三段式过电流保护
- 格式:docx
- 大小:15.16 KB
- 文档页数:1
三段式电流保护整定计算实例假设有一台变压器,其额定容量为10MVA,额定电压为10kV/400V,接线形式为YNyn0,额定电流为1000A。
现在需要对该变压器进行三段式电流保护的整定计算。
第一步是计算额定电压下的一次电流。
根据变压器的额定容量和额定电压,可以得到一次电流的公式为:I1=S/(3×U1)其中,I1为一次电流,S为变压器的额定容量,U1为变压器的高压侧额定电压。
将数据代入计算,得到一次电流I1的数值:I1=10M/(3×10k)=333.33A第二步是计算三段式电流保护的整定值。
一般情况下,三段式电流保护根据阻抗保护和方向保护进行整定。
阻抗保护整定时,通常设置不同的电流整定值和时间延迟,将整定值和时间延迟作为参数进行计算。
根据实际情况,假设保护整定参数如下:-第一段电流整定值:300A,时间延迟:0.1s-第二段电流整定值:600A,时间延迟:0.2s-第三段电流整定值:900A,时间延迟:0.3s根据整定参数,将整定值乘以一次电流,即可得到实际整定值。
计算结果如下:-第一段整定值:0.1×333.33=33.33A-第二段整定值:0.2×333.33=66.67A-第三段整定值:0.3×333.33=100A第三步是计算方向保护的整定值。
方向保护用于判断故障方向,需要根据实际情况进行整定。
一般情况下,方向保护整定值设置为一次电流的一定百分比。
假设方向保护整定值为20%。
根据方向保护的整定值,将整定值乘以一次电流,即可得到实际整定值。
-方向保护整定值:0.2×333.33=66.67A综上所述,该变压器的三段式电流保护整定值为:-第一段整定值:33.33A,时间延迟:0.1s-第二段整定值:66.67A,时间延迟:0.2s-第三段整定值:100A,时间延迟:0.3s-方向保护整定值:66.67A需要注意的是,这只是一个示例,实际的整定计算可能涉及更多的参数和考虑因素。
三段式电流保护工作原理、整定计算什么是三段式电流保护三段式电流保护指的是电流速断保护(第一段)、限时电流速断保护(第二段)、定时限过电流保护(第三段)相互配合构成的一套保护、下面我们就来详细介绍一下三段时电流保护的工作原理和整定计算方法。
一、电流速断保护(第I段)简单网络接线示意图对于仅反应于电流增大而瞬时动作的电流保护,称为电流速断保护。
为优先保证继电保护动作的选择性,就要在保护装置起动参数的整定上保证下一条线路出口处短路时不起动,这在继电保护技术中,又称为按躲过下一条线路出口处短路的条件整定。
以上图1所示的网络接线为例,假定每条线路上均装有电流速断保护,对于安装在A母线处的保护1来讲,其起动电流必须整定得大于d2点处短路时,可能出现的最大短路电流,即在最大运行方式下B母线上三相短路时的电流,即:当被保护线路的一次侧电流达到起动电流这个数值时,安装在A母线处的保护1就能起动,最后动作于跳断路器1对保护2来讲,按照同样的原则,其起动电流必须整定得大于d4点处短路时,可能出现的最大短路电流,即在最大运行方式下C母线上三相短路时的电流,即:当被保护线路的一次侧电流达到起动电流这个数值时,安装在B母线处的保护2就能起动,最后动作于跳断路器2。
后面几段线路的电流速断保护整定原则同上。
电流速断保护的主要优点是:简单可靠,动作迅速,因而获得了广泛的应用。
但由于引入的可靠系数,所以不难看出,电流速断保护的缺点是:不能保护本线路的全长,且保护范围直接受系统运行方式变化的影响。
运行实践证明,电流速断保护的保护范围大概是本线路的85%~90%。
二、限时电流速断保护(第II段)1、工作原理及整定计算的基本原则由于有选择性的电流速断保护不能保护本线路的全长,因此我们考虑增加一段新的保护,用来切除速断范围以外的故障,保护本线路的全长,同时也能作为电流速断保护的后备保护。
由于要求它必须保护本线路的全长,因此它的保护范围必然要延伸到下一条线路中去,这样当下一条线路出口处(如图1中,对于保护1来说,d2点处)发生短路时,它就要起动,在这种情况下,为了保证动作的选择性,就必须使保护的动作带有一定的时限,但又为了使这一时限尽量缩短,我们就考虑使它的保护范围不超过下一条线路速断保护(如图1中的保护2)的保护范围,而动作时限则比下一条线路速断保护高出一个时间阶段,即如图2(a)所示,由于它能以较小的时限快速切除全线路范围以内的故障,所以我们称它为限时电流速断保护。
三段式电流保护的时限一、三段式电流保护的概述在电力系统继电保护中,三段式电流保护是一种常见的保护配置,主要用于切除故障线路,保障电力系统的稳定运行。
三段式电流保护包括瞬时电流速断保护(第Ⅰ段)、限时电流速断保护(第Ⅱ段)和定时限过电流保护(第Ⅲ段)。
这三段保护相互配合,共同构成了完整的主保护、后备保护和辅助保护。
二、三段式电流保护的时限设置1.瞬时电流速断保护(第Ⅰ段):这是一种无时限或具有很小时限的电流保护。
当线路出现严重故障时,它能够瞬时切断电流,以防止事故扩大。
由于其无时限或时限很短,因此只能作为主保护,不能作为后备保护。
2.限时电流速断保护(第Ⅱ段):这是一种具有较短时限的电流保护。
与第Ⅰ段保护相比,它的动作时限稍长,可以切除部分线路故障。
作为主保护和后备保护的结合,第Ⅱ段保护能够在第Ⅰ段保护动作后,迅速切除剩余线路的故障。
3.定时限过电流保护(第Ⅲ段):这是一种具有较长时限的电流保护。
它的动作时限是固定的,通常作为后备保护,在主保护和后备保护拒动时,切除故障线路。
此外,对于某些特定的线路或设备,定时限过电流保护也可以作为主保护或后备保护使用。
三、三段式电流保护的时限配合问题在三段式电流保护的配置中,时限配合是一个关键问题。
为了确保各段保护之间的正确配合,需要遵循以下原则:1.第Ⅰ段与第Ⅱ段保护的配合:第Ⅱ段保护的动作时限应比第Ⅰ段保护的动作时限长一个时间级差Δt,以避免两段保护同时动作。
2.第Ⅱ段与第Ⅲ段保护的配合:第Ⅲ段保护的动作时限应比第Ⅱ段保护的动作时限长一个时间级差Δt,以避免两段保护同时动作。
3.上下级保护的配合:在多级电网中,下一级电网的定时限过电流保护的动作时限应比上一级电网的定时限过电流保护的动作时限短一个时间级差Δt。
通过合理的时限配合,可以避免因误动或拒动导致的事故扩大,确保各段保护能够在合适的时间切除故障线路。
四、结论三段式电流保护作为电力系统的重要保障措施,在电力系统的稳定运行中发挥着至关重要的作用。
电流三段式保护电流速断、限时电流速断和过电流保护都是反应电流增大而动作的保护,它们相互配合构成一整套保护,称做三段式电流保护。
三段的区别主要在于起动电流的选择原则不同。
其中速断和限时速断保护是按照躲开某一点的最大短路电流来整定的,而过电流保护是按照躲开最大负荷电流来整定的。
当线路发生短路时,重要特征之一是线路中的电流急剧增大,当电流流过某一预定值时,反应于电流升高而动作的保护装置叫过电流保护。
电源的保护功能主要是过压、过流保护两种功能。
两者之间的关系为:任何一种电源在发生故障时,都有可能使输出电流失去控制,为了使用户的负载不致因此而损坏,电源一般都设有过流保护。
当有些负载是容性负载时,由于大容量的电解电容器并联在一起,当电源发生故障时,电流就可能大幅度上升,而电压的升值却不甚明显,这时电源内部的过流保护部件会首先启动,电源会自动切断输出。
过流保护值是不能人工设定的,机内已经定死,一般为额定电流的1.2~1.5倍。
需要说明的是,过压保护会立即快速启动,过流保护则有一秒左右的延时。
这是因为如电源正常工作时,如电源的负载发生突然短路,此时电源输出的瞬间电流是数倍或数十倍的额定电流值,可以认为是一个电流冲击,远远超过过流保护的数值,但这时并不希望过流保护起作用。
而希望短路解除后,电压自动恢复正常。
因此在设计过流保护时,要避开突发短路时的电流冲击,而仅考虑使输出过电流的时长达到一定的值才启动过流保护。
过流保护是针对机内故障的,因此既然发生,电源就不应自动恢复。
如果一定要再现,必须关机后重新开机。
而短路保护、电流报警、短路报警功能是面对用户的,如果电流已经下降,短路已经排除,相对的报警声就会自动解除,电压就会自动恢复正常。
电力系统中线路的电流保护以三段式电流保护为出发点,进而衍生出电压闭锁式(启动式)、功率方向式电流保护,而且像阻抗保护等其他需要有选择性的保护也借鉴了这种三段式(多段式)的保护方式1. I段,无时限电流速断保护保护范围:本段线路(一般线路全长的80~85%,最少线路全长的15%)。
实验一三段式电流保护一、传统电磁型继电器三段式电流保护(1)实验目的1.掌握无时限电流速断保护、带时限电流速断保护及过电流保护的电路原理、工作特性及整定原则。
2.理解输电线路阶段式电流保护的原理图、展开图及保护装置中各继电器的功用。
(2)实验原理1.阶段式电流保护的构成无时限电流速断只能保护线路的一部分,带时限电流速断只能保护本线路全长,但却不能作为下一线路的后备保护,还必须采用过电流保护作为本线路和下一线路的后备保护。
由无时限电流速断、带时限电流速断与定时限过电流保护相配合可构成的一整套输电线路阶段式电流保护,叫做三段式电流保护。
输电线路并不一定都要装三段式电流保护,有时只装其中的两段就可以了。
例如用于“线路-变压器组”保护时,无时限电流速断保护按保护全线路考虑后,此时,可不装设带时限电流速断保护,只装设无时限电流速断和过电流保护装置。
又如在很短的线路上,装设无时限电流速断往往其保护区。
图1 三段式电流保护各段的保护范围及时限配合很短,甚至没有保护区,这时就只需装设带时限电流速断和过电流保护装置,叫做二段式电流保护。
在只有一个电源的辐射式单侧电源供电线路上,三段式电流保护装置各段的保护范围和时限特性见图2.11-1。
XL-1线路保护的第Ⅰ段为无时限电流速断保护,它的保护范围为线路XL-1的前一部分即线路首端,动作时限为t1I,它由继电器的固有动作时间决定。
第Ⅱ段为带时限电流速断保护,它的保护范围为线路XL-1的全部并延伸至线路X L-2的一部分,其动作时限为t1II= t2I+△t。
无时限电流速断和带时限电流速断是线路XL-1的主保护。
第Ⅲ段为定时限过电流保护,保护范围包括X L-1及XL-2全部,其动作时限为t1III,它是按照阶梯原则来选择的,即t1III=t2III+△t ,t2III为线路XL-2的过电流保护的动作时限。
三段式电流保护的整定及计算一、引言电流保护是电力系统中非常重要的一项保护措施,它能够有效地保护电力设备和电路免受过载和短路等故障的损害。
而三段式电流保护是一种常用的保护方式,通过设置三个不同的整定值,在不同故障情况下分别触发保护动作,提高了保护的精确性和可靠性。
本文将介绍三段式电流保护的整定及计算方法。
二、三段式电流保护的整定方法1. 第一段整定值的确定第一段整定值通常用于检测系统中的过载情况,其整定值应根据所保护设备的额定电流和短时过载能力来确定。
一般情况下,第一段整定值可取设备的额定电流的 1.2倍,以确保设备在短时间内的过载情况下能够正常运行。
2. 第二段整定值的确定第二段整定值主要用于检测系统中的短路故障,其整定值应根据所保护设备的额定电流和短路能力来确定。
一般情况下,第二段整定值可取设备的额定电流的2倍,以确保设备在短路故障发生时能够及时切断电路,保护设备的安全运行。
3. 第三段整定值的确定第三段整定值主要用于检测系统中的严重短路故障,其整定值应根据所保护设备的额定电流和系统的最大短路电流来确定。
一般情况下,第三段整定值可取系统最大短路电流的 1.5倍,以确保设备在严重短路故障发生时能够迅速切断电路,有效地保护电力系统的安全运行。
三、三段式电流保护的计算方法1. 第一段整定值的计算第一段整定值的计算可根据所保护设备的额定电流和短时过载能力来进行。
例如,某设备的额定电流为100A,短时过载能力为150A,那么第一段整定值可取100A×1.2=120A。
2. 第二段整定值的计算第二段整定值的计算可根据所保护设备的额定电流和短路能力来进行。
例如,某设备的额定电流为100A,短路能力为5000A,那么第二段整定值可取100A×2=200A。
3. 第三段整定值的计算第三段整定值的计算可根据所保护设备的额定电流和系统的最大短路电流来进行。
例如,某设备的额定电流为100A,系统的最大短路电流为10000A,那么第三段整定值可取10000A×1.5=15000A。
实验三三段式电流保护一、实验目的1.加深了解三段式电流保护的原理。
2.掌握三段式电流保护的参数整定及各段保护之间的配合。
二、实验内容三段式电流保护分电流速断保护(I段保护),限时电流速断保护(II 段保护)和过电流保护(III段保护):包括以下4个部分:(1)电流保护I段:它是经过傅立叶模块变换的电流与预先设置的继电器电流相比较,若大于预置值则输出0,反之输出1。
其动作电流按躲开线路末端发生三相短路的短路电流整定;因为电流I段是瞬时动作,所以延时时间很小(延时0.05S)。
它只能保护线路的一部分,不能保护全长。
(2)电流保护II段:其动作原理与电流I段相同,其动作电流按与下一级线路的I段或II段配合来整定,整定值小于I段,延时时间0.5S,它能保护本线路的全长。
(3)电流保护I段:其动作原理与电流保护I段相同,其动作电流按躲开最大负荷电流整定,保护经过一个动作延时启动并切出故障,它不仅能保护本线路的全长,而且能保护下级相邻线路的全长。
当满足灵敏度的情况下,它的动作时间应与下一保护的ni段相配合。
(4)保护出口部分,该部分的功能就是将电流I、II和n段的输出信号相与。
模拟单侧电源系统中,线路发生故障时保护的动作情况。
ContinuousThnee-Pha&e Sfluroe 1)三相电源模排,战电压为1MV二A相的相柱南为0:^电内部连接方式为Yg;内部电限力内部也感为0,04比疑问2)格踞殁模块起始状态身close,勾iiA, H,白拜美,不在胃触发:勾逸开、断时间为外部校前方式□・» In1 DirtlSwtKygtem 3Three-PhaseFault5)故障发时4)二相卤端,500KW9.图3-1仿真模型图3-2子系统模型主要模块参数设置如下:(1)三相电源模块:线电压设置为10kV ; A 相的相位角设置参数为0;频 率设置参数为50Hz,内部连接方式设置为Yg ,星形连接;电源的内部电阻 设置参数为3。
三段式电流保护电流速断、限时电流速断和过电流保护都是反应电流增大而动作的保护,它们相互配合构成 一整套保护,称做三段式电流保护。
三段的区别主要在于起动电流的选择原则不同。
其中速 断和限时速断保护是按照躲开某一点的最大短路电流来整定的,而过电流保护是按照躲开最 大负荷电流来整定的。
一.无时限电流速断保护根据对继电保护速动性的要求,在简单、可靠和保证选择性的前提下,原则上力求装设快速动作的保护。
无时限电流速断保护(又称Ⅰ段电流保护)就是这样的保护,它是反应电流升高而不带时限动作的一种电流保护。
其工作原理可用图3-1所示单侧电源线路的无时限电流保护为例来说明。
图3-1 单侧电源线路无时限电流保护作用原理当线路上发生三相短路时,流过保护1的短路电流为KM M M K Z Z E Z E I +==∑)3( (3—1) 式中M E ——系统等效电源的相电动势;M Z ——系统等效电源到保护安装处之间的正序阻抗;K Z ——保护安装处至短路点之间的正序阻抗。
由式(3-1)可见,当系统运行方式一定时,M E 和M Z 是常数,则流过保护的三相短路电流,是短路点至保护安装处间距离L 的函数。
短路点距电源越远流过保护的三相短路电流越小。
图3-1中曲线1表示,系统在最大运行方式下三相短路时,流过保护的最大三相短路电流)3(K I 随L 的变化曲线。
曲线2,是系统在最小运行方式下两相短路时,流过保护的最小两相短路电流)2(K I 随L 的变化曲线。
对于反应电流升高而动作的电流保护装置而言,能使保护装置起动的最小电流称为保护装置的动作电流,以oper I 表示。
当流过保护装置的电流达到这个值时,保护装置就能起动。
显然,仅当通过被保护线路的电流k I ≥oper I 时,保护装置才会起动。
在图3-1中,以M 处保护为例,当本线路(L MN )末端发生短路故障时,希望M 处无时限电流速断保护能瞬时动作切除故障,而当相邻线路首端(或称出口处)发生短路故障时,按照选择性要求,M 处保护不应动作,应由N 处保护动作切除故障。
三段式电流保护的整定及计算Prepared on 21 November 20212三段式电流保护的整定计算1、瞬时电流速断保护整定计算原则:躲开本条线路末端最大短路电流整定计算公式:式中:Iact——继电器动作电流Kc——保护的接线系数IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。
K1rel——可靠系数,一般取~。
I1op1——保护动作电流的一次侧数值。
nTA——保护安装处电流互感器的变比。
灵敏系数校验:式中:X1——线路的单位阻抗,一般Ω/KM;Xsmax——系统最大短路阻抗。
要求最小保护范围不得低于15%~20%线路全长,才允许使用。
2、限时电流速断保护整定计算原则:不超出相邻下一元件的瞬时速断保护范围。
所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。
故:式中:KⅡrel——限时速断保护可靠系数,一般取~;△t——时限级差,一般取;灵敏度校验:规程要求:3、定时限过电流保护定时限过电流保护一般是作为后备保护使用。
要求作为本线路主保护的后备以及相邻线路或元件的远后备。
动作电流按躲过最大负荷电流整定。
式中:KⅢrel——可靠系数,一般取~;Krel——电流继电器返回系数,一般取~;Kss——电动机自起动系数,一般取~;动作时间按阶梯原则递推。
灵敏度分别按近后备和远后备进行计算。
式中:Ikmin——保护区末端短路时,流经保护的最小短路电流。
即:最小运行方式下,两相相间短路电流。
要求:作近后备使用时,Ksen≥~作远后备使用时,Ksen≥注意:作近后备使用时,灵敏系数校验点取本条线路最末端;作远后备使用时,灵敏系数校验点取相邻元件或线路的最末端;4、三段式电流保护整定计算实例如图所示单侧电源放射状网络,AB和BC均设有三段式电流保护。
已知:1)线路AB长20km,线路BC长30km,线路电抗每公里欧姆;2)变电所B、C中变压器连接组别为Y,d11,且在变压器上装设差动保护;3)线路AB的最大传输功率为,功率因数,自起动系数取;4)T1变压器归算至被保护线路电压等级的阻抗为28欧;5)系统最大电抗欧,系统最小电抗欧。
三段式电流保护的设计实验报告
实验目的:
1. 了解三段式电流保护的工作原理;
2. 熟悉电路原理图的绘制和元器件的选择;
3. 掌握实验仪器的使用方法和实验流程;
4. 分析实验结果并得出结论。
实验仪器:
1. 实验电源;
2. 示波器;
3. 整流滤波电路;
4. 三段式电流保护电路。
实验原理:
三段式电流保护是一种通用、可靠的过电流保护电路。
三段式电流保护主要由比较器、计时器和继电器组成,实现对被保护电路的过电流保护。
在实验中,我们使用三段式电流保护电路对直流电路进行保护。
当直流电路中的电流
超过预设值时,比较器会将信号传递给计时器。
计时器开始计时,如果在规定时间内电流
没有下降,则继电器动作,切断电源,进而保护被保护电路。
实验步骤:
1. 按照电路原理图,将电路连接好,注意正负极的连接;
2. 打开实验电源,调节电压和电流;
3. 用示波器观察被保护电路中的电流波形;
4. 分别调节比较器和计时器的参数,记录实验数据;
实验结果:
1. 当被保护电路中的电流超过预设值时,比较器会将信号传递给计时器;
2. 计时器开始计时,如果在规定时间内电流没有下降,则继电器动作,切断电源;
3. 通过调节比较器和计时器的参数,可以实现对电路的不同保护模式,如瞬态保护、短路保护等。
通过本次实验,我们实现了对直流电路的保护,并深入了解了三段式电流保护的工作
原理和电路设计。
同时,实验中我们还掌握了实验仪器的使用方法和实验流程。
在实际工
作中,我们可以应用这些知识和技能,有效地保护电路的正常运行。
什么是一段过流、二段过流、三段过流?过流即过电流保护。
三段式电流保护指的是电流速断保护(第一段)、限时电流速断保护(第二段)、定时限过电流保护(第三段),相互配合构成的一套过电流保护机制。
1段,近区短路0秒跳闸,一般保护到母线侧线路出口一段距离;2段,带0.3-0.5秒左右的时限跳闸,一般保护全线路,有可能还有少许延伸;3段,带N秒的延迟跳闸,一般是按照躲过最大负荷电流整定的,保护全线路包括下一级的很大一部分,视具体情况而定。
供电系统中的线路、设备等故障,会产生短路电流。
短路电流比线路正常工作时大很多,这个就不用过多解释了。
通过电流互感器测量这个电流值,和电流值的持续时间,达到整定值时输出跳闸信号,这个就是过电流保护的基本原理。
故障电流越靠近电源点,短路电流越大。
过流一段保护,也俗称速断保护。
这个保护的电流整定值是非常大的,而且没有整定时间。
也就是说,只要是达到了这个电流值,保护装置必须立即动作(实际反应速度在毫秒级别)!但是,为了保证保护的选择性(下一级线路的故障不能使上一级的保护动作),速断保护并不能保护线路的全长。
所以,别看它名字叫做一段,速断保护并不是线路的主保护!过流二段保护。
保护的电流整定值比一段小,也有整定时间。
线路电流达到整定值并持续一段时间后,保护动作。
过流二段保护的电流整定值,必须保证保护本线路的全长,还要延长至下一级线路的前半部分。
二段保护是本线路的主保护,并作为下一级线路的远后备保护。
过流三段保护。
保护的电流整定值比二段更小,时间比二段更长。
三段保护不仅要保证本线路的全长,还要保证比过流二段保护更长。
三段保护是线路的后备保护,并作为下一级线路(甚至下下一级)的远后备保护。
三段式电流保护原理
作为一名内容创作者,我们常常需要涉及到电子设备和电路知识。
在使用电子设备时,电路保护显得尤为重要。
其中,三段式电流保护原理是一种常用的保护方式。
三段式电流保护原理指的是通过三个不同的保护电路,在电路中设置三个不同的保护值来实现电路保护。
具体来说,第一段是瞬间断路器,主要用于保护设备的瞬态过载。
第二段是熔断器或电子式熔断器,主要用于保护设备在正常工作状态下的过载情况。
第三段是漏电保护器,用于监测设备外部的漏电情况。
三段式电流保护原理的实现需要依靠不同保护元件的协同作用。
当电路遇到某种异常情况时,如设备短路或漏电,三个保护电路会同时起作用,以保证电路中的电流正常运行。
它可以最大程度地保护设备和使用者的安全。
在实际的电路设计中,三段式电流保护原理经常被广泛采用。
例如,在家庭电器中,我们可以看到保险丝和漏电保护器的使用。
而在工业自动化设备领域,也经常采用三段式电流保护原理,以保护设备和现场工作人员的安全。
综上所述,作为一名内容创作者,了解三段式电流保护原理是很有必要的。
通过理解其工作原理,我们可以更好地保护我们的电子设备和使用者的安全。
1.三段式电流保护的优缺点:输电线路通常采用三段式电流保护,即由无时限电流速段保护作为第一段保护,带时限电流速断保护作为第二段保护,定时限过电流保护作为第三段保护,无时限电流速断保护作为本线路首段的主保护,它动作迅速,但不能保护线路的全长;带时限电流速断保护作为本线路首段的近后备,本线路末端的主保护,相邻下一线路首段的远后备,它能保护线路的全长,但不能作为相邻下一线路完全远后备,定时限过电流保护作为本线路的近后备,相邻下一线路的远后备,它保护范围大,动作灵敏,但切除故障时间长。
2.自动重合闸的分类:1)按控制断路器合闸次数的不同,可将重合闸分为一次重合闸和多次重合闸;2)按重合闸的使用条件,可分为单侧电源重合闸,双侧电源重合闸,栓侧电源重合闸又可分为检定无压和检定同期重合闸,非同期重合闸;3)根据重合闸控制的断路器所接通或断开的电力元件不同,可分为断路重合闸,变压器重合闸和母线重合闸;4)根据重合闸控制断路器相数的不同,可分为单相重合闸,多相重合闸和综合重合闸。
3.电力变压器差动保护不平衡电流缠身的原因:1)由变压器两侧接线不同产生的不平衡电流;2)变压器两侧电流互感器型号的不同产生的不平衡电流;3)由变压器调节分接产生的不平衡电流;4)变压器励磁涌流产生的不平衡电流。
4.纵联保护的分类:纵联差动保护,高频保护,微波保护,光纤保护,高频保护分为:方向比较式高频保护,电流相位差动保护,方向比较式高频保护又分为:闭锁是方向高频保护,长期发信的闭锁是方向高频保护,闭锁式距离高频保护,闭锁式负序方向高频保护,闭锁式零序方向高频保护。
微波保护分为方向微波保护,距离微波保护,相差微波保护。
5.距离保护的振荡闭锁:并联运行的电力系统或发电厂之间出现功率角大范围周期性变化的现象,称为电力系统的振荡,在系统振荡时防止保护误动要采取必要的措施。
用来防止系统振荡时距离保护装置误动的措施,称为距离保护的振荡闭锁。
构成振荡闭锁回路应满足的要求:1系统发生振荡而没有故障时,应可靠的保护闭锁,且振荡不停止,闭锁不解除;2系统发生各种类型的故障时,保护应不被闭锁而可靠的动作;3在振荡过程发生故障时,保护应能正确地动作;4先故障而后发生振荡时,保护不致无选择性的动作。
三段式过电流保护:
第Ⅰ段―――电流速断保护
第Ⅱ段―――限时电流速断保护
第Ⅲ段―――过电流保护
①电流速断保护:
电流速断保护按被保护设备的短路电流整定,当短路电流超过整定值时,则保护装置动作,断路器跳闸,电流速断保护一般没有时限,不能保护线路全长(为避免失去选择性),即存在保护的死区.为克服此缺陷,常采用略带时限的电流速断保护以保护线路全长.时限速断的保护范围不仅包括线路全长,而深入到相邻线路的无时限保护的一部分,其动作时限比相邻线路的无时限保护大一个级差。
特点:
1.没有时限。
2.不能保护线路全长(存在死区)(一般设定为保护线路全长的85%)。
②限时电流速断保护:
电流速断保护不能保护线路全长,故需要增加一段新的保护,用以切除本线路上速断范围以外的故障,同时也作为电流速断保护的后备保护(电流速断保护拒动,可能原因主要有测量误差,非金属性短路)(非金属性短路即存在过渡电阻,此时短路电流比金属性短路电流小,可能达不到电流速断保护的整定值)。
特点:
1.有时限,一般比下一条线路的速断保护高出一个时间阶段△t,通常取0.5s。
2.能保护线路全长,要求灵敏度大于1.3~1.5。
(灵敏度指保护长度比总长度,零度1即表示保护全长)。
3.电流速断保护与限时电流速断保护配合,构成一条线路的主保护,保证了全线路范围的故障都能在0.5秒内切除,在一般情况下都能满足速动要求。
③过电流保护:
当电流超过预定最大值时,使保护装置动作的一种保护方式。
一般可用熔断体(没有太大冲击电流时,即负荷中电动机容量较少)或断路器。
特点:
1.有时限。
如果下一级有限时电流速断保护,则比限时电流速断保护高出一个时间
阶段(区别于定时限,过电流保护作为第三段保护时,可以使反时限:故障电流越大,动作时间越短)。
2.能保护线路全长。