氨氮废水处理技术综述
- 格式:pdf
- 大小:1.04 MB
- 文档页数:4
氨氮废水常用处理方法氨氮废水是指废水中含有氨氮化合物的废水。
氨氮废水的处理是保护环境、减少对生活水源、地下水和环境的污染的重要过程。
以下是常用的氨氮废水处理方法。
一、化学法处理1. 氧化法氧化法是将含有氨氮化合物的废水中的氨氮氧化为硝酸盐,进而使得氨氮被转化为无害物质。
常用的氧化剂有氯和臭氧。
此外,还可以利用高锰酸钾氧化废水中的氨氮。
2. 硫酸铵沉淀法硫酸铵沉淀法是一种将氨氮转化为与之反应生成固体沉淀的方法。
该方法中,硫酸铵与废水中的氨氮发生反应,生成可溶性的硫酸铵、硫酸铁、硫酸铵铁等盐类沉淀,从而将氨氮从废水中去除。
二、生物法处理1. 厌氧处理法厌氧处理法是利用厌氧条件下的微生物,将有机废物和氨氮一起去除。
在厌氧生物反应器中,废水中的氨氮会被微生物利用作为能源和氮源,通过微生物代谢的产物来将氨氮去除掉。
2. 高效曝气活性污泥法高效曝气活性污泥法是一种通过生物氧化反应将氨氮去除的方法。
在高效曝气活性污泥法中,通过添加活性污泥,在适宜的温度和pH条件下,利用曝气设备对污水进行充分曝气,促使废水中的氨氮通过厌氧-好氧反应达到去除的目的。
三、物理法处理1. 吸附法吸附法是通过吸附剂表面的孔隙结构和化学性质,将废水中的氨氮物质吸附到吸附剂上,使氨氮物质从废水中转移到吸附剂上,并通过后续的处理将吸附剂中的氨氮去除。
2. 膜分离法膜分离法是利用半透膜将废水中的氨氮物质分离出来的方法。
通过调整操作条件,如压力差、温度等,使得废水中的氨氮物质能够透过半透膜,从而达到去除的目的。
四、辅助方法1. 灭活法灭活法是指通过添加酸、碱等化学物质,改变废水中的pH值,使得废水中的氨氮化合物发生离子化反应,从而改变其活性,达到去除氨氮的目的。
2. 稀释法稀释法是指通过将废水与其他水源进行混合,降低废水中氨氮的浓度,以达到减少氨氮的目的。
上述是常用的氨氮废水处理方法,具体选择何种方法应根据废水中氨氮浓度、处理效果要求和经济成本等多方面因素综合考虑。
sbr处理氨氮废水原理一、SBR工艺概述SBR工艺是一种高效的废水处理工艺,它采用一种顺序批处理的方式,将废水在同一反应器中进行一系列的处理步骤,包括曝气、好氧生化、沉淀、排泥等。
这种工艺具有操作灵活、自动化程度高、投资和运行成本低等优点,因此在氨氮废水处理中得到了广泛应用。
二、氨氮废水的处理原理氨氮废水是指含有氨氮(NH3-N)的废水,它是一种有毒有害物质,对环境和生态造成严重影响。
SBR工艺通过一系列的处理步骤将氨氮废水中的氨氮转化为无害物质,并达到排放标准。
1. 曝气阶段在SBR反应器中,首先进行曝气阶段。
通过给废水通入氧气,提供充足的氧气供给,使废水中的氨氮转化为硝化细菌所需的氨氮和氧气。
曝气阶段一般持续一段时间,使废水中的氨氮进行初步的氧化反应。
2. 好氧生化阶段曝气阶段之后,进入好氧生化阶段。
在这个阶段,废水中的氨氮被硝化细菌进一步氧化为亚硝酸盐和硝酸盐。
硝化细菌是一类特殊的微生物,它能够利用废水中的氨氮进行生长和代谢。
3. 沉淀阶段好氧生化阶段之后,废水中的氨氮已经被氧化为亚硝酸盐和硝酸盐。
此时,需要进行沉淀阶段,将废水中的悬浮物和生物污泥一起沉淀下来,从而实现废水的净化。
沉淀过程中,废水中的氨氮会与生物污泥结合,进一步减少废水中的氨氮含量。
4. 排泥阶段沉淀阶段之后,废水中的悬浮物和生物污泥已经沉淀到底部。
此时,需要进行排泥阶段,将沉淀下来的污泥从反应器中排出,以保持反应器的正常运行。
5. 通气阶段排泥阶段之后,废水中的氨氮已经基本被氧化和沉淀掉,此时可以进行通气阶段。
通气阶段是为了给反应器中的微生物提供充足的氧气,使其继续进行生长和代谢,以准备下一次处理周期。
三、SBR处理氨氮废水的优点SBR处理氨氮废水的工艺具有以下优点:1. 操作灵活:SBR工艺可以根据实际情况进行调整和改进,适应不同废水的处理需求。
2. 自动化程度高:SBR系统可以通过自动控制系统进行操作和监控,减少人工干预的需求。
污水处理中的氨氮去除技术污水处理是一项重要而复杂的环境工程技术,其中氨氮去除技术是其中一个关键环节。
本文将详细介绍污水处理中的氨氮去除技术,并分点列出其相关内容。
一、氨氮的来源及危害1. 氨氮的来源:工业废水、农业面源废水、生活污水、农业非点源废水等。
2. 氨氮的危害:氨氮过量排放会导致水体富营养化,引发水华、水生生物死亡及水环境恶臭等问题,严重危害生态环境和人类健康。
二、常见的氨氮去除技术1. 生物法:包括厌氧法和好氧法。
- 厌氧法:利用厌氧菌群将氨氮转化为氮气,常见的反应器有厌氧反应槽和厌氧滤池等。
- 好氧法:利用好氧菌群将氨氮转化为硝酸盐,常见的处理单元有好氧池、好氧滤池和硝化反硝化池等。
2. 物理法:主要用于氨氮浓度较低的水体。
- 蒸发浓缩法:利用加热蒸发水体,浓缩氨氮浓度,常用于工业废水处理。
- 膜分离法:利用膜的选择性透过性,将氨氮分离出来,常见的膜法有超滤、反渗透和离子交换膜等。
3. 化学法:通过添加化学药剂达到去除氨氮的目的。
- 高锰酸钾法:利用高锰酸钾氧化氨氮生成氮气,广泛应用于农村生活污水处理。
- 硝化法:通过添加化学药剂加速氨氮转化为硝态氮,常见的药剂有硝酸铵和硫酸铵等。
三、氨氮去除技术的特点及应用情况1. 生物法:- 特点:技术成熟、操作简单、能耗低、无二次污染。
- 应用情况:广泛应用于城市生活污水处理、工业废水处理和农村污水处理等领域。
2. 物理法:- 特点:适用于氨氮浓度较低的水体、处理效果稳定。
- 应用情况:主要应用于工业废水处理和海水淡化等领域。
3. 化学法:- 特点:适用性广、处理效果较好。
- 应用情况:常见于农村生活污水处理和工业废水处理等领域。
四、氨氮去除技术的发展趋势1. 生物法:加强氮素转化功能菌的研究,提高转化效率。
2. 物理法:研发更高效、节能的膜分离技术,开发新型浓缩设备。
3. 化学法:研究更环保、高效的化学药剂,减少药剂使用量。
五、国内外氨氮去除技术研究进展1. 国内研究进展:随着环保意识的提高,氨氮去除技术研究受到重视,取得了不少成果。
氨氮废水处理技术介绍(详解)氨氮废水的一般的形成是由于氨水和无机氨共同存在所造成的,废水中氨氮的构成主要有两种,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵,氯化铵等等。
氨氮废水主要来自化工、冶金、化肥、煤气、炼焦、鞣革、味精、肉类加工和养殖等行业。
排放的废水以及垃圾渗滤液等。
氨氮废水对鱼类及某些生物也有毒害作用。
另外,当含少量氨氮的废水回用于工业中时,对某些金属,特别是铜具有腐蚀作用,还可以促进输水管道和用水设备中微生物的繁殖,形成生物垢,堵塞管道和设备。
处理氨氮废水的方法有很多,目前常见的有化学沉淀法、吹脱法、化学氧化法、生物法、膜分离法、离子交换法以及土壤灌溉等。
一、化学沉淀法化学沉淀法又称为MAP沉淀法,是通过向含有氨氮的废水中投加镁化物和磷酸或磷酸氢盐,使废水中的NH4﹢与Mg²﹢、PO4³﹣在水溶液中反应生成磷酸按镁沉淀,分子式为MgNH4P04.6H20,从而达到去除氨氮的目的。
磷酸按镁俗称鸟粪石,可用作堆肥、土壤的添加剂或建筑结构制品的阻火剂。
反应方程式如下:Mg²﹢+NH4﹢+PO4³﹣=MgNH4P04.6H20影响化学沉淀法处理效果的因素主要有pH值、温度、氨氮浓度以及摩尔比(n(Mg²﹢):n(NH4﹢):n(P04³-))等。
化学沉淀法的优点是当氨氮废水浓度较高时,应用其它方法受到限制,如生物法、折点氯化法、膜分离法、离子交换法等,此时可先采用化学沉淀法进行预处理;化学沉淀法去除效率较好,且不受温度限制,操作简单;形成含磷酸馁镁的沉淀污泥可用作复合肥料,实现废物利用,从而抵消一部分成本;如能与一些产生磷酸盐废水的工业企业以及产生盐卤的企业联合,可节约药剂费用,利于大规模应用。
化学沉淀法的缺点是由于受磷酸铁镁溶度积的限制,废水中的氨氮达到一定浓度后,再投人药剂量,则去除效果不明显,且使投入成本大大增加,因此化学沉淀法需与其它适合深度处理的方法配合使用;药剂使用量大,产生的污泥较多,处理成本偏高;投加药剂时引人的氯离子和余磷易造成二次污染。
一、含氨氮废水的主要处理方法及其优缺点(1)传统生物脱氮法传统生物脱氮技术是通过氨化、硝化、反硝化以及同化作用来完成。
传统生物脱氮的工艺成熟,脱氮效果较好。
但存在工艺流程长、占地多、常需外加碳源、能耗大、成本高等缺点。
(2)氨吹脱法包括蒸汽吹脱法和空气吹脱法〔2~4〕,其机理是将废水调至碱性,然后在吹脱塔中通入空气或蒸汽,经过气液接触将废水中的游离氨吹脱出来。
此法工艺简单,效果稳定,适用性强,投资较低。
但能耗大,有二次污染。
(3)离子交换法离子交换法实际上是利用不溶性离子化合物(离子交换剂)上的可交换离子与溶液中的其它同性离子(NH4+)发生交换反应,从而将废水中的NH4+牢固地吸附在离子交换剂表面,达到脱除氨氮的目的。
虽然离子交换法去除废水中的氨氮取得了一定的效果,但树脂用量大、再生难,,导致运行费用高,有二次污染。
(4)折点氯化法折点氯化法是投加过量的氯或次氯酸钠,使废水中的氨氮氧化成氮气的化学脱氮工艺。
该方法的处理效率可达到90% ~100%,处理效果稳定,不受水温影响。
但运行费用高,副产物氯胺和氯代有机物会造成二次污染。
(5)磷酸铵镁沉淀法向含氨氮废水中投加Mg2+和PO43-,三者反应生成MgNH4PO4·6H2O(简称MAP)沉淀。
此法工艺简单,操作简便,反应快,影响因素少,能充分回收氨实现废水资源化。
该方法的主要局限性在于沉淀药剂用量较大,从而致使处理成本较高,沉淀产物MAP的用途有待进一步开发与推广。
二、我公司应采取的除氮方法根据我公司制浆工艺方式、公司所在地的气候条件、投资费用和去除效率,折点氯化法较为合理。
为了克服单独采用折点加氯法处理氨氮废水需要大量加氯的缺点。
应将此法和生物硝化连用,加氯点设置在BAF1前端为宜,氯气溶于水生成次氯酸,具有漂白杀菌作用,可以避免水中大量细菌对微生物分解有机物过程产生影响,同时可以起到水质脱色的作用。
高氨氮废水处理方法
高氨氮废水处理方法可以采用以下几种方法:
1. 生物处理:利用生物菌群降解氨氮。
常用的生物处理方法有曝气法、厌氧法和序批式生物反应器法。
曝气法通过供氧促进氨氮的细菌降解;厌氧法则在无氧条件下降解氨氮;序批式生物反应器法则通过有氧、无氧和静止等不同阶段的操作进行处理。
2. 化学处理:可以使用化学药剂与氨氮发生反应,将其转化为不溶于水的物质沉淀或析出。
常用的化学处理方法有硫酸亚铁法、氯化法、碱法等。
3. 膜分离技术:利用膜过滤、膜生物反应器等膜分离技术将氨氮与其他物质分离。
常见的膜分离技术包括逆渗透、纳滤和超滤。
4. 离子交换:通过离子交换树脂将废水中的氨氮吸附、去除。
离子交换方法适用于氨氮浓度较高的废水处理。
5. 蒸发浓缩:将废水中的氨氮用蒸发浓缩的方式进行处理。
这种方法适用于氨氮含量较高、体积较小的废水。
需要根据具体情况选择合适的方法进行处理,也可以组合使用多种方法进行高氨氮废水的处理。
同时,注意控制处理过程中的氨氮浓度,以避免对环境造成进一
步污染。
氨氮废水处理技术现状及发展氨氮废水的危害严重,对环境的影响巨大,关乎着人类社会、生态环境的可持续发展。
因此,如何处理氨氮废水,一直是人类及社会发展所关注的重要课题。
一、氨氮废水处理技术现状1、化学方法化学氧化是最常用的氨氮废水处理技术,主要包括臭氧氧化、臭氧/复合氧化、氯氧化及氯化氢氧化等。
目前,这些技术已被实际应用于氨氮废水处理,具有较高的氨氮去除效率及处理成本比较优势。
2、物理方法物理方法是氨氮废水处理的一种常用技术,主要包括溶解性吸附、膜分离、沉淀、析出、过滤、催化及超声等。
它们能够有效降低氨氮水体的污染程度,但仍需优化工艺参数及研究催化剂的性质,以提高处理效果。
3、生物方法生物方法是氨氮废水处理中广泛采用的技术,主要通过污泥过程、滞留池及流化床等处理手段,达到去除氨氮的目的。
经过研究发现,较理想的氨氮去除效果,可通过调节污泥处理池内污泥及废水浓度,和合理设计池容及污泥流去量等,以达到最优化管理的目的。
二、氨氮废水处理技术发展氨氮废水的性质及复杂的处理技术,一直以来都困扰着环保行业的发展。
为更好地处理氨氮废水,研究人员们不断研发新的技术及创新理念,以实现对氨氮废水处理的更有效率和可持续性管理。
1、无害化处理无害化处理是新一代氨氮废水处理技术,它旨在通过化学、物理、生物等处理工艺,实现对氨氮废水的无害化,最终达到回用、吸收甚至再利用的目的。
2、混凝处理混凝处理已被视为一种有效的氨氮废水处理技术,它能够有效的去除氨氮及其他悬浮物质。
其去除效果极佳,而且具有易操作、低成本、再来源化利用等特点。
3、膜技术膜法是最近发展起来的氨氮废水处理技术,它利用膜通道将氨氮进行过滤及分离,以达到去除氨氮的目的。
它具有高效、低成本、无污染、安全可靠等优点,可有效的处理氨氮废水,提高废水的回用水质。
三、结论氨氮废水的处理技术,从过去的化学及物理方法,到现在的生物方法,再到未来发展中的无害处理、混凝处理及膜技术,已经取得了很大的进步。
高浓度氨氮废水处理过量氨氮排入水体将导致水体富营养化,降低水体观赏价值,并且被氧化生成的硝酸盐和亚硝酸盐还会影响水生生物甚至人类的健康。
因此,废水脱氮处理受到人们的广泛关注。
目前,主要的脱氮方法有生物硝化反硝化、折点加氯、气提吹脱和离子交换法等。
消化污泥脱水液、垃圾渗滤液、催化剂生产厂废水、肉类加工废水和合成氨化工废水等含有极高浓度的氨氮(500mg/L以上,甚至达到几千mg/L),以上方法会由于游离氨氮的生物抑制作用或者成本等原因而使其应用受到限制。
高浓度氨氮废水的处理方法可以分为物化法、生化联合法和新型生物脱氮法。
1物化法1.1吹脱法在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法。
一般认为吹脱效率与温度、pH、气液比有关。
王文斌等[1]对吹脱法去除垃圾渗滤液中的氨氮进行了研究,控制吹脱效率高低的关键因素是温度、气液比和pH。
在水温大于25℃,气液比控制在3500左右,渗滤液pH控制在10.5左右,对于氨氮浓度高达2000~4000mg/L的垃圾渗滤液,去除率可达到90%以上。
吹脱法在低温时氨氮去除效率不高。
王有乐等[2]采用超声波吹脱技术对化肥厂高浓度氨氮废水(例如882mg/L)进行了处理试验。
最佳工艺条件为pH=11,超声吹脱时间为40min,气水比为l000:1试验结果表明,废水采用超声波辐射以后,氨氮的吹脱效果明显增加,与传统吹脱技术相比,氨氮的去除率增加了17%~164%,在90%以上,吹脱后氨氮在100mg/L以内。
为了以较低的代价将pH调节至碱性,需要向废水中投加一定量的氢氧化钙,但容易生水垢。
同时,为了防止吹脱出的氨氮造成二次污染,需要在吹脱塔后设置氨氮吸收装置。
Izzet等[3]在处理经UASB预处理的垃圾渗滤液(2240mg/L)时发现在pH=11.5,反应时间为24h,仅以120r/min的速度梯度进行机械搅拌,氨氮去除率便可达95%。
而在pH =12时通过曝气脱氨氮,在第17小时pH开始下降,氨氮去除率仅为85%。
氨氮废水处理技术研究进展氨氮废水是指含有氨态氮物质的废水,其排放对水环境造成严重影响,引起了人们的广泛关注。
针对氨氮废水处理问题,研究人员一直在努力寻找高效、经济、环保的处理技术,以提高废水处理效果和减少对环境的损害。
本文将对氨氮废水处理技术的研究进展进行探讨。
一、生物处理技术生物处理技术是目前处理氨氮废水最常用的方法之一。
传统的生物处理技术包括活性污泥法、生物膜法和植物床等。
活性污泥法通过利用污水中的微生物对氨氮进行氧化还原反应,将氨氮转化为亚硝酸盐和硝酸盐,进而实现氨氮的去除。
生物膜法则是利用生物膜固定化处理废水中的氨氮。
植物床则是利用植物的吸收能力将废水中的氨氮去除。
近年来,研究人员还提出了一些新的改进方法,如厌氧氨氧化法和氨氧化菌具体群的调控等,以进一步提高生物处理技术的效果。
二、物化处理技术物化处理技术主要包括吸附法、膜分离技术和化学沉淀法等。
吸附法通过添加吸附剂将废水中的氨氮吸附到表面,并将废液进行分离。
常用的吸附剂有活性炭、改性膨润土等。
膜分离技术通过利用半透膜,将废水中的氨氮分离出来,达到去除的效果。
化学沉淀法则是通过添加化学沉淀剂与废水中的氨氮发生反应,生成不溶性沉淀物,从而达到去除氨氮的目的。
三、电化学处理技术电化学处理技术近年来发展迅速,成为一种新兴的氨氮废水处理技术。
通过电解电池,利用电流在电极之间引发化学反应,从而使废水中的氨氮转化成硝酸盐等化合物。
电化学处理技术具有高效、低能耗和易操作等优势,但目前还存在电极材料选择和耐久性等方面的问题需要解决。
四、复合处理技术为了更好地处理氨氮废水,研究人员还提出了一些复合处理技术。
常见的复合处理技术有生物-物理化学技术、生物-电化学技术等。
这些技术将不同的废水处理技术进行组合,取长补短,以提高氨氮废水的处理效果。
综上所述,氨氮废水处理技术在过去几十年中取得了显著的进展。
生物处理技术、物化处理技术、电化学处理技术和复合处理技术等都在不同程度上对氨氮废水的处理起到了积极作用。
氨氮废水处理工艺技术最全总结氨氮废水处理有折点氯化法、化学沉淀法、离子交换法、吹脱法和生物脱氨法等多种方法,这些技术可分为物理化学法和生物脱氮技术两大类。
一、生物脱氮法微生物去除氨氮过程需经两个阶段。
第一阶段为硝化过程,亚硝化菌和硝化菌在有氧条件下将氨态氮转化为亚硝态氮和硝态氮的过程。
第二阶段为反硝化过程,污水中的硝态氮和亚硝态氮在无氧或低氧条件下,被反硝化菌(异养、自养微生物均有发现且种类很多)还原转化为氮气。
在此过程中,有机物(甲醇、乙酸、葡萄糖等)作为电子供体被氧化而提供能量。
常见的生物脱氮流程可以分为3类,分别是多级污泥系统、单级污泥系统和生物膜系统。
1、多级污泥系统多级污泥系统可以得到相当好的BOD5去除效果和脱氮效果,其缺点是流程长、构筑物多、基建费用高、需要外加碳源、运行费用高、出水中残留一定量甲醇等。
2、单级污泥系统单级污泥系统的形式包括前置反硝化系统、后置反硝化系统及交替工作系统。
前置反硝化的生物脱氮流程,通常称为A/O流程与传统的生物脱氮工艺流程相比,A/O工艺具有流程简单、构筑物少、基建费用低、不需外加碳源、出水水质高等优点。
后置式反硝化系统,因为混合液缺乏有机物,一般还需要人工投加碳源,但脱氮的效果可高于前置式,理论上可接近100%的脱氮。
交替工作的生物脱氮流程主要由两个串联池子组成,通过改换进水和出水的方向,两个池子交替在缺氧和好氧的条件下运行。
该系统本质上仍是A/O系统,但其利用交替工作的方式,避免了混合液的回流,因而脱氮效果优于一般A/O流程。
其缺点是运行管理费用较高,且一般必须配置计算机控制自动操作系统。
3、生物膜系统将上述A/O系统中的缺氧池和好氧池改为固定生物膜反应器,即形成生物膜脱氮系统。
此系统中应有混合液回流,但不需污泥回流,在缺氧的好氧反应器中保存了适应于反硝化和好氧氧化及硝化反应的两个污泥系统。
二、物化除氮物化除氮常用的物理化学方法有折点氯化法、化学沉淀法、离子交换法、吹脱法、液膜法、电渗析法和催化湿式氧化法等。
氨氮废水处理技术目前随着化肥、石油化工等行业的迅速发展壮大,由此而产生的高氨氮废水也成为行业发展制约因素之一;据报道,2001年我国海域发生赤潮高达77次,氨氮是污染的重要原因之一,特别是高浓度氨氮废水造成的污染。
因此,经济有效的控制高浓度氨氮废水污染也成为当前环保工作者研究的重要课题,得到了业内人士的高度重视。
氨氮废水的一般的形成是由于氨水和无机氨共同存在所造成的,一般上ph在中性以上的废水氨氮的主要来源是无机氨和氨水共同的作用,ph在酸性的条件下废水中的氨氮主要由于无机氨所导致。
废水中氨氮的构成主要有两种,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵,氯化铵等等。
高氨氮废水如何处理,我们着重介绍一下其处理方法:一、物化法1. 吹脱法在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与湿度、PH、气液比有关。
2. 沸石脱氨法利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。
应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。
采用焚烧法时,产生的氨气必须进行处理。
3.膜分离技术利用膜的选择透过性进行氨氮脱除的一种方法。
这种方法操作方便,氨氮回收率高,无二次污染。
例如:气水分离膜脱除氨氮。
氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。
根据化学平衡移动的原理即吕.查德里(A.L.LE Chatelier)原理。
在自然界中一切平衡都是相对的和暂时的。
化学平衡只是在一定条件下才能保持“假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。
”遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。
当左侧温度T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。
氨氮废水的处理技术及发展氨氮废水的处理技术及发展摘要:氨氮废水是由于工业、农业和城市污水排放中含有氨氮而产生的一种污染物。
氨氮废水具有较高的溶解性和毒性,对水体生态环境和人体健康造成了严重的威胁。
因此,氨氮废水的处理技术及发展备受关注。
本文综述了氨氮废水的处理技术,包括物理、化学和生物处理方法,并对其发展趋势进行了讨论。
1.引言氨氮废水是工业、农业和城市污水排放中普遍存在的一种污染物。
主要来自于肥料、养殖业、制药业、纺织业等行业的生产过程中,以及人类排泄的尿液中。
氨氮废水的高浓度和毒性对环境和人体健康造成了严重威胁,因此,氨氮废水的处理技术及发展备受关注。
2.氨氮废水的特性氨氮废水的主要特性包括高浓度、溶解性强、毒性大等。
氨氮浓度超过环境标准会导致水生生物死亡和水体富营养化等问题。
此外,氨氮还会与有机物反应生成亚硝酸盐和硝酸盐,进一步加重水体污染程度。
3.氨氮废水的处理技术3.1 物理处理技术物理处理技术主要包括气浮法、吸附法和过滤法等。
其中,气浮法通过在氨氮废水中注入气体来形成气泡,使氨氮颗粒浮于水面,然后通过刮板进行除去。
吸附法运用吸附剂吸附氨氮颗粒,例如活性炭、聚合物等。
过滤法则利用过滤介质将氨氮颗粒拦截在过滤介质中。
这些物理处理技术简单易行,并且不会产生二次污染,但处理效果受到浓度、温度和pH值等因素的影响。
3.2 化学处理技术化学处理技术主要包括沉淀法、离子交换法和吸附交换法等。
沉淀法利用化学反应使氨氮生成不溶于水的沉淀物,例如氢氧化铁和氢氧化铝。
离子交换法通过离子交换材料上的离子交换来去除氨氮颗粒。
吸附交换法使用吸附材料吸附氨氮颗粒,例如氨基树脂、陶粒等。
这些化学处理技术处理效果较好,但运行成本较高,并且产生的浮渣、污泥需要进一步处理。
3.3 生物处理技术生物处理技术是利用微生物将废水中的氨氮转化为无机氮的技术,主要包括曝气法、厌氧/好氧法和生物膜法等。
曝气法通过将氨氮废水暴露在空气中,利用空气中的氧气将氨氮氧化成亚硝酸盐和硝酸盐。
氨氮废水处理研究国内外文献综述1 国内氨氮废水处理的研究现状对于氨氮废水的处理已引起全球环保领域的重视,近10多年来,国内外在氨氮废水处理方面开展了很多的研究,并且涌现出了许多的新技术。
对于我国而言现在已有的氨氮处理工艺有:(1)物理化学法,具体有:反渗透、吹脱法、折点氯化法、电渗析除氨氮法、沸石脱氨法、膜分离技术、MAP沉淀法和化学氧化法;⑵生物脱氮法,包括了:A/O工艺、两段活性污泥法、强氧化好氧生物处理(粉末活性法)、短程硝化反硝化,这类方法可去除多类含氮化合物总氮去除率可达70%-95%[4]。
(3)生化联合法:如果是选择单一的物化方法在处理高浓度的氨氮废水时即使不会因为氨氮浓度过高而受到限制,但也不能将氨氮浓度降到足够低(如100mg/L以下)。
而生物脱氮会因为高浓度游离氨或者亚硝酸盐氮而受到抑制。
因此实际应用中常采用生化联合的方法,在生物处理前先对含高浓度氨氮的废水进行物化处理。
例如:生物活性炭流化床,膜-生物反应器技术(MBR),折点氯化法,离子交换法,等。
比如常见的MBR技术是一种由膜分离单元与生物处理单元相结合的一种较为常用的新型水处理技术,利用膜的组件来取代二沉池,可以达到在生物反应器中活性污泥浓度较高,从而减少污水处理设施占地,有利于大大提高反应器中活性污泥的浓度及其利用率[5]。
折点氯化一般应用于饮用水消毒,具有不受盐含量干扰,有机物含量越少氨氮处理效果越好,不产生污泥,处理效率高等优点[6.7]但是在处理过程中应对反应器内的膜进行定期的清理,因为在系统运行一段时间以后,一些有机物大分子和颗粒悬浮物会沉积在其表面或膜孔内部,使的系统出水量大大降低直至停止出水[8]。
总体而言通过利用沉浸于好氧生物池内的膜分离设备来截留槽内的活性污泥以及大分子固体物质,可使系统内活性污泥(MLSS)浓度提升至10,000mg/L,污泥龄(SRT)可延长30天以上[9]。
故在膜制造技术不断提升支援下,MBR处理技术将更加成熟并吸引着全世界环境保护工业的目光,逐渐的受到人们的重视[10]。
根据废水中氨氮浓度的不同,可将废水分为3类:高浓度氨氮废水(NH3-N>500mg/l),中等浓度氨氮废水(NH3-N:50-500mg/l),低浓度氨氮废水(NH3-N<50mg/l)。
然而高浓度的氨氮废水对微生物的活性有抑制作用,制约了生化法对其的处理应用和效果,同时会降低生化系统对有机污染物的降解效率,从而导致处理出水难以达到要求。
故本工程的关键之一在于氨氮的去除,去除氨氮的主要方法有:物理法、化学法、生物法。
物理法含反渗透、蒸馏、土壤灌溉等处理技术;化学法含离子交换、氨吹脱、折点加氯、焚烧、化学沉淀、催化裂解、电渗析、电化学等处理技术;生物法含藻类养殖、生物硝化、固定化生物技术等处理技术。
目前比较实用的方法有:折点加氯法、选择性离子交换法、氨吹脱法、生物法以及化学沉淀法。
1.折点氯化法去除氨氮折点氯化法是将氯气或次氯酸钠通入废水中将废水中的NH3-N氧化成N2的化学脱氮工艺。
当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。
当氯气通入量超过该点时,水中的游离氯就会增多。
因此该点称为折点,该状态下的氯化称为折点氯化。
处理氨氮废水所需的实际氯气量取决于温度、pH 值及氨氮浓度。
氧化每克氨氮需要9~10mg氯气。
pH值在6~7时为最佳反应区间,接触时间为0.5~2小时。
折点加氯法处理后的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。
1mg残留氯大约需要0.9~1.0mg的二氧化硫。
在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右(以CaCO3计)。
折点氯化法除氨机理如下:Cl2+H2O→HOCl+H++Cl-NH4++HOCl→NH2Cl+H++H2ONHCl2+H2O→NOH+2H++2Cl-NHCl2+NaOH→N2+HOCl+H++Cl-折点氯化法最突出的优点是可通过正确控制加氯量和对流量进行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。
污水氨氮去除方法污水中的氨氮是一种常见的水质问题,它主要来自废水和农业农村非点源污染。
高浓度的氨氮不仅对人体健康有害,还会对水体生态环境产生严重影响。
因此,制定有效的氨氮去除方法是保护水资源的重要措施之一、以下是几种常见的氨氮去除方法:1.生物除氨法:对于低浓度的氨氮废水,可以利用生物除氨法进行处理。
生物除氨是利用氨氧化细菌和反硝化细菌对废水中氨氮进行降解和转化的过程。
其中,氨氧化细菌可将氨氮氧化为亚硝态氮,而反硝化细菌可将亚硝态氮还原为氮气排放。
生物除氨方法具有操作简便、效果稳定等优势,常常用于污水处理厂和生活污水处理。
2.高级氧化法:高级氧化法是一种利用触媒或特殊氧化剂将废水中的氨氮进行氧化的方法。
这种方法适用于高浓度氨氮废水的处理。
高级氧化法常用的技术包括臭氧氧化、过氧化氢氧化和二氧化氯氧化等。
这些氧化剂可以将废水中的氨氮直接氧化为无害的物质,达到氨氮去除的目的。
但是,高级氧化法操作复杂、消耗能量较多,在实际应用中受到一定限制。
3.离子交换法:离子交换是一种常见的废水处理技术,也可用于氨氮去除。
通过正、负离子交换树脂对废水进行处理,氨氮离子与树脂上的H+或OH-离子发生交换,从而实现了氨氮的去除。
离子交换法具有操作简单、处理效果好的特点,广泛应用于水处理领域。
4.膜分离技术:膜分离技术是一种通过半透膜将废水中的氨氮分离出来的方法。
常用的膜分离技术包括超滤、反渗透等。
这些技术可以将废水中的氨氮分离成浓缩的溶液,然后再进行处理或深度净化。
膜分离技术具有操作简便、高效率、节能等优点,但成本较高,适用于规模较大的废水处理厂。
除了上述的主要技术,还有其他一些辅助氨氮去除方法:如化学沉淀法、吸附法、蒸发结晶等。
这些方法在实际应用中常常与主要技术相结合,根据具体情况选取最适合的氨氮去除方法。
总结起来,氨氮去除是保护水环境的重要措施,选择合适的氨氮去除方法要考虑废水的性质、浓度和实际应用等因素。
为了实现氨氮有效去除,可能需要综合应用多种处理技术,以达到水质要求并尽量降低处理成本。
氨氮废水处理方法及其优缺点一、生物法生物法是指利用生物体或生物群体来降解废水中的氨氮。
常用的生物法包括活性污泥法、好氧硝化法、厌氧反硝化法和生物膜法等。
1.活性污泥法活性污泥法是将废水与活性污泥混合,通过氨氮的硝化和硝酸盐的还原作用来降解氨氮。
其优点是处理效果稳定、操作简单、能同时去除COD等有机物质,缺点是对负荷波动较敏感,能耗较高。
2.好氧硝化法好氧硝化法是将废水通过好氧菌的作用,将氨氮氧化为硝酸盐。
其优点是操作简单、能耗较低,但硝化速度较慢,对废水中有机负荷波动敏感。
3.厌氧反硝化法厌氧反硝化法是在无氧条件下,利用厌氧菌将废水中的氨氮和硝酸盐共同还原为氮气。
其优点是对废水中COD负荷波动较稳定,能耗较低,但操作技术要求较高。
4.生物膜法生物膜法是通过在载体上负载生物降解菌群来处理废水中的氨氮。
其优点是反应器设计灵活,处理效果稳定,但需要定期清洗和更换载体。
二、物化法物化法是指利用物理和化学方法来去除废水中的氨氮。
常用的物化法包括吸附法、气浮法和化学沉淀法等。
1.吸附法吸附法通过将废水中的氨氮吸附到吸附剂上实现去除。
常用的吸附剂有活性炭、分子筛和天然矿物质等。
其优点是操作简单、去除效果稳定,但吸附剂饱和后需要更换。
2.气浮法气浮法是将废水中的氨氮通过气泡的上浮来实现去除。
其优点是处理效果稳定、适用于高浓度废水,但操作复杂、能耗较高。
3.化学沉淀法化学沉淀法通过添加化学沉淀剂,将废水中的氨氮与沉淀剂反应生成沉淀物并沉淀下来。
其优点是去除效果好、适用范围广,但需要定期处理沉淀物。
三、膜法膜法是利用膜的分离作用来去除废水中的氨氮。
常用的膜法有超滤、反渗透和电渗析等。
1.超滤法超滤法利用孔径较小的膜对废水进行分离,将废水中的氨氮去除。
其优点是操作简单、效果稳定,但需要定期清洗和更换膜。
2.反渗透法反渗透法通过在高压下,使废水透过半透膜,实现对氨氮的去除。
其优点是去除效果好、可以同时去除其他溶解物质,但能耗较高。
氨氮废水处理氨氮废水是指含有肯定浓度的氨氮的工业、农业、生活污水,其直接排放对环境产生严重影响。
为了保护环境,削减水污染对人类和生物造成的损害,需要对氨氮废水进行有效处理。
本文将对氨氮废水的生成、特点、影响以及处理方法进行认真介绍。
一、氨氮废水的生成和特点氨氮废水重要来自于人类和动物的排泄物、化肥及农药使用、工业废水、畜禽养殖业等,它的重要特点是呈弱酸性,PH值在6—8之间,不易挥发。
在自然环境中,氨氮会在水体中快速被微生物汲取、化解为亚硝酸盐和硝酸盐,其中氨氮会被微生物利用来合成蛋白质,使氨氮的含量降低,但假如废水中氨氮浓度过高或污染物过多,微生物就无法快速将其降解,从而对环境造成危害。
二、氨氮废水的影响氨氮废水对环境造成的影响重要有以下几点:1. 氨氮会对水体中的鱼类造成危害。
高浓度的氨氮会使鱼体的呼吸系统受到损害,从而引发鱼类死亡。
2. 氨氮会抑制植物生长。
氨氮在高浓度下会引起植物叶片焦枯、萎蔫甚至死亡,从而影响到植物的生长发育。
3. 氨氮会对土壤产生负面影响。
高浓度的氨氮在土壤中累积会导致土壤酸化,影响土壤的肥力和生物活性。
4. 氨氮会对人类健康产生危害。
当氨氮浓度过高时,会对人类的眼睛和呼吸系统造成刺激,引发头痛和感冒等疾病。
三、氨氮废水的处理方法1. 生物法处理在氨氮废水处理中,生物法可以说是最常用的处理方法之一,这是由于生物法处理成本低,处理效率高。
生物法处理废水的方式可以用好氧法处理和厌氧法处理,优点在于处理过程本身不会产生二次污染。
在好氧法处理中,氨氮在氧气的作用下,被微生物氧化为亚硝酸盐和硝酸盐,亚硝酸盐和硝酸盐在水体中的含量被有效地去除。
在厌氧处理中,氨氮在没有氧气的环境中,被厌氧微生物氧化为亚硝酸盐和硝酸盐,和好氧法处理相比,厌氧法处理更适用于含有高浓度氨氮的废水。
2. 化学法处理在氨氮废水处理中,常用的化学处理方法有氧化法和还原法。
氧化法通过氧化氨氮来达到去除氨氮的目的,氧化剂有过氧化氢、臭氧、高锰酸钾等,优点是去除效率高,但需要消耗大量的化学品,成本较高。
第33卷第5期2013年10月山 西 化 工SHANXI CHEMICAL INDUSTRYVol.33 No.5Oct.2013环境保护[3]随着工业的发展,产生的废弃物越来越多,大量未处理氨氮废水方面,吕锡武等用序批式反应器对氨氮废经处理或处理不完全的含氮污染物的任意排放,给环境水进行处理,实验中好氧阶段的总氮损失验证了好氧反造成了巨大的污染。
由于氨氮的存在会消耗水体的溶解硝化的存在,并从生物化学和生物学角度阐释了好氧反氧,导致水体富营养化,进而影响水中生物生长,鱼类硝化的机理。
实验结果表明,随着混合液溶解氧浓度的中毒、死亡,甚至会进一步导致食用了中毒鱼类的人类提高,好氧反硝化脱氮的能力逐渐降低,当溶解氧质量中毒,其危害不容小觑。
在工业上,氨氮的存在会增加浓度为0.5mg/L时,总氮去除率可达到66.0%;张小玲等[4]循环水杀菌处理的过程及污水回收利用用氯量,且其对研究了在低溶解氧下,SBR反应器的短程硝化特征和控铜等金属具有一定的腐蚀性,在污水回收利用时还会增制条件。
实验结果表明,实现短程硝化的关键是保持大用氯量;同时能形成生物垢,堵塞管道和用水设备,高、低溶解氧交替的环境,一定条件下,用半连续碳源[5]影响换热效率。
投加方式可保证总同步脱氯效率达到80%;邹小玲采用相对于生活中的洗涤用水和农业灌溉废水,氨氮废SBBR工艺处理ADC发泡剂废水,以达到脱除氨氮的目水更广泛的来源是肥料生产、炼焦、煤气、合成橡胶、的。
同时,考察了影响去除率的各个因素,确定了最佳染料、烧碱、电镀及石油开采等工业过程。
工业过程中操作参数,保证了COD和氨氮的去除率分别为95.4%和氨氮废水排放量大、浓度高,危害也最大。
93.5%。
并且,作者采用Monod模型对硝化反应阶段进行了动力学分析,得到了氨氮去除动力学模型。
另外,叶[6][7]1 氨氮废水处理技术的国内外研究状况建峰等、杨洋等研究了厌氧氨氧化工艺及其影响因素,确定了反应的最佳条件。
在物理化学法处理氨氮废[9]1.1 国内研究状况水方面,胡允良等用吹脱法处理高浓度制药氨氮废水,[10]国内在处理氨氮废水方面做了大量工作。
在生物法达到96%的吹脱效率。
李可彬等对乳状液膜去除氨氮进行了研究,由合适的表面活性剂和膜增强剂等组成的液膜,在合适条件下的一级去除率可以达到97%。
曲久[11]辉等利用高铁酸盐对氨氮的氧化能力进行了研究,强化其氧化和絮凝的协同效果。
实验结果表明,少量的三价铁在高铁氧化絮凝法去除氨氮过程中,具有一定的催氨氮废水处理技术综述李广慧中北大学化工与环境学院,山西 太原 030051综述了氨氮废水处理技术的国内外研究现状,阐述了生物硝化反硝化法、反渗透法、氨吹脱法、化学沉淀法、离子交换法、电化学氧化法、折点氯化法去除氨氮的原理和影响因素,指出了各种方法的优、缺点及工艺技术的选择原则。
氨氮废水;研究状况;处理技术X703.1 ---()[关键词] [摘要][中图分类号] [文献标识码] A [文章编号] 10047050(2013)05006669收稿时间:20130921作者介绍:李广慧,男,1983年出生,中北大学在读工程硕士。
研究方向:化工废水处理。
--DOI:10.16525/14-1109/tq.2013.05.0212013年10月·67·[12]反硝化法、反渗透法、氨吹脱法、化学沉淀法、择性离化作用;杜鸿章等研制了一种新型催化剂,以三相接子交换法、电化学氧化法以及折点氯化法等。
触反应形式进行反应来去除水中的氨氮和有机物,使用 2.1 生物硝化反硝化法一定的固定床反应器,考察了各种因素对催化反应的影传统生物硝化反硝化法可分为2个阶段:首先,在响,得出在特定的工艺条件下,可使焦化废水中的氨氮[13]好氧条件下,使用硝酸盐菌和亚硝酸盐菌将氨氮氧化为去除率达到99.6%。
谢炜平对化学沉淀法进行了研究,硝酸盐氮和亚硝酸盐氮,硝酸菌则是利用亚硝酸作为能他利用[Mg(OH)+H PO ]作为化学沉淀剂去除废水中的氨234[14]源的自养菌,而亚硝酸盐菌是一种以氨为能源的好氧型氮,并探讨了氨氮去除率的各种影响因素。
钟理等研自养菌。
然后,在缺氧条件下,使用反硝化菌将硝酸盐究对比了2种不同的化学沉淀剂,并得出了较优沉淀剂的--[15][16]氮和亚硝酸盐氮还原为氮气,即,将NO 和NO 还原为32适宜离子浓度比。
李小明等、曾次元等、王程远 [17]N 。
通过以上2个阶段便可脱除氮。
2等都采用电化学氧化法处理垃圾渗析液中的氨氮等污-硝化反应如化学反应式(1)、(2)所示,总硝化反应染物,确立了电流密度、Cl 浓度等因素的最佳反应条[18]见式(3):件。
黄海明等用折点氯化法处理含低浓度氨氮的稀土--+ 2NH +3O 2NO +2H O+4H 4 222冶炼废水,氨氮的去除率可达到98%。
-- 2NO +O 2NO1.2 国外研究状况223+-+国外在氨氮废水的处理方面同样做了大量研究工作。
NH +2O NO +2H +H O4232在使用生物法处理氨氮废水上,日本在硫化床反应器中利在反硝化反应中需要加入各种碳源作为电子供体,+用固定化硝化菌进行了生产实验,结果表明NH -N去除率下面以甲醇为例,其反应方程式为式(4)、(5)。
4--[19][20] 6NO +2CH OH 6NO +2CO +4H O 可高达90%以上。
Bjorn等开发的浮动床-生物膜反应33222[21]--器,在低温条件下能够有效地去除氨氮。
Yukata等开发 6NO +3CH OH 3N +3CO +3H O+6OH23222的电化学生物反应器,可将生物膜或酶固定在该反应器的生物硝化反硝化法的影响因素主要有pH值、温度、阴极表面,通电后,水电解产生的氢作为电子供体与扩散溶解氧、有机碳源等。
在传统硝化反硝化工艺的基础上[22]至生物膜的硝酸盐进行反硝化反应;VanDerGreaf等研改良的SHARON工艺和OLAND工艺等都取得了很好的[28]究了厌氧氨生物氧化,由于氨可直接作为电子供体而无需脱氮效果,并且降低了能耗。
外加供体,所以与传统的反硝化工艺相比此方法更具优 2.2 反渗透法[23]点。
Linde等利用反渗透法处理了3种不同类型的垃圾渗反渗透法是近年来国外在处理废水方面应用较为广滤液,对传统生化池和填埋场的渗滤液而言,水通量与电泛的一种高级方法。
反渗透法的核心是反渗透膜,这种导率呈线性关系,氨氮和COD去除率均大于98%;S. 膜对溶剂有选择性,从而截留离子物质,达到分离液体[24]混合物的目的。
反渗透膜的两侧会形成静压差,以此压Uludag等用鸟粪石沉淀去除乳制品废液中的氨氮,通过+差为动力来克服溶剂的渗透压。
调节适当的pH和加入合适量的反应药剂,NH 的去除率能4反渗透法处理效果的主要影响因素有温度、氨氮浓够达到95%以上。
Konishi等使用沸石作为吸附柱填料来吸[25]度、pH值以及操作压力(电压)等。
附废水中的氨氮,达到了很好的去除效果。
Hurd等使用 2.3 氨吹脱法(气提法)低压聚酰胺膜来处理垃圾渗滤液,在压力大于1. 03M Pa的吹脱法(或汽提法)是以空气(或水蒸气)作为载[26]操作条件下,氨氮去除率可达到88%以上;Moraes等、气,将气体通到液体中,在气液两相充分接触后,溶解[27]Awadalla等也对膜分离法进行了研究。
于液体中的气体与易挥发性溶质由液相进入气相,从而使废水得到处理。
此方法是基于气液相平衡和传质速度2 氨氮废水处理主要方法理论,以被吹脱物质在气液两相的浓度差为推动力进行的过程。
吹脱法(或汽提法)主要适用于脱除易挥发性目前,国内外去除氨氮的主要方法有物理法、化学溶质和溶于液体中的气体。
氨吹脱是指在较高pH值下,法、生物法。
物理法包括反渗透、蒸馏、土壤灌溉等处将空气通入含氨废水,利用氨在废水及空气中的浓度理技术;化学法包括离子交换、氨吹脱、折点氯化、焚差,将废水中的氨脱除。
烧、化学沉淀、催化裂解、电渗析、电化学等处理技吹脱法一般在吹脱池或吹脱塔中进行,但由于前者术;生物法包括藻类养殖、生物硝化反硝化、固定化生容易污染周边环境,所以采用后者吹脱有毒气体。
影响物技术等处理技术。
而当前应用较多的方法有生物硝化吹脱效果的主要因素有被吹脱物质的初始浓度、气速、李广慧:氨氮废水处理技术综述→→→→→(1)(2)(3)(4)(5)液气比、温度及pH等。
此需有针对性的选择处理方法。
但无论选取何种方法,2.4 化学沉淀法都必须遵循以下原则:1)能否改进生产技术和改变生化学沉淀法是以H PO +MgO或Mg(OH)作为化学沉产原料,以减少废水量及降低氨氮含量;2)能否将优342化水的利用与良好的工厂管理及可能的副产品回收相结淀剂,与氨反应生成沉淀物以脱除废水中的氨氮。
反应合。
3)所选择的工艺能否经济、高效地去除废水中的方程式如式(6):2++3-氨氮。
Mg +NH +PO →Mg(NH )PO (S) (6)4444化学沉淀法影响处理效果的主要因素有温度、氨氮浓度、pH值以及相关离子浓度比等。
化学沉淀法与其他参考文献方法相比,其优势就是生成的沉淀物Mg(NH )PO 是一44[1] 种复合肥料,尤其是在废水中无其他有毒物质时,这种优势更加明显,并且Mg(NH )PO 可直接作为肥料使44[2] 用,具有一定的经济效益。
2.5 离子交换法[3]离子交换法是利用固相中的离子和液相中的离子进行的可逆化学反应。
当离子交换固体吸附液体中的离子时,就会释放出等价的离子到液体中以维持液体的电中[4]性。
这种离子交换固体为交换树脂,它以氢离子交换阳离子,氢氧根离子交换阴离子。
[5] 斜发沸石是一种用于脱除氨氮废水中氨氮的交换树+脂,其对NH 的选择性很强,且吸附饱和的沸石可再生4[15][6] 后重复利用。
2.6 电化学氧化法[7]电化学氧化法分直接氧化作用和间接氧化作用2种反应途径。
前者是污染物在电极上直接进行电化学反应;后者是利用电极表面产生的H O 、O 、·OH等强氧223[8] 化性物质来氧化污染物。
电化学氧化法去除氨氮是指在电场作用下,溶液中[9]的·OH基团直接将氨氧转化成N 等含氮物质,以及利用2--水中Cl 转化成ClO 的氧化作用而达到去除氨氮的目的。
[10]2.7 折点氯化法折点氯化法是往废水中通入一定的氯气,当到达固[11] 定一点后,水中的游离氨含量会最低,而氨的含量则降为0;若通入的氯气量超过该点时,水中游离氨含量会增加。
因此,该点成为折点,此状态下的氯化即为折点[12] 氯化。
折点氯化法除氨是利用加入过量的氯与氨反应,从而生成N 。
反应方程式如式(7)。