控制显示了鲁棒性好、控制性能高的优点[11-14]。
广义模糊逻辑系统的万能逼近理论为模糊系统建模提供了理论依据,也为复杂的非线性系统提供了有效的手段。
遗传算法作为一种新的全局优化算法,以其简单通用、鲁棒性强、适用于并行处理等特点,在智能控制中发挥着愈来愈重要的作用。
文献[15]中涉及了一种新型的基于遗传算法的多变量模糊控制器,通过结合模糊预测和遗传算法来优化控制规律,利用遗传算法来辨识系统参数。
随着模糊控制技术的发展完善,板形模糊控制的研究日益受到重视。
早期研究工作主要集中于一些常规控制方法不能获得较好控制品质的情况,如轧辊喷射冷却模糊控制[16-17];多辊轧机(森吉米尔轧机)的板形控制[18] 自1995年以来,韩国科学与技术高等学院的Jong-Y eob Jung等人就普通六辊轧机的板形控制进行了系列、详细的研究,探讨了利用模糊逻辑进行六辊轧机板形控制的可行性,研究了对称板形的动态及静态控制特性[19]。
近来,Jong-Y eob Jung等已将模糊逻辑应用于控制包括非对称板形在内的任意板形,取得了较大进展[20-21]。
人工智能的模糊推理和模糊控制方法人工智能(Artificial Intelligence, AI)是研究、开发用于模拟、扩展和扩展人类智能的理论、方法、技术及其应用系统的一门科学。
在人工智能领域,模糊推理和模糊控制是两个重要的方法,它们通过引入模糊集合和模糊逻辑,使计算机能够处理和推理不确定、模糊的信息,具有广泛的应用范围和潜力。
本文将对模糊推理和模糊控制的基本原理、应用领域以及发展趋势进行详细介绍。
首先,我们先来了解一下模糊推理和模糊控制的基本原理。
模糊推理是基于模糊集合和模糊逻辑的推理方法,它的核心思想是将不确定的信息和模糊的知识进行建模,通过适当的规则进行推理,从而得到模糊的结论。
模糊推理的核心步骤包括模糊化、规则匹配、推理和去模糊化。
具体来说,模糊化将现实世界中的事物或概念映射到模糊集合上,通过模糊集合来描述不确定性和模糊性;规则匹配将输入模糊集合与预定的规则集合进行匹配,确定需要使用的规则;推理根据已匹配的规则进行逻辑推理,得到模糊的结论;去模糊化将模糊的结论映射回到现实世界的具体数值上,得到人类可以理解的结果。
模糊控制是一种基于模糊逻辑的控制方法,它通过将模糊集合和模糊推理应用于控制系统中,使控制系统能够处理模糊的输入和输出信号,从而实现对复杂系统的智能控制。
模糊控制的基本原理是将不确定的输入信号经过模糊化处理得到模糊的输入变量,然后通过一系列的模糊规则进行推理和逻辑运算,得到模糊的输出变量,最后将模糊的输出变量经过去模糊化处理得到具体的控制信号,用于调节系统的行为。
模糊控制系统的结构由模糊化模块、推理机制和去模糊化模块组成,其中模糊化模块用于将输入信号映射到模糊集合上,推理机制用于根据预定的模糊规则进行推理,去模糊化模块用于将模糊的输出信号映射回到具体的控制信号上。
模糊推理和模糊控制方法在各个领域都有广泛的应用。
在工业自动化领域,模糊控制方法可以用于汽车、航空、电力、化工等复杂系统的控制,能够有效地处理系统的非线性、模糊和不确定性问题,提高系统的稳定性和鲁棒性。
121 第4章 不确定与非单调推理在现实世界中,能够进行精确描述的问题只占较少一部分,而大多数问题是非精确、非完备的。
对于这些问题,若采用上一章所讨论的精确性推理方法显然是不行的。
为此,人工智能需要研究不确定性的推理方法,以满足客观问题的需求。
4.1.1 C-F 模型C-F 模型是消特里菲等人在确定性理论的基础上,结合概率论和模糊集合论等方法提出的一种基本的不确定性推理方法。
下面讨论其知识表示和推理问题。
1. 知识不确定性的表示在C-F 模型中,知识是用产生式规则表示的,其一般形式为:IF E THEN H (CF(H, E))其中,E 是知识的前提条件;H 是知识的结论;CF(H, E)是知识的可信度。
对它们的简单说明如下:前提条件可以是一个简单条件,也可以是由合取和析取构成的的复合条件。
例如E=( E1 OR E2) AND E3 AND E4就是一个复合条件。
结论可以是一个单一的结论,也可以是多个结论。
可信度CF (Certainty Factor 简记为CF)又称为可信度因子或规则强度,它实际上是知识的静态强度。
CF(H, E)的取值范围是[-1,1],其值表示当前提条件E 所对应的证据为真时,该前提条件对结论H 为真的支持程度。
CF(H, E)的值越大,对结论H 为真的支持程度就越大。
例如IF 发烧 AND 流鼻涕 THEN 感冒 (0.8)表示当某人确实有“发烧”及“流鼻涕”症状时,则有80%的把握是患了感冒。
可见,CF(H, E)反映的是前提条件与结论之间的联系强度,即相应知识的知识强度。
2. 可信度的定义在C-F 模型中,把CF(H, E)定义为CF(H, E)=MB(H, E)-MD(H, E)其中,MB (Measure Belief 简记为MB)称为信任增长度,它表示因与前提条件E 匹配的证据的出现,使结论H 为真的信任增长度。
MD (Measure Disbelief 简记为MD)称为不信任增长度,它表示因与前提条件E 匹配的证据的出现,对结论H 的不信任增长度。