三段式过流保护
- 格式:ppt
- 大小:478.00 KB
- 文档页数:20
2三段式电流保护的整定及计算三段式电流保护是一种常见的电力系统故障保护装置。
它主要用于检测电流超过设定值时,快速切断电源,以避免设备过载、烧坏或人身安全事故发生。
下面将详细介绍三段式电流保护的整定及计算方法。
三段式电流保护通常包括低、中、高三个阈值,分别是过载电流保护、短路电流保护以及地故障电流保护。
1.过载电流保护:用于检测设备长时间运行时的过负荷状态。
其整定值是设备额定电流的一定倍数。
根据设备的额定电流和过载倍数来计算过载电流保护整定值,公式为:过载电流保护整定值=设备额定电流×过载倍数2.短路电流保护:用于检测电路短路状态,即电流突然增大至极高值的情况。
其整定值应根据电路短路电流计算得出。
计算短路电流保护整定值需要考虑电路特性,主要包括电压、阻抗等参数。
常用的计算方法有以下两种:a.阻抗差法:根据电路的阻抗及电源电压计算短路电流。
该方法适用于阻抗较大的电路。
计算公式为:短路电流保护整定值=电压/阻抗b.零序电流法:根据电路的零序电流及电源电压计算短路电流。
该方法适用于系统中存在地故障的情况,能够考虑地回路的耦合。
计算公式为:短路电流保护整定值=电压/零序电流3.地故障电流保护:用于检测系统中的接地故障,确保故障电流不致超过安全范围。
通常情况下,地故障电流保护整定值根据系统的雷电冲击电流及接地电阻计算得出。
计算公式为:地故障电流保护整定值=雷电冲击电流×接地电阻整定三段式电流保护的关键在于准确计算保护整定值。
通常需要详细了解电力系统的参数及各个设备的特性。
根据不同系统的具体情况,也可以采用其他方法进行计算,例如考虑设备的感应熔丝特性等。
值得注意的是,三段式电流保护的整定值并非固定不变,而是需要根据系统运行情况和设备参数做动态调整。
为确保系统的可靠性和安全性,应定期对保护装置进行检查和整定。
总之,三段式电流保护是电力系统中一项重要的保护措施。
通过合理的整定及计算,能够确保保护装置在电流异常情况下的正确动作,有效防止设备过载、烧坏以及人身安全事故的发生。
三段式电流保护问题1、三段式电流保护的作用分别是什么?它们各自有什么优缺点?答:瞬时电流速断保护作为本线路首端的主保护。
它动作迅速、但不能保护线路全长。
限时电流速断保护作为本线路首段的近后备、本线路末端的主保护、相邻下一线路首端的远后备。
它能保护线路全长、但不能作为相邻下一线路的完全远后备。
定时限过电流保护作为本线路的近后备、相邻下一线路的远后备。
它保护范围大、动作灵敏、但切除故障时间长。
2、影响距离保护正确动作的因素有哪些?答:(1)短路点的过渡电阻; (2)保护安装处与短路点间的分支线; (3)线路串补电容; (4)保护装置电压回路断线; (5)电力系统振荡。
一、 电流速断保护(第I 段)图1 简单网络接线示意图对于仅反应于电流增大而瞬时动作的电流保护,称为电流速断保护。
为优先保证继电保护动作的选择性,就要在保护装置起动参数的整定上保证下一条线路出口处短路时不起动,这在继电保护技术中,又称为按躲过下一条线路出口处短路的条件整定。
以上图1所示的网络接线为例,假定每条线路上均装有电流速断保护,对于安装在A 母线处的保护1来讲,其起动电流'.1dz I 必须整定得大于d2点处短路时,可能出现的最大短路电流,即在最大运行方式下B 母线上三相短路时的电流..max d B I ,即:'.1..max dz d B I I >(1-1)引入可靠系数' 1.2~1.3k K =,则上式即可写为:''.1..max dz k d B I K I =∙(1-2)当被保护线路的一次侧电流达到起动电流这个数值时,安装在A 母线处的保护1就能起动,最后动作于跳断路器1对保护2来讲,按照同样的原则,其起动电流必须整定得大于d4点处短路时,可能出现的最大短路电流,即在最大运行方式下C 母线上三相短路时的电流..max d C I ,即:''.2..max dz k d C I K I =∙(1-3)当被保护线路的一次侧电流达到起动电流这个数值时,安装在B 母线处的保护2就能起动,最后动作于跳断路器2。
实验一三段式电流保护一、传统电磁型继电器三段式电流保护(1)实验目的1.掌握无时限电流速断保护、带时限电流速断保护及过电流保护的电路原理、工作特性及整定原则。
2.理解输电线路阶段式电流保护的原理图、展开图及保护装置中各继电器的功用。
(2)实验原理1.阶段式电流保护的构成无时限电流速断只能保护线路的一部分,带时限电流速断只能保护本线路全长,但却不能作为下一线路的后备保护,还必须采用过电流保护作为本线路和下一线路的后备保护。
由无时限电流速断、带时限电流速断与定时限过电流保护相配合可构成的一整套输电线路阶段式电流保护,叫做三段式电流保护。
输电线路并不一定都要装三段式电流保护,有时只装其中的两段就可以了。
例如用于“线路-变压器组”保护时,无时限电流速断保护按保护全线路考虑后,此时,可不装设带时限电流速断保护,只装设无时限电流速断和过电流保护装置。
又如在很短的线路上,装设无时限电流速断往往其保护区。
图1 三段式电流保护各段的保护范围及时限配合很短,甚至没有保护区,这时就只需装设带时限电流速断和过电流保护装置,叫做二段式电流保护。
在只有一个电源的辐射式单侧电源供电线路上,三段式电流保护装置各段的保护范围和时限特性见图2.11-1。
XL-1线路保护的第Ⅰ段为无时限电流速断保护,它的保护范围为线路XL-1的前一部分即线路首端,动作时限为t1I,它由继电器的固有动作时间决定。
第Ⅱ段为带时限电流速断保护,它的保护范围为线路XL-1的全部并延伸至线路X L-2的一部分,其动作时限为t1II= t2I+△t。
无时限电流速断和带时限电流速断是线路XL-1的主保护。
第Ⅲ段为定时限过电流保护,保护范围包括X L-1及XL-2全部,其动作时限为t1III,它是按照阶梯原则来选择的,即t1III=t2III+△t ,t2III为线路XL-2的过电流保护的动作时限。
三段式电流保护的设计
三段式电流保护是指将电路保护划分为三个阶段,分别为“预警”、“报警”和“切断”。
在实际应用中,三段式电流保护可以起到很好的保护作用,有效地减小电路事故的风险。
三段式电流保护的设计需要考虑以下几个方面:
1. 预警阶段设计:预警阶段是指当电路中出现一些异常情况时,系统会产生出警告信息,提醒用户注意电路的运行状况。
预警阶段所设计的保护措施通常包括监测电流、电压、频率等参数,一旦出现异常将及时警示,并做出相应的调整。
2. 报警阶段设计:当预警阶段不能消除电路问题时,就会进入到报警阶段。
在报警阶段,电路保护系统会通过报警灯、声音或其他方式向用户发出警告信号,提示其必须尽快切断电路。
在设计报警阶段保护措施时,需要考虑到报警条件的设置,以及如何使系统及时响应,降低事故风险。
3. 切断阶段设计:当电路出现危险时,切断阶段的保护措施将会自动切断电路。
切断阶段需要设计高效的过载保护、短路保护等,以降低电路事故的风险。
切断阶段所采用的保护措施需要考虑电路负载、电源能力等因素,以确保在切断电
路时,不会对设备造成影响。
综上所述,三段式电流保护的设计需要从预警、报警和切断三个方面综合考虑,以便在电路中出现问题或异常时,及时警示用户并采取相应的保护措施,使电路运行更加稳定和安全。
三段式电流保护电流速断、限时电流速断和过电流保护都是反应电流增大而动作的保护,它们相互配合构成 一整套保护,称做三段式电流保护。
三段的区别主要在于起动电流的选择原则不同。
其中速 断和限时速断保护是按照躲开某一点的最大短路电流来整定的,而过电流保护是按照躲开最 大负荷电流来整定的。
一.无时限电流速断保护根据对继电保护速动性的要求,在简单、可靠和保证选择性的前提下,原则上力求装设快速动作的保护。
无时限电流速断保护(又称Ⅰ段电流保护)就是这样的保护,它是反应电流升高而不带时限动作的一种电流保护。
其工作原理可用图3-1所示单侧电源线路的无时限电流保护为例来说明。
图3-1 单侧电源线路无时限电流保护作用原理当线路上发生三相短路时,流过保护1的短路电流为KM M M K Z Z E Z E I +==∑)3( (3—1) 式中M E ——系统等效电源的相电动势;M Z ——系统等效电源到保护安装处之间的正序阻抗;K Z ——保护安装处至短路点之间的正序阻抗。
由式(3-1)可见,当系统运行方式一定时,M E 和M Z 是常数,则流过保护的三相短路电流,是短路点至保护安装处间距离L 的函数。
短路点距电源越远流过保护的三相短路电流越小。
图3-1中曲线1表示,系统在最大运行方式下三相短路时,流过保护的最大三相短路电流)3(K I 随L 的变化曲线。
曲线2,是系统在最小运行方式下两相短路时,流过保护的最小两相短路电流)2(K I 随L 的变化曲线。
对于反应电流升高而动作的电流保护装置而言,能使保护装置起动的最小电流称为保护装置的动作电流,以oper I 表示。
当流过保护装置的电流达到这个值时,保护装置就能起动。
显然,仅当通过被保护线路的电流k I ≥oper I 时,保护装置才会起动。
在图3-1中,以M 处保护为例,当本线路(L MN )末端发生短路故障时,希望M 处无时限电流速断保护能瞬时动作切除故障,而当相邻线路首端(或称出口处)发生短路故障时,按照选择性要求,M 处保护不应动作,应由N 处保护动作切除故障。